Q1 Info
Q1: Thursday Feb 5. Covers jump discontinuities and asymptotes

Q1 Book Problems
2.2 Page 92 7, 9
2.3 Page 102 11, 15, 19, 21, 23, 27
2.6 Page 137 3, 15, 17, 19, 21, 23, 31, 47, 49

Q1 Practice
1) For the functions f below,
 i) Find all vertical asymptotes.
 ii) Find a $g(x)$ to which $f(x)$ is asymptotic.
 iii) Compute the limit to show f and g are asymptotic.

 $a) f(x) = \frac{x^4}{x^2 - 3x + 2} \quad b) f(x) = \frac{x^4 - x^2 - 1}{x^3 + 3x}$

 $a) \lim_{x \to -1} \frac{x^2 - x - 2}{|1 + x|} \quad b) \lim_{x \to 2} \frac{|2 - x|}{4 - x^2}$

 $c) \lim_{x \to -1} \frac{x^2 + x}{|x + 1|} \quad d) \lim_{x \to 2} \frac{|x - 2|}{x^2 + 2x - 8} \quad e) \lim_{x \to 2} \frac{x^2 - 2x}{|2 - x|}$

Background
Sketch the following functions. You should avoid plotting points.

 $a) y = |x + 1| \quad b) y = |x^2 - 1| \quad c) y = \frac{x^2 - x - 2}{x^2 - x - 2}$

 $d) y = \frac{x^2}{|x|} = x \cdot \frac{x}{|x|} \quad e) y = \frac{x^2 - 1}{|x - 1|} \quad f) y = \frac{x}{|x|} \cdot \sin x$

 $g) y = x + |x| \quad h) y = x - |x| \quad i) y = \frac{1}{x} - \frac{1}{|x|}$

 $j) y = \frac{\sin x}{|\sin x|}$

In the Middle Ages, lords and vassals lived in a futile system.

That's "feudal" system.

Just when I thought this junk was beginning to make sense.