1) Let S be a standard set, bounded above. Assume b is an upper bound of S, and $b \in S$.
Prove $\sup(S) = b$.

2) Let $S = \{x \mid 0 < x < 1\}$. Prove $\inf(S) = 0$.

a) I have to show
 b) b is an upper bound of S. This was given
 ii) If b is any upper bound of S, $b \leq b_1$.
 But $b \in S \to a \leq b$, definition of upper bound
 so $b \leq b$.

b) I have to show
 i) 0 is a lower bound of S.
 $a \in S \to 0 < a < 1 \to 0 < a \to 0 \leq a$. So 0 is a lower bound.

ii) Let l be any lower bound of S. I have to show $l \leq 0$.
 Assume $l > 0$; I'll show l is not a lower bound of S,
 and thus get a contradiction. So I have to find $a \in S$ with $l < a$.
 Case 1) $l \leq 1$. Then let $a = \frac{1}{2}$, $\frac{1}{2} \in S$ and $\frac{1}{2} < l \leq l$. so thus
 gives the contradiction.
 Case 2) $0 < l < 1$. Let $a = \frac{l}{2}$. Then $0 < a < l$, $0 < a \leq 1$
 or $0 < a < 1$ so $a \in S$.
 Now I'll show $l < a$
 $\Rightarrow \frac{a}{2} < a$
 $\Rightarrow \frac{1}{2} < l$ since $l > 0$
 \Rightarrow true.