Work Group Problem 2

Quiz 1 Time: 20 min

1) Use induction to prove that if \(s_n = 1 + 2 + 3 + \cdots + n \), then \(s_n \geq 2n^2 \)

a) Find a recursion formulas for \(s_n \)
b) Find a predicate \(P(n) \) for your induction

Now do the proof.

\[s_1 = 1 \quad s_2 = 1 + 2 = s_1 + 2 \quad s_3 = 1 + 2 + 3 = s_2 + 3 \]

Solution: \(s_1 = 1 \) \quad \(s_{n+1} = s_n + (n+1) \)

b) \(P(n) \) & \(s_n \leq 2n^2 \).

c) Prove for all \(n \), \(P(n) \) is true, by induction.

i) Base \(P(1) \): \(s_1 \leq 2 \cdot 1^2 \) definition of \(s_1 \) \(1 = 2 \) definition of \(s_1 \)

ii) Prove \(P(k) \rightarrow P(k+1) \)

\[s_{k+1} = s_k + (k+1) \] definition of \(s_{k+1} \)
\[s_k + (k+1) \leq 2k^2 + (k+1) \text{ induction hypothesis} \]
\[2k^2 + (k+1) \leq 2(k+1)^2 \quad \text{pf below} \]
\[2k^2 + (k+1) \leq 2(kk+1)^2 \text{ transitivity if} \]
\[s_{k+1} \leq 2(k+1)^2 \text{ so, for all } n, P(n) \text{ is true} \]

pf below
\[2k^2 + (k+1) \leq 2(kk+1)^2 \Rightarrow \]
\[2k^2 + (k+1) \leq 2(k^2 + 2k + 1) \Rightarrow \]
\[2k^2 + (k+1) \leq 2k^2 + 4k + 2 \Rightarrow \]
\[0 \leq 3k + 1 \]

true: \(k \) is the terms on \(-k \) is positive.