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Outline

i) How do we translate derivatives into a metric setting?

ii) Defining W 1,2(X ) via the Cheeger energy.

iii) Existence of a Laplace operator.
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A General Heuristic

Let’s say we have a concept which we want to define in a more abstract
setting. It could be that the current definition doesn’t make any sense in
abstraction. So, we need to find equivalent formulations.

Example

We say a function f ∈ C 2(Rn) is convex if ∇2f ≥ 0.
Equivalently, f is convex if for all x , y ∈ Rn and t ∈ [0, 1] it holds

f ((1− t)x + ty) ≤ (1− t)f (x) + tf (y).

The first formulation has the advantage of easily testing for convexity. The
second formulation allows us to drop the regularity assumption.
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A General Heuristic

It really is useful to consider this equivalent formulation. Consider the
Dirichlet energy E : W 1,2(Rn) → R defined as

E (u) =
1

2

∫
Rn

|∇u(x)|2 dx .

The first variation is computable: for u, v ∈ W 1,2(Rn)

δE [u]v =
d

dt

∣∣∣∣
t=0

E [u + tv ] =

∫
Rn

⟨∇u(x),∇v(x)⟩ dx = −
∫
Rn

v(x)∆u(x) dx .

Riesz representation then allows us to define the gradient of E as

δE [u]v = ⟨v ,∇E (u)⟩ ⇒ ∇E (u) = −∆u.
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A General Heuristic

The second variation, though computable:

δ2E [u]v =
d2

d2t

∣∣∣∣
t=0

E [u + tv ] =

∫
Rn

|∇v(x)|2 dx

doesn’t admit a good definition for ∇2E (u). How can we possibly test for
convexity? We must appeal to the pointwise definition. For
u, v ∈ W 1,2(Rn) we have

E ((1− t)u + tv) =
1

2

∫
Rn

|∇((1− t)u + tv)(x)|2 dx

=
1

2

∫
Rn

|(1− t)∇u(x) + t∇v(x)|2 dx

≤ 1

2

∫
Rn

|(1− t)∇u(x)|2 + |t∇v(x)|2 dx

= (1− t)2E (u) + t2E (v) ≤ (1− t)E (u) + tE (v).
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Metric Measure Spaces

Definition

A metric measure space is a triple (X , d ,m) where (X , d) is a complete
and separable metric space and m is a Borel, non-negative measure such
that m(X ) > 0 and m(B) < ∞ for any bounded B ⊂ X .

Why study metric measure spaces? Over the past 20 years they’ve proven
remarkably useful in Riemannian geometry. Particularly, metric measure
spaces are the right framework to talk about non-smooth geometry.

The primary idea behind geometric analysis due to Shoen-Yau is to study
the geometry of (Riemannian) manifolds via PDEs. It stands to reason
that one should try to develop Sobolev calculus on a metric measure space.
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Asymptotic Lipschitz Constant

Idea: W 1,2(Rn) can be defined as {E < ∞}, the domain of the Dirichlet
energy, so we just need to define the Dirichlet energy. However, it involves
a term |∇u|2, which doesn’t make sense in a metric space.

Recall however that if u : Rn → R is Lipschitz then ∥∇u∥L∞(Rn) ≤ Lip(u).
This is promising, except the fact that it is global. To this end we define
the following local alternative.

Definition (Asymptotic Lipschitz Constant)

For f : X → R we define the asymptotic Lipschitz constant,
Lipa f : X → [0,∞], via

Lipa f (x) = inf
R>0

Lip(f |BR(x)) = lim sup
y ,z→x

|f (y)− f (z)|
d(y , z)

.
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Characterizing the Dirichlet Energy

Note that if u ∈ C∞(Rn) then Lipa u(x) = |∇u(x)|. However, if
u ∈ W 1,2(Rn) then it is typically discontinuous everywhere and thus
Lipa u(x) = ∞. Hence we cannot just consider

∫
Rn Lipa f (x)

2 dx as this
would be +∞.

So we must resort to some kind of approximation. If u ∈ W 1,2(Rn) then
we can find {un}∞n=1 ⊂ LipBS(Rn) a sequence of Lipschitz functions with

bounded support such that un
W 1,2

−−−→ u. By lower semi-continuity of the
Dirichlet energy it follows that

E (u) ≤ lim inf
n→∞

E (un) = lim inf
n→∞

(
1

2

∫
Rn

Lipa(un)
2 dx

)
.

It stands to reason that taking the infinum over all possible sequences gives

E (u) = inf

{
lim inf
n→∞

(
1

2

∫
Rn

Lipa(un)
2 dx

)}
.
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Cheeger Energy

Definition (Cheeger Energy)

We define the Cheeger energy Ch : L2(X ) → [0,∞] by

Ch(f ) = inf

{
lim inf
n→∞

(
1

2

∫
X
Lipa(fn)

2 dm

) ∣∣∣∣{fn}∞n=1 ⊂ LipBS(X ), fn
L2−→ f

}
By the above discussion, the Cheeger energy coincides with the Dirichlet
energy on Rn. So, we may simply define W 1,2(X ) = D(Ch) = {Ch < ∞},
the domain of the Cheeger energy.

