1) Let \(R \) be the region bounded by the curves \(y = x^2 \), \(y = x+2 \).

2) Sketch \(R \), and find \(a, b, c, d \).

\[
\begin{align*}
\text{a, b are the farthest left, right points in the region.} \\
\text{They occur when } y = x^2 = x+2 \\
\text{or } x^2 - x - 2 = 0 \text{ or } (x-2)(x+1) = 0 \\
\text{so } x = -1, x = 2. \quad a = -1, b = 2
\end{align*}
\]

\(c, d \) are the highest, lowest points in \(R \).

The lowest point is \(y = 0 \) so \(c = 0 \). The highest point occurs when \(x = 2 \). The \(y \) value at \(x = 2 \) is \(y = x^2 = 4 \). So \(d = 4 \).

3) Write \(R \) as a type 1 or type 2 region, and cartesian.

\text{Type 1: We already knew } a = -1, b = 2 \text{ so } -1 \leq x \leq 2. \text{ The type 1 region we need}

\text{is bottom curve } y = g \text{ (x). The picture shows that } y = x^2 \text{. Also a top curve, } y = 2 \text{ (x1 = x+2).}

\[
\begin{align*}
\text{So: } R = \{(x,y) | -1 \leq x \leq 2, x^2 \leq y \leq x+2\} \\
\int_{-1}^{2} \int_{x^2}^{x+2} f \, dy \, dx
\end{align*}
\]

\text{Note: We can't write } R \text{ as a single type 2 region.}
If we could, we'd have $y_L(x) \leq x \leq y_U(y)$.
So didn't need one function to describe the left curves.

\[-y = x^2 \]
\[-y = x^3 \]

Good thing then they let us choose whether to do type I or type II.

Example 2)

Let \(R = \{(x,y) \mid 1 \leq x \leq 2; \ x \leq y \leq x^2\} \)

a) Sketch the region.

\[\int_{1}^{2} \int_{x}^{x^2} f(x,y) \, dy \, dx \]

This is easy -- \(R \) is a type I region.!!

Note again writing it as a single type I region

would be impossible.
Example 3

a) Let \(R = \{(x,y) \mid -1 \leq y \leq 1, 0 \leq x \leq 1-y^2\} \).

Sketch \(R \):

- \(y = 1 \) (top boundary)
- \(y = -1 \) (bottom boundary)
- \(x = 1-y^2 \) (right boundary)
- \(x = 0 \) (left boundary)

b) Write \(R \) as a type I region.

For \(x \leq x \leq b \), where \(a, b \) are furthest left, furthest right points in \(R \).

- \(x \) cannot go further left than \(0 \), so \(a = 0 \).
- The rightmost \(x \) can go is the vertex of the parabola, when \(y = 0 \). So \(x = 1-0 = 1 \). So, \(0 \leq x \leq 1 \).

Now I need \(y \leq y \leq y \) for top and bottom curves. They are clearly the parabola, since \(x = 1-y^2 \), \(y = 1-x \) and \(y = \pm \sqrt{1-x} \).

- Top: \(y = \sqrt{1-x} \)
- Bottom: \(y = -\sqrt{1-x} \)

So: \(R = \{(x,y) \mid 0 \leq x \leq 1, -\sqrt{1-x} \leq y \leq \sqrt{1-x}\} \).