3. \((\Leftarrow) \) It is a Hahn Banach that if \(X \) is a NLS and \(Y \) is f.d. (possibly Banach) then
\(T: X \to Y \) is compact if and only if
\(\text{span}(x_n \implies x) = 0 \)
\(f(x) > 0 \) for some

Proof: Let \(B, C, x \) be not compact.

2. Let \(\{e_i \} \) be a maximal and
\(\text{span}\{e_1, \ldots, e_n\} \) is closed. Hence \(A \to C(X, Y) \).

3. (\Rightarrow) Let \(\{e_i \} \) be a maximal and
\(\text{span}\{e_1, \ldots, e_n\} \) be Y. Define \(A_n = \text{span}\{e_1, \ldots, e_n\} \).

Consider \(A_n: X \to Y \) by
\[
A_n(x) = \sum_{i=1}^{n} \langle Ax, e_i \rangle e_i.
\]

Then \(\|A_n A - A\| \to 0 \).

By Mazur's Theorem, if \(f \in X \)
\[
\text{span}(x_n, \ldots, x) = 0
\]
\(f(x) > 0 \) for some

Proof: Let \(B, C, x \) be not compact.

2. Let \(x \in B, C \). Consider \(\text{span}\{e_1, \ldots, e_n\} \)
\(\text{span}\{e_1, \ldots, e_n\} \) is closed. Hence \(A \to C(X, Y) \).

3. (\Rightarrow) Let \(\{e_i \} \) be a maximal and
\(\text{span}\{e_1, \ldots, e_n\} \) be Y. Define \(A_n = \text{span}\{e_1, \ldots, e_n\} \).

Consider \(A_n: X \to Y \) by
\[
A_n(x) = \sum_{i=1}^{n} \langle Ax, e_i \rangle e_i.
\]

Then \(\|A_n A - A\| \to 0 \).

For each \(f \in \text{D}(X) \)
\(\text{span}\{e_1, \ldots, e_n\} \) is closed. Hence \(A \to C(X, Y) \).

4. By closed graph Thm,
\(P \) is the solution if \(P \) is a closed
operator. That is, for each
\(x_n \to x \), \(P x_n \to y \)
we have \(Ax = y \).

If \(P \) is continuous, then \(f \in \text{null}(P) \)
and \(x \to x \)
\(0 = P x_n \to P x \)
so \(x \in \text{null}(P) \).
Suppose range is closed. Let \(y_n \)

Continuity of \(P, x_n \to x, P x_n \to P x \).

Suppose \(x_n \to x \). Since the range is closed, \(P x_n \to P x \). Let some \(x' \).

Now \(P x_n \to P (P x_n) \)

Let \(y_n \in \text{range}(P) \) be st \(y_n \to y \).

Then \(3 x_n \to P x_n \).

WTS: \(3 x \to P x \).

but obviously \(P x = x \) is its range.

So \(x = y \) works.

\(P \) is the identity on its range.

(since \(P^2 = P \)).

By continuity

\(P y_n \to P (P x_n) \to P y \)

So

\(P (P x_n) = P x_n \to y_n \)

Therefore

\(P y_n \to P y \)

\(\therefore y_n \to P y \)

So \(y = y \).

For 2, I imagine this has something to do with non-computeness of infinite dim Banach space.

Tools that come to mind are H-B & the Baire property

by Mazur set.