GROUP WORK We'll have GW on Wednesday April 5. It will cover limits and inequalities, and monotone sequences.

QUIZ The usual Friday Quiz; covering the same material as the group work.

BOOK PROBLEMS Section 3.3 p77 1, 2, 3, 7, 8

PRACTICE

1) Assume \(x_1 \) satisfies \(0 < x_1 < 1 \) and define \(x_{n+1} = 0.5 x_n (1 - x_n) \). Prove:

 i) For all \(n \), \(0 < x_n < 1 \)

 ii) \(x_n \) converges.

 iii) Find the limit of \(x_n \)

2) Let \(x_1 < \frac{1}{2} \) and for \(n \geq 1 \) define

 \[x_{n+1} = 2 x_n (1 - x_n) \]

 Prove that \(x_n \) converges and find the limit.

3) Assume \(a_1 > 0 \) Define

 \[a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \]

 Is \(a_n \) monotone?
Book Section 3.3

1) \(x_1 = 8; x_{n+1} = \frac{1}{2} x_n + 2 \).

Intuition: \(x_2 = \frac{1}{2} 8 + 2 = 4 + 2 = 6 \) so I suspect
\(x_n \) is monotonically decreasing. To prove convergence,
I need to show it is bounded below.

First step: reduce monotonicity to boundedness
\(x_{n+1} \leq x_n \) off \(\frac{1}{2} x_n + 2 \leq x_n \)
off \(2 \leq \frac{1}{2} x_n \) off \(4 \leq x_n \).

Second step: prove bounded below by induction.
\(P(1) \Rightarrow x_1 \geq 4 \).
Check \(P(1) \): \(x_1 \geq 4 \Rightarrow 8 \geq 4 \) true.
Check \(P(n) \Rightarrow P(n+1) \)
Assume \(x_n \geq 4 \) (induction hypothesis \(P(n) \))
then \(\frac{1}{2} x_n + 2 \geq \frac{1}{2} \cdot 2 + 2 = 2 + 2 \) close source
\(x_{n+1} \geq 4 \) def \(x_n \).

So: \(x_n \geq 4 \) for all \(n \), so that \(x_n \) is monotonically decreasing, since the \(x_n \) are bounded below.

Then \(x_n \) converges to some \(x \).
But \(x_n \) also converges to \(x \). So
\(\lim_{n \to \infty} x_{n+1} = x \) and \(\lim_{n \to \infty} \frac{1}{2} x_n + 2 = \frac{1}{2} x + 2 \).
\(x = \frac{1}{2} x + 2 \) or \(\frac{1}{2} x = 2 \) or \(x = 2 \).
Step # 2

3) \(x_1 \geq 2 \) and \(x_{n+1} = 1 + \sqrt{x_n - 1} \).

usual check for monotonicity: Let \(x_1 = 5 \),
\(x_2 = 1 + \sqrt{4} = 1 + 2 = 3 \). So I suspect
\(x_n \) is monotone decreasing.

First step \(x_{n+1} \leq x_n \) iff
\(1 + \sqrt{x_n - 1} \leq x_n \) iff \(\sqrt{x_n - 1} \leq x_n - 1 \).

We'll show below that \(x_n \geq 1 \) so \(x_n - 1 \geq 0 \), so
we can square both sides to get \(x_n - 1 \leq x_n \) iff
\(x_n - 1 \leq (x_n - 1)^2 \) iff \(1 \leq x_n - 1 \) iff \(2 \leq x_n \).

Second step: use induction to prove \(x_n \geq 2 \)

(remark: this also proves \(x_n \geq 1 \))

\(P(n) \) : \(x_n \geq 2 \).

Check \(P(1) \) : \(x_1 \geq 2 \) this was given. Nothing to prove.
Check \(P(n) \implies P(n+1) \):
\(x_n \geq 2 \) \text{ conduces hypothesis }
\(1 + \sqrt{x_n - 1} \geq 1 + \sqrt{2 - 1} = 1 + 1 = 2 \) algebra
\(x_{n+1} \geq 2 \) recursion for \(x_{n+1} \).

So \(x_n \geq 2 \) is so the \(x_n \) are monotone decreasing
and bounded below. Therefor convergent to some \(x \).

Note = \(x_n \geq 2 \) so, class result, \(x \geq 2 \).

So \(1 + \sqrt{x_n - 1} \to 1 + \sqrt{x - 1} \). But \(x_{n+1} \to x \) so
\(x = 1 + \sqrt{x - 1} \) or \(x - 1 = \sqrt{x - 1} \) or \((x - 1)^2 = x - 1 \)
Since \(x \geq 2 \) I can divide by \(x - 1 \neq 0 \),
or \(x - 1 = 1 \) and \(x = 2 \).
7) \(x_1 > a > 0 \) and \(x_{n+1} = x_n + \frac{1}{x_n} \).

