Section 1.2 Page 15: 20

1) Prove that a natural number \(n \) is even if and only if \(n^2 \) is even; a natural number \(n \) is odd if and only if \(n^2 \) is odd.

2) Let \(x_1 = 1; x_2 = 1; x_{n+1} = x_n + x_{n-1} \). Prove that for all natural numbers \(n \),

\[
1 \leq x_n \leq 3^n
\]

3) Assume \(x_1 \) is defined so that \(0 < x_1 < 1 \) and then define \(x_n \) recursively as

\[
x_{n+1} = x_n(1 - x_n)
\]

Prove that for all \(n \), \(0 < x_n < 1 \)