Q1 Info

Q1: Tuesday Feb 5. Covers jump discontinuities and asymptotes

Jumps

2.3 Page 102 43, 45, 49

Jump Practice

\[a) \lim_{x \to -1} \frac{x^2 - x - 2}{1 + x} \quad b) \lim_{x \to 2} \frac{|2 - x|}{4 - x^2} \]

\[\lim_{x \to -1} \frac{x^2 + x}{|x + 1|} \quad d) \lim_{x \to 2} \frac{|x - 2|}{x^2 + 2x - 8} \quad e) \lim_{x \to 2} \frac{x^2 - 2x}{|2 - x|} \]

Asymptotes 2.6 Page 137 3, 15, 17, 19, 23, 31, 47, 49

Q1 Practice

Asymptotes

1) For the functions \(f \) below,

\(i) \) Find all vertical asymptotes.

\(ii) \) Find a \(g(x) \) to which \(f(x) \) is asymptotic.

\(iii) \) Compute the limit to show \(f \) and \(g \) are asymptotic.

\[a) f(x) = \frac{x^4}{x^2 - 3x + 2} \quad b) f(x) = \frac{x^4 - x^2 - 1}{x^3 + 3x} \]

2) Find any horizontal asymptotes. If there are none, find a \(g(x) \) to which \(f \) is asymptotic. Show \(f \) is asymptotic to \(g \) by computing a limit.

\[f(x) = \frac{x^3 - x^2 - 1}{x^2 - x} \]

3) Find any horizontal asymptotes. If there are none, find a \(g(x) \) to which \(f \) is asymptotic.

\[a) \frac{x^2 + \sqrt{x} - 6}{x^2 - 4x + 4} \quad b) \frac{x^3 - x - 1}{x^2 + 3} \quad c) \frac{x^4 + x^2 - 1}{x^2 - x - 1} \]