QTips: Tips for Q5: Error In Alternating Series

0) Ichiban #1 The most important thing: you can have a calculator to check your work, but you have to do enough work on your own to convince me that you did the work, not your calculator.

For example, if you just write \(\frac{(2)^4}{4!} = 0.000666666 \), you’ll lose full points because you didn’t show how you got that number.

1) The quiz will finding \(S_n, b_n \); you need to know what those are. That info is in the lecture.

2) You’ll need to know how to find \(x \) – for example in \(\sqrt{1.02} \) \(x \) will NOT be 1.02.

3) You’ll need to be able to write your \(S_n \) values as a decimal – no fractions.

4) You can’t round your numerical answers for \(S_n \). If your answer is .33333... you can’t round it up or down. Either write .33333... or use the bar notation .3\(\overline{3} \)

5) You’ll need to know how to write your \(Error_A \) in scientific notation.

7) This goes back to part 0) above. If you decide to write \(\frac{(2)^4}{4!} \) as \(\frac{16}{24} \times 10^{-4} \), you’re making life harder for yourself. Keeping things factored makes more sense: \(\frac{2^4}{2^4 \times 3} \times 10^{-4} = \frac{2}{3} \times 10^{-4} \).

Not only does it make more sense, I deliberately design the problems to that they work out that way.

8) Your numerical answers are all or nothing: the whole point is to get correct answers.