This Week Fake Q7 Thursday Dec 6. Covers interchanging integrals.

Book

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2</td>
<td>r1008</td>
<td>3, 5, 19</td>
</tr>
<tr>
<td>15.3</td>
<td>r1014</td>
<td>1, 7, 9, 13, 15, 17, 19, 21</td>
</tr>
</tbody>
</table>

Final Dates

- 10am Monday Dec 17, 9-9:50 ART 2.102
- 11am Friday Dec 14 9-9:50 WEL 2.122

10am class may take the 11 am final: you must email me by Wed Dec 12
State your name in body of email.
To change your mind, you must email me by Thursday Dec 13.

Final Rules

1) Final is 50 min: get there early to start on time.
2) You can use the usual cheat sheet, but no calculators.
3) You need to bring a PHOTO ID to the exam.
4) **10 am class**: Your grades will be posted Monday evening. If you have questions, you must contact me Monday; I leave the country Tuesday.
5) **11 am class**: Your grades will be posted Saturday morning. I leave the country Tuesday, so if you want to see me, you need to do it Monday in office hours.

Final Topics

1) Partial derivatives and chain rules
2) Interchanging integrals
3) Changing integrals to polar co-ordinates
4) Surface Area

Office Hours

- Monday Dec 10: 10:00-11:30 Instead of class
- Wednesday Dec 12: 10:00-11:30
- Thursday Dec 14 10:00-11:30
- Monday Dec 17 10:00-11:30

Integral Practice

1) Compute the volume under the surface $z = x^2 + y^2$, above the region D,

 $D = \{(x, y) \mid x^2 + y^2 \leq 1; \ y \leq 0\}$.

 a) Sketch the region D.
 b) Write $\int \int_D f \ dA$ as a type one integral.
 c) Write $\int \int_D f \ dA$ as a type two integral.
 d) Compute the volume under the surface $z = x^2 + y^2$, above D.

12) Let D be the region bounded by the curves $y = 1; \ y = -1$ and $x = -1; \ x = -y^2$.
 a) Sketch the region
 b) Write $\int \int_D f \ dA$ as a type one integral.
 c) Write $\int \int_D f \ dA$ as a type two integral.
 d) Compute $\int \int_D x \ dx \ dy$