First try: \(x_1 = 1 \) then \(x_2 = 2 \) so suspect \(x_n \) is increasing and bounded above.

\[x_{n+1} = x_n + \frac{1}{x_n} \Rightarrow x_{n+1} - x_n = \frac{1}{x_n} > 0 \Rightarrow x_{n+1} > x_n \]

So the first thing we'd need to do is show for all \(n \),

\(x_n > 0 \). I'll do this by induction.

\(P(1) : x_1 > 0 \)

\(P(n) \Rightarrow x_n > 0 \) since \(x_1 > 0 \).

\(P(n) \Rightarrow P(n+1) : x_{n+1} = x_n + \frac{1}{x_n} > 0 \) since \(x_n > 0 \) by induction hypothesis.

So \(x_{n+1} > 0 \).

So \(x_n \) are monotone increasing.

If the \(x_n \) are bounded above, they converge to some \(x \). Now the \(x_n \) are monotone increasing so

\(x_n \geq x \geq a \geq 0 \) so \(\lim_{n \to \infty} x_n \geq x > 0 \) so \(x > 0 \).

Therefore by sum and quotient limits laws,

\(x_n + \frac{1}{x_n} \to x + \frac{1}{x} \).

But \(x_n \to x \) so \(x = x + \frac{1}{x} \) or \(0 = \frac{1}{x} \).

This can't happen for \(x > 0 \).

Therefore then \(x_n \) cannot converge,

so we also know they cannot be bounded.

Sneaky, huh?
8). Since \(a_n \leq b_n \) for all \(n \), and \(b_n \) is decreasing, for all \(n \), \(b_n \leq b_1 \). Then \(a_n \leq b_\frac{a_1}{b_1} \), so \(a_n \) is increasing and bounded above; so \(a_n \) converges.

Since \(a_n \) is increasing, \(a_1 \leq a_n \leq b_n \), so the \(b_n \) are decreasing and bounded below. So the \(b_n \) converge. Then \(b_n-a_n \) converges by limit laws but \(0 \leq b_n-a_n \) so by class result,

\[
0 \leq \lim (b_n-a_n) = \lim b_n - \lim a_n
\]

so \(\lim a_n \leq \lim b_n \).

Practice Problems

1) \(0 < x_1 < 1 \) and \(x_{n+1} = \frac{1}{2} x_n (1-x_n) \).

2) \(0 \leq x_n < 1 \) by induction.

\(P(n) : \ 0 < x_n < 1 \).

Check \(P(1) : \ 0 < x_1 < 1 \) given.

Assume \(P(k) : \ 0 < x_k < 1 \)

\[
-0 > -x_k > -1
\]

\[
1 - 0 > 1 - x_k > 1 - 1
\]

\[
1 > 1 - x_k > 0
\]

so \(0 < x_k < 1 \) and \(0 < 1-x_k < 1 \)

so \(0 < x_{k+1} (1-x_{k+1}) < 1 \)

so \(0 < \frac{1}{2} x_k (1-x_k) < 1 \)

so \(0 < x_{n+1} < 1 \)
ii) \(x_n \) converges if it is monotone.

Which direction? If \(x_1 = \frac{1}{3}, x_2 = \frac{1}{2}(\frac{1}{3} + \frac{2}{3}) = \frac{1}{2} \), so \(x_2 \neq 0 \).

So I suspect \(x_n \) is decreasing.

\[
x_n \leq x_{n+1} \implies \frac{1}{2} x_n + (1-x_n) \leq x_{n+1}
\]

\[
\implies \frac{1}{2} (1-x_n) \leq x_{n+1} \quad \text{since} \quad x_n \neq 0
\]

\[
\implies 1-x_n \leq 2
\]

\[
\implies -x_n \leq 1
\]

\[
\implies x_n \geq -1 \quad \text{and} \quad x_n > 0.
\]

So \(x_n \) is decreasing bounded below 0 by \(y \geq 0 \), so

\(x_n \to x \). As usual,

\[x = \frac{1}{2} x (1-x) \quad \text{so} \quad 2x = x - x^2 \quad \text{so} \]

\[x = -x^2 \quad \text{so} \quad x^2 + x = 0 \quad \text{so} \quad x(x+1) = 0. \]

Since \(x_n > 0 \), \(\lim x_n \geq 0 \), so

\[x > 0 \quad \text{so} \quad x(x+1) = 0 \quad \text{so} \quad x = 0 \quad \text{or} \quad x = -1. \]

2) Shown.

3) Show \(x_1 = 1, x_2 = \frac{1}{2} (1 + \frac{2}{3}) = \frac{1}{2} (\frac{5}{3}) = 2/3 = 1.4 \).

So \(x_2 > x_1 \), and \(x_3 = \frac{1}{2} (1 + \frac{2}{3}) = \frac{1}{2} (1 + \frac{2}{3}) \)

\[= \frac{7}{6} = 1 + \frac{1}{6} < 1 + \frac{1}{2} \quad \text{so} \quad x_3 < x_2. \]

So \(x_n \) is not monotone.