# A Strong Form of the Quantitative Wulff Inequality for Crystalline Norms

#### Kenneth DeMason

University of Texas at Austin

October 20, 2024

AMS 2024 Fall Eastern Sectional Meeting, University at Albany. Special Session on Regularity of Nonlinear Equations and Free Boundary Problems

## Anisotropy

Many physical phenomena can be explained in terms of energy minimization. E.g., soap bubbles are spheres because they need to minimize surface tension with a constrained volume.

The formation of crystals in the small mass regime can be explained similarly. Thermodynamically, crystals at equilibrium should minimize Gibbs free energy:

$$\Delta G := \sum_{i} \gamma_i A_i = \lambda \sum_{i} h_i A_i,$$

where  $\gamma_i$  is the surface energy per unit area and  $A_i$  is the area of the *i*th face. The equality is due to Wulff, where he interpreted the problem in terms of a Lagrange multiplier  $\lambda > 0$ , and  $h_i$  is the distance to each face.

### Anisotropy

Many physical phenomena can be explained in terms of energy minimization. E.g., soap bubbles are spheres because they need to minimize surface tension with a constrained volume.

The formation of crystals in the small mass regime can be explained similarly. Thermodynamically, crystals at equilibrium should minimize Gibbs free energy:

$$\Delta G := \sum_{i} \gamma_i A_i = \lambda \sum_{i} h_i A_i,$$

where  $\gamma_i$  is the surface energy per unit area and  $A_i$  is the area of the *i*th face. The equality is due to Wulff, where he interpreted the problem in terms of a Lagrange multiplier  $\lambda > 0$ , and  $h_i$  is the distance to each face.

### Anisotropy

Many physical phenomena can be explained in terms of energy minimization. E.g., soap bubbles are spheres because they need to minimize surface tension with a constrained volume.

The formation of crystals in the small mass regime can be explained similarly. Thermodynamically, crystals at equilibrium should minimize Gibbs free energy:

$$\Delta G := \sum_{i} \gamma_i A_i = \lambda \sum_{i} h_i A_i,$$

where  $\gamma_i$  is the surface energy per unit area and  $A_i$  is the area of the *i*th face. The equality is due to Wulff, where he interpreted the problem in terms of a Lagrange multiplier  $\lambda > 0$ , and  $h_i$  is the distance to each face.

## Anisotropy: Wulff Shapes

These optimal configurations are called Wulff shapes. In general,

#### Definition

A Wulff shape is an open, bounded, convex set  $K \subset \mathbb{R}^n$  containing the origin.

There are two important 1-homogeneous non-negative functions naturally associated to K:

- The surface tension  $f: \mathbb{R}^n \to [0, \infty)$ , for which  $f(\nu)$  is the distance from the origin to the supporting hyperplane of K with normal  $\nu$ . Typically view f as a function on  $S^{n-1}$ .
- The gauge function  $f_* : \mathbb{R}^n \to [0, \infty)$ , for which  $K = \{f_* < 1\}$ .

### Anisotropy: Wulff Shapes

These optimal configurations are called Wulff shapes. In general,

#### Definition

A Wulff shape is an open, bounded, convex set  $K \subset \mathbb{R}^n$  containing the origin.

There are two important 1-homogeneous non-negative functions naturally associated to K:

- The surface tension  $f: \mathbb{R}^n \to [0, \infty)$ , for which  $f(\nu)$  is the distance from the origin to the supporting hyperplane of K with normal  $\nu$ . Typically view f as a function on  $S^{n-1}$ .
- The gauge function  $f_* : \mathbb{R}^n \to [0, \infty)$ , for which  $K = \{f_* < 1\}$ .

# Anisotropy: The Surface Tension and Gauge

The surface tension and gauge function are always semi-norms on  $\mathbb{R}^n$ , norms when K is symmetric about the origin. In this case, f and  $f_*$  are dual to each other.

For example, if  $f_* = \ell^p$  then  $f = \ell^q$ , for p, q conjugate exponents

In fact, we always have

$$f(\nu) = \sup\{\langle x, \nu \rangle \mid f_*(x) < 1\}$$
  
$$f_*(x) = \sup\{\langle x, \nu \rangle \mid f(\nu) < 1\},$$

so that for any  $x \in \mathbb{R}^n$  and  $\nu \in S^{n-1}$ ,

$$\langle x, \nu \rangle \le f(\nu) f_*(x).$$

This is known as the Fenchel inequality.



