1) Use cancellation and re-inforcement to compute

\[\int_{-2}^{2} (2x^3 - x^2 + 3x) \, dx \]

2) Find the area between the curves \(y = x^2, \ y = 2 - x \), on the interval \([-2, 2]\).

3) Find the area bounded by the curves \(y = x^2, \ y = x + 2 \).

4) Find the area bounded by the curves \(y = x + 1, \ y = x^3 + 3x^2 + 3x + 1 \).

1) Let \(y = x^2 - \frac{1}{8} \ln x, \ 1 \leq x \leq 2 \). Find the length.

5) Let \(y = \ln(\cos x), \ 0 \leq x \leq \frac{\pi}{4} \). Find the length.

1) (30 points) A volume lies above the region in the \(xy \)-plane bounded by the curves
\(y = x^2, \ y = 2 - x^2 \). Each \(x \)-section is a triangle, with height half the base. Each base lies inside the region, and it touches the curves \(y = x^2, \ y = 2 - x^2 \). Use the method of \(x \)-sections to find the volume. a) Sketch the region in the plane.

b) Find the limits for \(x \).

c) Find \(A(x) \).

d) Compute the volume \(V \).

3) (25 points) Use the method of \(x \)-sections to find the volume inside the hyperboloid, for \(-1 \leq x \leq 1\)

\[\frac{y^2}{9} + \frac{z^2}{9} - x^2 = 1 \]

a) Give a formula for \(A(x) \).

b) Find the the volume.

Final Info

Saturday May 18 2-3pm GDC 2.216