4083 Vector Supplement

Some problems for E3 2008

1) Let \(f(x, y) = \frac{x+y}{x^2+y^2} \). Compute all second partials.

\[
f(x, y) = \frac{x}{x^2+y^2} + \frac{y}{x^2+y^2} = \frac{1}{x^2} + \frac{1}{y^2} \quad \text{note } f(x, y) = f(y, x).
\]

So we will have \(f_x = f_y \) and \(f_{xx} = f_{yy} \).

\[
f_x = -\frac{1}{x^3} y - \frac{2}{x^2 y^2} \quad f_{xx} = \frac{2}{x^3 y} + \frac{6}{x^2 y^3}
\]

\[
f_y = -\frac{2}{x^2 y^3} - \frac{1}{x^2 y^2} \quad f_{yy} = \frac{2}{x^3 y^2} + \frac{6}{x y^4}
\]

\[
f_{xy} = f_{yx} = \frac{2}{x^2 y^3} + \frac{2}{x^2 y^2}
\]

Set \(f(1, 1) = -1 \) or \(-\sqrt{2} \).

2) Sketch the surface

\(z = -(x^2+y^2) \) is the graph of \(z = x^2+y^2 \).
I have to draw the curve $z = f(x, y)$ which requires an auxiliary line $y = \frac{1}{2}$, parallel to the x-axis. This is hard to show since the x and y axes are at the top of the surface. So in the pic above, I added fake x, y axes, parallel to the real ones.

Now it's easy to draw a fake $y = \frac{1}{2}$ line with two dots where my curve hits the solid.

All I need is a third point $z = -(x^2 + y^2)$ hits its apex. Then $x = 0$, then $z = -\frac{1}{2}$.

Now connect the three dots in a way that looks kind of circular if you want.
connect the sketch. Then trace \(y = f(x, y) \)

in \(xz \)-plane: \(3 = f(x, y) = -y^2 \)

d) Compute \(f_x(p) \) where \(p = p(0, \frac{1}{2}) \)

\[f(x, y) = -x^2 - y^2 \]
\[f_x(x, y) = -2x \]
\[f_x(0, \frac{1}{2}) = 0 \]

e) Referring back to the trace in part d), explain why \(f_x(p) \) has the value it does.

The figure is showing the vertex of the parabola \(f(x, y) \) at an absolute maximum so its derivative is 0.

3) Let \(f(x, y) = \frac{x^2 - y^2}{x^2 y^2} \). Does \(f \) satisfy the PDE

\[\frac{\partial^2 f}{\partial x \partial y} = 0? \]

Rewrite \(f = \frac{x^2 y^2 - x^2 - y^2}{x^2 y^2} \)

\[\frac{\partial^2 f}{\partial y \partial x} = -\frac{2}{y^3} \frac{\partial^2 f}{\partial x \partial y} = -2 \left(\frac{2x}{y^3} \right) = \frac{2x}{y^3} \left(-\frac{2}{x^2} \right) = 0 \]

So yes, it does.
Let \(f(x, y) = \ln(x^2 - y^2) \). Does \(f \) satisfy the wave equation \(f_{xx} - f_{yy} = 0 \)?

\[
f_x = \frac{2}{dx} \ln(x^2 - y^2) = \frac{1}{x^2 - y^2} \cdot \frac{2x}{dx} (x^2 - y^2) = \frac{2x}{x^2 - y^2}
\]

\[
f_{xx} = \frac{2}{dx} \left(\frac{2x}{x^2 - y^2} \right) = 2 \left(\frac{x^2 - y^2}{x^2 - y^2} \right) - 2x \frac{2x}{(x^2 - y^2)^2} = \frac{-2x^2 - 2y^2}{(x^2 - y^2)^2}
\]

\[
f_y = \frac{2}{dy} \ln(x^2 - y^2) = \frac{-2y}{x^2 - y^2}
\]

\[
f_{yy} = \frac{2}{dy} \left(\frac{-2y}{x^2 - y^2} \right) = \frac{-2y}{x^2 - y^2} \cdot \frac{-2y}{x^2 - y^2} = \frac{-2y^2}{(x^2 - y^2)^2}
\]

\[
\therefore f_{xx} - f_{yy} = 0 \quad \checkmark
\]

NOTE \(f = \ln((x-y)(x+y)) = \ln(x-y) + \ln(x+y) \).

The general solution to \(f_{xx} - f_{yy} = 0 \) is

\(g(x-y) + h(x+y) \).