# Anisotropy: The Surface Tension and Gauge

The surface tension and gauge function are always semi-norms on  $\mathbb{R}^n$ , norms when K is symmetric about the origin. In this case, f and  $f_*$  are dual to each other.

For example, if  $f_* = \ell^p$  then  $f = \ell^q$ , for p, q conjugate exponents.

In fact, we always have

$$f(\nu) = \sup\{\langle x, \nu \rangle \mid f_*(x) < 1\}$$
  
$$f_*(x) = \sup\{\langle x, \nu \rangle \mid f(\nu) < 1\},$$

so that for any  $x \in \mathbb{R}^n$  and  $\nu \in S^{n-1}$ ,

$$\langle x, \nu \rangle \le f(\nu) f_*(x).$$

This is known as the Fenchel inequality.



# Anisotropy: The Surface Tension and Gauge

The surface tension and gauge function are always semi-norms on  $\mathbb{R}^n$ , norms when K is symmetric about the origin. In this case, f and  $f_*$  are dual to each other.

For example, if  $f_* = \ell^p$  then  $f = \ell^q$ , for p, q conjugate exponents.

In fact, we always have

$$f(\nu) = \sup\{\langle x, \nu \rangle \mid f_*(x) < 1\}$$
  
$$f_*(x) = \sup\{\langle x, \nu \rangle \mid f(\nu) < 1\},$$

so that for any  $x \in \mathbb{R}^n$  and  $\nu \in S^{n-1}$ ,

$$\langle x, \nu \rangle \le f(\nu) f_*(x).$$

This is known as the Fenchel inequality.



## Anisotropy: The Anisotropic Perimeter

Given a Wulff shape K we can ask the following question: For what energy functional  $\Phi$  is K the volume-constrained minimizer? I.e., find  $\Phi$  such that

$$E \in \arg\min\{\Phi(F) \mid |F| = v\}$$
 if and only if  $E = rK + x_0, |rK| = v$ .

It turns out the following energy is appropriate

#### Definition

The anisotropic perimeter (associated to K) is given by

$$\Phi(E) = \int_{\partial^* E} f(\nu_E(x)) \ d\mathcal{H}^{n-1}(x).$$

The isotropic perimeter is recovered when  $f = \ell^2$ , for which the Wulff shape is a ball.

## Anisotropy: Crystalline Setting

When K is a polytope we say that  $\Phi$  is crystalline. We denote by N the number of facets of K, by  $F_i$  a generic n-1 dimensional facet, and by  $\nu_i$  the outer unit normal of this facet.

In this setting we have that  $f(\nu_i) = h_i$ , the distance from the origin to the supporting hyperplane of  $F_i$ . In particular,

$$\Phi(K) = \int_{\partial^* K} f(\nu_K(x)) \ d\mathcal{H}^{n-1}(x) = \sum_{i=1}^N h_i \mathcal{H}^{n-1}(F_i),$$

which is precisely the form the minimum Gibbs free energy takes for a crystal at equilibrium.

## Anisotropy: Crystalline Setting

When K is a polytope we say that  $\Phi$  is crystalline. We denote by N the number of facets of K, by  $F_i$  a generic n-1 dimensional facet, and by  $\nu_i$  the outer unit normal of this facet.

In this setting we have that  $f(\nu_i) = h_i$ , the distance from the origin to the supporting hyperplane of  $F_i$ . In particular,

$$\Phi(K) = \int_{\partial^* K} f(\nu_K(x)) \ d\mathcal{H}^{n-1}(x) = \sum_{i=1}^N h_i \mathcal{H}^{n-1}(F_i),$$

which is precisely the form the minimum Gibbs free energy takes for a crystal at equilibrium.

### Anisotropy: The Wulff Inequality

 $\Phi$  is the right generalization to use because we have an anisotropic version of the isoperimetric inequality known as the Wulff inequality:

$$\Phi(E) \ge n|K|^{1/n}|E|^{(n-1)/n}$$

with equality if and only if  $|E\Delta(rK + x_0)| = 0$  for some r > 0 and  $x_0 \in \mathbb{R}^n$ .

