Exam 2 is Thursday, August 9. It covers:
§§11.1-11.11 convergence tests except integral test; finding Taylor series; computing using alternating series; error in alternating series.

1) You’ll use the formula \(\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + (-1)^{n+1} \frac{x^n}{n} \).
 i) What is \(S_3 \) and \(b_4 \)?
 ii) Use \(S_3 \) to compute \(\ln(1.02) \). Write as a decimal. iii) How big can the error be? Write with scientific notation.

2) Suppose you’re using the formula \(\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \)
 i) What is \(S_2 \) and \(b_3 \)?
 ii) Use \(S_2 \) to compute \(\sin(0.03) \). Write as a decimal. iii) How big can the error be? Write with scientific notation.

3) Suppose you’re computing \(\sin(0.03) \), using the alternating series
 \[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \]
 a) Find \(S_2 \) and \(b_3 \).
 b) Compute \(S_2 \) when \(x = 0.03 \); round correctly to six decimal places.
 c) How big can error\(_{A}\) be?

4) Suppose you’re computing \(e^{-0.02} \) using the alternating series
 \[e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \]
 a) Write out \(S_3 \) and \(b_4 \)
 b) Use \(S_4 \) to compute \(e^{-0.02} \); write as a decimal.
 c) How large can error\(_{A}\) be? Write using scientific notation.