One For You: Real Numbers

1) Let Z denote the integers $Z = \{0, \pm 1, \pm 2, \ldots\}$. Prove Z is not bounded below.

2) Let $S = \{-\frac{1}{n} \mid n \text{ is a natural number}\}$. Find $\sup S$ and prove your answer.

3) Assume S, T are non-empty sets of reals and for all $s \in S$ and for all $t \in T$, $s \leq t$. Prove that $\sup S \leq \inf T$.
One for you too: Number solutions

1) Assume \(\mathbb{Z} \) is bounded below; we'll get a contradiction.
 We'll use two ideas:
 a) \(N \) are not bounded above
 b) negative numbers switch inequalities:
 \[2 < B \implies -B < -2. \]

Here goes: so there's a \(B \in \mathbb{Z} \) with \(j \in \mathbb{Z} \)
implies \(B \leq j \). Assume \(n \in \mathbb{N} \) and then \(-n \in \mathbb{Z} \), so
\(n \in \mathbb{N} \implies B < -n \), \(\rightarrow n \leq -B \), so \(-B \)
is an upper bound for \(\mathbb{N} \), contradicting Archimedean.

2) Again, we'll use the idea that negatives switch
 inequalities and we know that \(\text{cuf} \{ \frac{j}{n} | n \in \mathbb{N} \} = 0 \).
To prove \(\text{sup} S = 0 \) we need to show
 i) \(0 \) is an upper bound of \(S \):
 \[a \in S \implies a = \frac{j}{n} \text{ and } n \in \mathbb{N} \text{ but } n \in \mathbb{N} \implies n \geq 1 \]
 so \(-\leq -1 < 0 \). \(\frac{j}{n} < 0 \) and \(0 \) is an upper bound.
 ii) If \(b \) is an upper bound of \(S \), \(0 \leq b \),
 since \(n \in \mathbb{N} \implies -\frac{j}{n} \leq b \),
 \(n \in \mathbb{N} \implies \frac{j}{n} \geq 2 - b \). So \(-b \text{ is a lower bound for }
 \{ \frac{j}{n} | n \in \mathbb{N} \} \). But \(\text{inf} \{ \frac{j}{n} | n \in \mathbb{N} \} \text{ is the }
 greatest lower bound, so \(-b \leq \text{inf} \{ \frac{j}{n} | n \in \mathbb{N} \} \implies
 -b \leq 0 \implies 0 \leq b \).
here's a kind of picture

\[
(S) \quad (T)
\]

in terms of \(u^n, s^n, \quad (s) \quad (t) \)

\[s^n \quad u^n \quad t^n \]

unfortunately, we can't pass directly \(s, t \) to their \(u^n \)'s and \(s^n \)'s, so here's an interim medley idea

\[
(S) \quad (T)
\]

\[\Rightarrow s^n \quad s^n \rightarrow s^n \quad s^n \rightarrow s^n \quad s^n \rightarrow \quad \text{lower bounds of } T \\]
\[\Rightarrow s^n \quad s^n \rightarrow s^n \quad s^n \rightarrow \text{lower bound for } T \]

Let's do it. Pick any \(a \in S, t \in T \), we need to show

\[a \in s^n \rightarrow u^n \text{ is an upper bound for } S. \]
\[u^n \text{ is an upper bound for } S \rightarrow a \in s^n \quad u^n \text{ is lower bound for } T. \]

Now \(s^n \) is a lower bound for \(T \).
\[\text{lower bound for } T
\Rightarrow \]
\[a \in s^n \quad u^n \]
\[\Rightarrow s^n \leq u^n \quad \text{there.} \]

For practice: go the other way: show

\[a \in S \text{ is a lower bound for } T \quad \text{so} \]
\[t \leq \text{infty} \quad \text{etc.} \]