Q1 Info
Q1 for 10am class: Q1: Thursday Sept 7. Covers limit types and removable discontinuities

Asymptote 2.6 Page 140
3, 15, 17, 19, 21, 23, 29, 41, 43,

Asymptote 2.6 Page 137
3, 15, 17, 19, 21, 23, 31, 47, 49,

Q2 Practice Asymptotes

1) For the functions f below,
 i) Find all vertical asymptotes.
 ii) Find a $g(x)$ to which $f(x)$ is asymptotic.
 iii) Compute the limit to show f and g are asymptotic.

 a) $f(x) = \frac{x^4}{x^2 - 3x + 2}$
 b) $f(x) = \frac{x^4 - x^2 - 1}{x^3 + 3x}$

2) Find any horizontal asymptotes. If there are none, find a $g(x)$ to which f is asymptotic. Show f is asymptotic to g by computing a limit.

 $f(x) = \frac{x^3 - x^2 - 1}{x^2 - x}$

3) Find any horizontal asymptotes. If there are none, find a $g(x)$ to which f is asymptotic.

 a) $\frac{x^2 + \sqrt{x} - 6}{x^2 - 4x + 4}$
 b) $\frac{x^3 - x - 1}{x^2 + 3}$
 c) $\frac{x^4 + x^2 - 1}{x^2 - x - 1}$