This is the same as the isoperimetric inequality with  $\Phi$  in place of P and  $K = \{f_* < 1\}$  in place of  $B_1$ . We have a rigidity statement, so we can ask about stability.

### Anisotropy: The Wulff Inequality

 $\Phi$  is the right generalization to use because we have an anisotropic version of the isoperimetric inequality known as the Wulff inequality:

$$\Phi(E) \ge n|K|^{1/n}|E|^{(n-1)/n}$$

with equality if and only if  $|E\Delta(rK + x_0)| = 0$  for some r > 0 and  $x_0 \in \mathbb{R}^n$ .

This is the same as the isoperimetric inequality with  $\Phi$  in place of P and  $K = \{f_* < 1\}$  in place of  $B_1$ . We have a rigidity statement, so we can ask about stability.

# Quantitative Stability: The isotropic setting

To discuss quantitative stability we introduce the following scale invariant quantities.

• Closeness to equality: Define the isoperimetric deficit  $\delta$  as

$$\delta(E) = \frac{P(E)}{n|B_1|^{1/n}|E|^{(n-1)/n}} - 1$$

which is always non-negative owing to the isoperimetric inequality, and is zero precisely when E is essentially a ball.

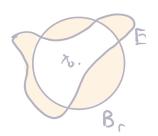
• Closeness to a ball: Use an asymmetry index  $\alpha$ . Supposed to capture the geometry and is also such that  $\alpha(E)=0$  iff E is essentially a ball.

Qualitative stability says given  $\{E_j\}_{j=1}^{\infty}$ , if  $\delta(E_j) \to 0$  then  $\alpha(E_j) \to 0$ . Quantitative stability quantifies this control, e.g.  $\alpha(E)^p \leq \delta(E)$  for all sets of finite perimeter.

### Quantitative Stability: Asymmetry Indexes

Many kinds, heuristically measure the distance to the set of minimizers  $\{B_r(x_0) \mid x_0 \in \mathbb{R}^n, r > 0\}$ . For ex. the Hausdorff distance.

$$\alpha(E) = \inf_{x_0 \in \mathbb{R}^n} \left\{ \frac{|E\Delta B_r(x_0)|}{|E|} \mid |B_r| = |E| \right\}.$$

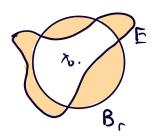


### Quantitative Stability: Asymmetry Indexes

Many kinds, heuristically measure the distance to the set of minimizers  $\{B_r(x_0) \mid x_0 \in \mathbb{R}^n, r > 0\}$ . For ex. the Hausdorff distance.

The most common asymmetry index is the Fraenkel asymmetry

$$\alpha(E) = \inf_{x_0 \in \mathbb{R}^n} \left\{ \frac{|E\Delta B_r(x_0)|}{|E|} \mid |B_r| = |E| \right\}.$$



### Quantitative Stability: Previous Results

### Theorem (Fusco-Maggi-Pratelli, '08)

There exists C(n) > 0 such that for any set of finite perimeter  $E \subset \mathbb{R}^n$  with  $0 < |E| < \infty$ ,

$$\alpha(E)^2 \le C(n)\delta(E).$$
 (Q.S.)

The power of 2 in (Q.S.) is sharp.

### The proof exploits symmetrization techniques a la De Giorgi.

Previous results by Fuglede '89, Hall-Hayman-Weitsman '91, and Hall '92 prove (Q.S.) under various other hypotheses, e.g. if E is convex, nearly spherical, smooth, and/or axially symmetric.

### Quantitative Stability: Previous Results

### Theorem (Fusco-Maggi-Pratelli, '08)

There exists C(n) > 0 such that for any set of finite perimeter  $E \subset \mathbb{R}^n$  with  $0 < |E| < \infty$ ,

$$\alpha(E)^2 \le C(n)\delta(E).$$
 (Q.S.)

The power of 2 in (Q.S.) is sharp.

The proof exploits symmetrization techniques a la De Giorgi.

Previous results by Fuglede '89, Hall-Hayman-Weitsman '91, and Hall '92 prove (Q.S.) under various other hypotheses, e.g. if E is convex, nearly spherical, smooth, and/or axially symmetric.

### Quantitative Stability: Selection Principle

In '12 Cicalese-Leonardi showed sharp quantitative stability for the isoperimetric inequality by exploiting the regularity of almost minimizers. This technique became known as the *selection principle*.

