Problem 1: Let \(E_{nu} = \bigcup_{n=1}^{\infty} \{ \lfloor \frac{n!}{\pi^2} \rfloor \} \) be a set of points.

Since \(E_{nu} \) is a union of finite sets, it is measurable.

Since \(E_{nu} \) is a union of finite sets, it is a subset of a countable union of finite sets.

It follows that

\[
\lim_{N \to \infty} \mu(\bigcap_{n=N}^{\infty} E_{nu}) = 0
\]

By the Cantor set property.

Let \(E \) be a set such that

\[
\mu(E) \leq \sum_{n=1}^{\infty} \mu(E_{nu}) \leq 2^{-n}
\]

(by above limit).

Hence, if \(E = \bigcup_{n=1}^{\infty} E_{nu} \),

\[
\mu(E) \leq \sum_{n=1}^{\infty} \mu(E_{nu}) \leq 2^{-n}
\]

Now if \(x \in E \), then \(x \in \bigcap_{n=N}^{\infty} E_{nu} \).

For \(x \in E \), then \(x \in \bigcap_{n=N}^{\infty} E_{nu} \).

Hence, \(|P(n) - f(x)| < \frac{1}{n} \) for all \(n \geq N \), est. unif. cont.
Case 1: \(S_1 = 1 \)

Case 2: \(S_1 = 0 \)

In this case, \(S_2 \) is 1.

Conversely, consider \(E \) as \(E \). For \(E \), given \(E \) and \(E \) are mutually exclusive, we have

For any \(E \), \(E \), and \(E \), we get

Problem 5.5:

It's been a while since I solved something like this. I think that \(f(x) = \sin(x) \) is the desired example.
Hence,
\[\int_{E} \chi_{A_n} \, d\mu = \mu(E) \]
for \(\forall A \in \mathcal{A} \).

If \(\mu(E) \geq \lambda \), then
\[\sup_{E} \int_{E} \chi_{A_n} \, d\mu = \sup_{E} \int_{E} l_{12} \, d\mu \]
In fact,
\[\sup_{E} \int_{E} l_{12} \, d\mu = \sup_{E} \int_{E} l_{1} \, d\mu \]
by MCT.

\[\sup_{E} \int_{E} l_{12} \, d\mu \geq E \]

For any \(E \), \(E \subseteq [-N, N] \) and \(N \) large enough,
\[\mu(E) \geq 0 \]
Choose an approximation of Littlewood-Lebesgue (up to a set of measure zero).

Here \(\sup_{E} \int_{E} l_{12} \, d\mu \rightarrow \int_{E} \mu(E) \to 0 \).

Hence \(\forall N \in \mathbb{N}, \int_{E} l_{12} \, d\mu = \mu(E) \to 0 \) if \(\mu(E) \to 0 \).

Problem 5 (additional work):
\[\int_{E} f \, d\mu = f \text{ in } L^2 \text{ if and only if } \int_{E} f \, d\mu = f \text{ in } L^2 \text{ for any } \chi_{E} \in L^2 \text{ is } \mu \text{-measurable.} \]

Note that \(\int_{E} 1 = 1 \) so that
\[\left(\int_{E} l_{12} \right)^{1/2} = 1. \]

By Hölder's inequality,
\[\left(\int_{E} \|g\| \right)^{1/2} \leq \|f\|_{L^2} \cdot \|g\|_{L^2} = \|f\|_{L^2} \cdot \|g\|_{L^2}. \]

Now weak limit \(f = 0 \) so \(\int_{E} \|g\| \leq \|g\|_{L^2}. \)

If \(g \) is a constant \(\mu \)-a.e., \(\int_{E} \chi_{E} \, d\mu = 0 \) for \(\chi_{E} \) in \(L^2 \).
Let \(g = \chi_{E} \) where \(E \) has finite measure. Then
\[\mu \text{-a.e., weak limit.} \]

Hence, \(g \) is also \(\mu \)-a.e.
Why is $\int f g = 0$ eventually?

By Littlewood, E is essentially the limit distant one of intervals.

For each such interval, perhaps the endpoint slightly to move them dyadic.

This new approximates E, problems

nicely eventually, in the following sense.

If $E = [\frac{1}{2}, 1]$ for example,

we've split at stage n

into intervals of length 2^{-n}

and dyadic endpoints.

So $E \rightarrow \left[\frac{1}{2}, \frac{1}{2} \right] \cup \left[\frac{1}{4}, \frac{3}{4} \right] n = 1$

positive negative

$\rightarrow \left[\frac{1}{4}, \frac{1}{2} \right] \cup \left[\frac{1}{4}, \frac{3}{4} \right] \cup \left[\frac{3}{4}, 1 \right] n = 2.$

negative positive negative

Notice that $\left[\frac{1}{2}, \frac{3}{4} \right]$ has measure less than 2^{-n}.

So as intervals will clearly not be 0, it doesn't cancel exactly.

Instead, choose $\frac{1}{2}$ to a dyadic interval close by,

you should fix the above issue (in the limit).