One For You: Limit Laws

1) Give an ε, K proof: If $a_n \to 0$, then $a_n^2 \to 0$.

2) Give an ε, K proof: If $a_n \to a$ then $|a_n - a| \to 0$.

3) Assume for all n, $a_n \leq b$. Assume $a_n \to a$. Prove $a \leq b$.

4) Assume a_n is bounded, and $a_n + b_n$ is unbounded. Prove b_n is unbounded.

5) State whether the following are true or false, and prove if true, give a counter-example if false:
 a) Assume a_n converges and $b_n \to 0$. Then a_n/b_n is unbounded.
 b) If $a_n/b_n \to 0$ and a_n is unbounded then b_n is unbounded.
One for you. Limit Sews

1) Hack away at it:

\[|c_n^2 - 0| < \varepsilon \] simplifies to \[c_n^2 < \varepsilon \]

or \[\sqrt{c_n^2} < \sqrt{\varepsilon} \]. Since \(c_n > 0 \), \[\sqrt{c_n^2} = c_n \]
(otherwise, \(\sqrt{c_n^2} = |c_n| = c_n \))

So \(\sqrt{\varepsilon} \) is a. Since \(\varepsilon > 0 \), there is \(\alpha \) such that \(|c_n - 0| < \sqrt{\varepsilon} \). Since \(c_n \geq 0 \), thus \(c_n \leq \sqrt{\varepsilon} \). We can square since \(c_n \geq 0 \) to get \(c_n^2 \leq \varepsilon \). And then, going since \(c_n^2 \geq 0 \), \(c_n^2 - 0 \leq \varepsilon \).

2) Given \(\varepsilon > 0 \), there is \(K \) such that for \(n \geq K \), \(|a_n - a| < \varepsilon \). Then

\[|a_n - a| - 0 = |a_n - a| < \varepsilon \] \(\varepsilon \) since \(|a_n - a| \geq 0 \).

3) Assume not. Here's the picture

\[\frac{a - \varepsilon}{b} \]
all the \(a_n \) are here \(\geq K \)

all the \(a_n \) here \(\geq K \) - but 'here' is \(> \varepsilon \)!!

So \(n \geq K \) \(\Rightarrow \) \(a_n \geq \varepsilon \). But \(\forall n \leq a \leq b \)

contradiction.
So to do a proof we need to implement the picture - we need to assume $a > b$.
Then we need to pick our ε to get

$$\left| \frac{1}{x} \right| < \frac{a - \varepsilon}{b}$$

that is, we need $b < a - \varepsilon$ or $\varepsilon < a - b$.

Then, we need to get our $c_n > b$.
This would come from $c_n > a - \varepsilon > b$.

Now for the formal proof.

Assume not. Then $a > b$. Let $\varepsilon = a - b > 0$.
Then there exists a k such that

$$n \geq k \implies |a_n - a| < \varepsilon$$

so

$$a - \varepsilon < a_n < a + \varepsilon$$

$$a - \varepsilon < c_n,$$

since $\varepsilon = a - b$,

$$a - (a - b) < c_n$$

$$b < c_n.$$

This contradicts the hypothesis that $c_n \leq b$ for all n.
4) Assume not.

Since a_n is bounded so from b_n, $|a_n| \leq A$ for a fixed A.

Since we're assuming b_n are bounded, there exist a, B with $|b_n| \leq B$ for all n.

Then $|a_n + b_n| \leq (a_n + |b_n|) \leq A + B$.

So $a_n + b_n$ is bounded. Contradict our hypothesis that it's unsounded.

5a) False. Let $a_n = b_n = \sqrt{n}$.

Then a_n converges as $a_n \to 0$.

But $a_n/b_n = 1$ which is bounded. By 4 it's

5b) True. Assume b_n is bounded

for all n, $|b_n| \leq B$ for a fixed B.

Since $a_n/b_n \to 0$, a_n/b_n is bounded.

Then $|a_n|/b_n \leq C$ for some fixed C.

Then $|a_n| = |a_n/b_n| |b_n| \leq C B$.

So a_n is bounded. Thus contradicted the assumption a_n is unsounded.