Idea: proof by contradiction

- Use selection principle to replace original sequence with a new one with upgraded regularity, while still maintaining the contradictory hypothesis.
- Prove directly sharp stability with upgraded regularity.
- Derive a contradiction.

Does not use symmetrization!

## Quantitative Stability: Selection Principle

In '12 Cicalese-Leonardi showed sharp quantitative stability for the isoperimetric inequality by exploiting the regularity of almost minimizers. This technique became known as the *selection principle*.

Idea: proof by contradiction

- Use selection principle to replace original sequence with a new one with upgraded regularity, while still maintaining the contradictory hypothesis.
- Prove directly sharp stability with upgraded regularity.
- Derive a contradiction.

Does not use symmetrization!

### Quantitative Stability: A Strong Form

In '14 Fusco-Julin, using the selection principle, proved the following strong form of (Q.S.).

#### Theorem (Fusco-Julin, '14)

There exists C(n) > 0 such that for any set of finite perimeter E with  $0 < |E| < \infty$ ,

$$\alpha(E)^2 + \beta(E)^2 \le C(n)\delta(E)$$

where  $\beta(E)$  is the oscillation index.

## Quantitative Stability: Oscillation Index

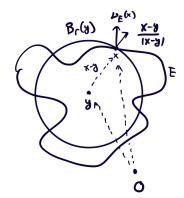
The oscillation index  $\beta$  is defined as

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left\{ c(n, E) \int_{\partial^* E} \left[ 1 - \frac{\langle x - y, \nu_E(x) \rangle}{|x - y|} \right] d\mathcal{H}^{n-1}(x) \right\}^{1/2}$$

where  $c(n, E) = 1/(n|B_1|^{1/n}|E|^{(n-1)/n})$ . It measures the deviation from equality in Cauchy-Schwarz:

$$\langle (x-y)/|x-y|, \nu_E(x)\rangle \leq 1,$$

with equality if and only if  $(x-y)/|x-y| = \nu_E(x)$ .



# Quantitative Stability: Oscillation Index vs $H^1$

We suppose here that E is nearly spherical, i.e.  $\partial E = \{x + u(x)x \mid x \in \partial B_1\}$  with  $u \in C^1(\partial B_1)$  and  $\|u\|_{W^{1,\infty}(\partial B_1)}$  small. In this case can parametrize  $\partial E$  in terms of  $\partial B_1$  and compute

$$\beta(E)^2 \lesssim ||u||_{H^1(\partial B_1)}^2.$$

On the other hand, Fuglede and Fusco-Julin show, respectively, that if E is nearly spherical then

$$\frac{1}{10} ||u||_{H^1(\partial B_1)}^2 \le \delta(E).$$

and there exists C(n) > 0 such that (for any set of finite perimeter)

$$\alpha(E) + \delta(E)^{1/2} \le C(n)\beta(E).$$

In particular since  $\alpha(E) > 0$ ,  $\delta(E) \le C(n)\beta(E)^2$ , we also have  $||u||_{H^1(\partial B_1)}^2 \lesssim \beta(E)^2$ .

## Anisotropy: Deficit, Asymmetry, and Oscillation

We define the anisotropic deficit, Fraenkel asymmetry, and oscillation index as

$$\delta_{\Phi}(E) := \frac{\Phi(E)}{n|K|^{1/n}|E|^{(n-1)/n}} - 1 
\alpha_{\Phi}(E) := \inf_{x_0 \in \mathbb{R}^n} \left\{ \frac{|E\Delta(rK + x_0)|}{|E|} \mid |rK| = |E| \right\} 
\beta_{\Phi}(E) := \inf_{y \in \mathbb{R}^n} \left\{ c_{\Phi}(n, E) \int_{\partial^* E} \left[ f(\nu_E(x)) - \frac{\langle x - y, \nu_E(x) \rangle}{f_*(x - y)} \right] d\mathcal{H}^{n-1}(x) \right\}^{1/2}$$

where  $c_{\Phi}(n,K) = 1/(n|K|^{1/n}|E|^{(n-1)/n})$ . Notice the integrand for  $\beta_{\Phi}$  comes from the Fenchel inequality

$$\langle x - y, \nu \rangle \le f(\nu) f_*(x - y)$$

where equality occurs if and only if  $\{\langle x-y,\nu\rangle=f(\nu)\}$  is a supporting hyperplane for K at x-y.

