Exam II

1)(30 points) Define \(a_n \) as below. Use \(\epsilon \), \(K \) to prove: \(a_n \) converges.

\[
a_n = \frac{n^2 - n + 1}{3n^2 - 4n - 8}
\]

2)(30) Prove or give a counterexample: Assume there exists an \(\epsilon > 0 \) and there exists a \(K \) such that \(n \geq K \) implies \(|a_n - a| < \epsilon \). Then \(a_n \to a \).

3)(40 points) Let \(S \) be a non-empty set of real numbers bounded above. Let \(T = \{upper \ bound \ of \ S\} \). Prove \(\sup(S) = \inf(T) \).
Sample Exam Two Solutions

1) We expect this to be like \(\frac{n^2}{3n^2} \).

So the \(\frac{1}{3} \) is the limit. Let's look

\[
\frac{n^2 - n + 8}{3n^2 - 4n - 8} = \frac{(3n^2 - 3n + 3) - (3n^2 - 4n - 8)}{3(3n^2 - 4n - 8)} = \frac{n + 5}{3(3n^2 - 4n - 8)}
\]

Now to get \(n \) of absolute values:

\((n + 5) = n + 5 \) so we're OK there.

Getting \(\frac{3n^2 - 4n - 8}{2n} \) is trickier, here's one way:

we'll write it as \(3n^2 - 4n \geq 8 \) the factors

\(n(3n - 4) \geq 8 \). If each factor is bigger than \(8 \)

the product will be. So \(n \geq 8 \), \(3n - 4 \geq 8 \) or \(3n \geq 12 \)

or \(n \geq 4 \). So \(n \geq 8 \) it is - throw that into OK

So now divide \(\frac{n + 5}{3(3n^2 - 4n - 8)} \) in

To make it easier use \(\frac{1}{2} \leq 1 \) and \(n + 5 \leq n \).

So I want \(\frac{n}{3n^2 - 4n - 8} \leq \frac{1}{n} \) \(\Rightarrow \)

\(n \leq 3n^2 - 4n - 8 \) \(\Rightarrow \)

\(0 \leq 2n^2 - 4n - 8 \) or \(0 \leq n^2 - 2n - 4 \)
Ok, same task: make \(n^2 - 2n \geq 4 \)
or \(n(n-2) \geq 4 \). But see

\[n \geq 4 \text{ or } n-2 \geq 4 \text{ so } n \geq 6 \]

But we already have \(n \geq 8 \).

Alright, \(1/n < 3 \) if \(n > 1/3 \).

So - now for the proof: given \(\varepsilon > 0 \). Choose \(k = \sup \{ 1/\varepsilon, 8 \} \). Then for \(n \geq k \)

\[
\left| \frac{n^2 - n + 1}{3n^2 - 4n - 8} - \frac{1}{3} \right| = \left| \frac{n+5}{3(3n^2 - 4n - 8)} \right|
\]

\[\leq \frac{n}{3n^2 - 4n - 8} \leq \frac{1}{n} \quad \text{since } n \geq 8 \]

\[\leq \frac{1}{k} \quad \text{since } n \geq k \geq 8 \]

\[\leq \frac{1/n}{\varepsilon} = 3 \quad \text{since } n \geq k > \frac{1}{\varepsilon} \]

v)

What's different from the usual definition of limit? Instead of "for all \(\varepsilon > 0 \) we have "\(\exists k \geq 0 \)"

Now \(\varepsilon \) controls accuracy — how close

On gets to \(a \). If I have "for all \(\varepsilon \)"

I can make \(a \) very close to \(a \) by

choosing \(\varepsilon \) very small.
Using "\(\exists x \)" - well, 0 doesn't have to be close to a at all.

So what we want is a sequence \(a_n \), and an \(a \) such that \(a_n \) does not converge to \(a \).

But for which there exists \(\varepsilon \) etc, etc,

OK - let's take \(a_n = \frac{1}{n} \), \(a = 1 \), \(a_n \) does not \(\to 1 \).

"exists" \(\varepsilon \) - \(\varepsilon \) can be chosen, \(0' \) use \(\varepsilon = \frac{1}{2} \).

Then I have to show there is an \(a_k \) such that \(|a_k - a| < \varepsilon \).

So I've got "exists \(x \)". and "exists \(\varepsilon \)."

And by 0 have to show \(n \geq k \Rightarrow |a_n - a| < \varepsilon \).

or \(n \geq k \Rightarrow \left| \frac{1}{n} - 1 \right| < \varepsilon \).

But \(\left| \frac{1}{n} - 1 \right| \leq \frac{1}{|n|} + |1| = |1| + 1 = 2 \)

and yes, \(2 < 3 \).

3) We have a result: If \(t \in T \) and \(t \) is a lower bound of \(T \), then \(t = \inf T \).

So I'll show

a) \(\inf T \)

b) \(\sup S \) is a lower bound of \(T \)

Then it follows \(\sup S = \inf T \)

a) \(\sup S \) is upper bound of \(S \) - def. So \(\sup S \leq \sup S = \inf T \)

b) If \(t \in T \), \(t \) is an upper bound of \(S \), so \(\sup S \leq t \).
Since \(\sup S \) is the least upper bound of \(S \), so \(\sup S \leq \sup T \).