## Anisotropy: Deficit, Asymmetry, and Oscillation

We define the anisotropic deficit, Fraenkel asymmetry, and oscillation index as

$$\delta_{\Phi}(E) := \frac{\Phi(E)}{n|K|^{1/n}|E|^{(n-1)/n}} - 1$$

$$\alpha_{\Phi}(E) := \inf_{x_0 \in \mathbb{R}^n} \left\{ \frac{|E\Delta(rK + x_0)|}{|E|} \mid |rK| = |E| \right\}$$

$$\beta_{\Phi}(E) := \inf_{y \in \mathbb{R}^n} \left\{ c_{\Phi}(n, E) \int_{\partial^* E} \left[ f(\nu_E(x)) - \frac{\langle x - y, \nu_E(x) \rangle}{f_*(x - y)} \right] d\mathcal{H}^{n-1}(x) \right\}^{1/2}$$

where  $c_{\Phi}(n,K) = 1/(n|K|^{1/n}|E|^{(n-1)/n})$ . Notice the integrand for  $\beta_{\Phi}$  comes from the Fenchel inequality

$$\langle x - y, \nu \rangle \le f(\nu) f_*(x - y)$$

where equality occurs if and only if  $\{\langle x-y,\nu\rangle=f(\nu)\}$  is a supporting hyperplane for K at x-y.

### Anisotropy: Previous Results

#### Theorem (Figalli-Maggi-Pratelli, '12)

There exists C(n) > 0 such that for any set of finite perimeter with  $0 < |E| < \infty$ ,

$$\alpha_{\Phi}(E)^2 \le C(n)\delta_{\Phi}(E).$$

The power of 2 is sharp.

#### Theorem (Neumayer '16)

• If K is uniformly convex there exists  $C(n,...,\|\nabla^2 f\|_{C^0(\partial K)}) > 0$  such that

$$\alpha_{\Phi}(E)^2 + \beta_{\Phi}(E)^2 \le C\delta_{\Phi}(E).$$

• If instead n = 2 and K is a polygon (a crystalline case), there exists C(K) > 0 such that the above holds.



### Main Result

The following is the main result, a direct generalization of Neumayer's result in the crystalline n=2 setting.

### Theorem (D. '24)

Let K be a polytope. There exists C(n,K) > 0 such that for any set of finite perimeter  $E \subset \mathbb{R}^n$  with  $0 < |E| < \infty$ ,

$$\alpha_{\Phi}(E)^2 + \beta_{\Phi}(E)^2 \le C(n, K)\delta_{\Phi}(E).$$

### Comparison to Isotropic Case

#### Remark

- In the anisotropic setting we lack symmetry, so in particular we cannot appeal to symmetrization techniques as in the isotropic setting.
- The Figalli-Maggi-Pratelli result uses optimal transport methods, Neumayer uses the selection principle
- Only weak regularity theory is available. For a generic Wulff shape K can only conclude almost minimizers satisfy uniform density estimates, not  $(\Lambda, r_0)$ -minimizer.
- Need to pair uniform density estimates with  $L^1$ -closeness (by FMP) to get Hausdorff closeness.
- Further, in the crystalline setting  $\nabla^2 f \equiv 0$  making the problem degenerate elliptic.

### Overview of Argument

- Step 1: Prove the result for *parallel* polytopes.
- Step 2: Prove the result for E satisfying uniform density estimates. Allows to upgrade  $L^1$  control to Hausdorff.

### Theorem (Figalli-Zhang '22)

There exists  $\sigma(n,K) > 0$  and  $\gamma(n,K) > 0$  such that for any set of finite perimeter  $E \subset \mathbb{R}^n$  with |E| = |K| and  $|E\Delta K| \leq \sigma$ , there exists a parallel polytope K' such that |K'| = |K| and

$$\Phi(E) - \Phi(K') \ge \gamma |E\Delta K'|$$

• Step 3: Selection Principle. With minimizing sequence  $\{E_j\}_{j=1}^{\infty}$ , choose

$$F_j \in \arg\min\{\Phi(F) + C_1|\beta_{\Phi}(F)^2 - \beta_{\Phi}(E_j)^2| + C_2||F| - |K||\}$$

Thanks for coming!