Since
Lipa(α1f1 + α2f2) ≤ |α1| Lipa(f1) + |α2| Lipa(f2)

for α1, α2 ∈ R and f1, f2 ∈ L2(X ) it follows that W 1,2(X ) is a vector space.
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The Sobolev Space W 1,2(X )

Endowing W 1,2(X ) with the norm

∥f ∥2W 1,2(X ) = ∥f ∥2L2(X ) + 2Ch(f ),

one can prove that (W 1,2(X ), ∥ · ∥W 1,2(X )) is a Banach space. The proof
relies on lower semi-continuity of the Cheeger energy.

Remark

In general W 1,2(X ) is NOT a Hilbert space. One of the defining features
of the so-called Ricci limit spaces RCD(K ,N), a class of metric measure
spaces, is that W 1,2(X ) is a Hilbert space. This property is called
infinitesmially Hilbertian.
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Relaxed Slopes

Coupled with the concept of Cheeger energy is the concept of relaxed
slope.

Definition (Relaxed Slope)

We say G ≥ 0 an L2(X ) function is a relaxed slope for f if there exists
{fn}∞n=1 as in the definition of Ch(f ) such that Lipa(fn) ⇀ G ′ and G ′ ≤ G
a.e.

Heuristically the relaxed slope is like a modulus of the gradient. The
following proposition is easily deduced

Proposition

Let f ∈ W 1,2(X ). Then the set {G ∈ L2(X ) | G is a relaxed slope for f }
is closed, convex, and stable by taking min(·).
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Modulus of the Distributional Derivative

In particular, the convexity and closedness guarantee that there is a unique
minimal norm element of the set {G ∈ L2(X ) | G is a relaxed slope for f }.
Stability by taking min(·) guarantees that it is actually unique pointwise
a.e.

Definition

We call this minimal element |Df | ∈ L2(X ).

Remark

In the smooth setting we recover the norm of the distributional derivative,
as anticipated.

Does |Df | really behave like the modulus of a distributional derivative?
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Modulus of the Distributional Derivative

Yes, the properties are summarized below:

Proposition

i) If fn
L2−→ f and |Dfn| ⇀ G then f ∈ W 1,2(X ) and |Df | ≤ G a.e.

ii) A chain rule holds: |D(φ ◦ f )| = (|φ′| ◦ f )|Df | for all φ : R → R
Lipschitz and C 1 (the latter is not necessary but makes life easier).

iii) A Leibniz rule: |D(fg)| ≤ |f ||Dg |+ |g ||Df |.
iv) A locality principle: |Df | = |Dg | a.e. on {f = g}.
v) |Df | is the strong L2-limit of {Lipa fn}∞n=1 for any “optimal” sequence

{fn}∞n=1 in the definition of Ch(f ). In particular,

Ch(f ) =
1

2

∫
|Df |2 dm.
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Subdifferentials

Our next goal is to define the Laplacian on (a subset of) W 1,2(X ). To this
end we need to concept of a subdifferential.

Definition (Subdifferential of a functional)

Let E : H → [0,∞] be any convex, lower semi-continuous functional and
x ∈ H such that E (x) < ∞. Then the subdifferential of E at x is

∂E (x) := {v ∈ H | E (x) + ⟨v , y − x⟩ ≤ E (y) for every y ∈ H}.

The subdifferential is always closed and convex.

Example

Let f : Rn → R be any convex function. Then if f is differentiable at x it
follows that ∂f (x) = {∇f (x)}.
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The Laplacian

If E : W 1,2(Rn) → R is the Dirichlet energy then using the ansatz from
the previous example,

∂E (u) = {∇E (u)} = {−∆u}.
So to obtain the second order quantity ∆u it suffices to study the first
order set ∂E (u).

Since we just defined the Cheeger energy on the Hilbert space L2(X ) and
it is supposed to extend the Dirichlet energy, we define the Laplacian as:

Definition

The Laplace operator ∆ is defined on

{f ∈ W 1,2(X ) | ∂ Ch(f ) ̸= ∅}

and for such f , the Laplacian −∆f is defined as the element of smallest
norm in ∂ Ch(f ).
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The Laplacian

The following lemma is immediate and shows the previous definition is
good

Lemma

Let f ∈ D(∆) and g ∈ W 1,2(X ) then∣∣∣∣ ∫ g∆f dm

∣∣∣∣ ≤ ∫
|Df ||Dg | dm.

Moreover, if φ ∈ C 1(R) ∩ Lip(R) then∫
(φ ◦ f )∆f dm = −

∫
(φ′ ◦ f )|Df |2 dm.
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Concluding Remarks

i) Can define a heat flow Ht on L2(X ) as the gradient flow of the
Cheeger energy. Has all the same useful properties of a heat flow on
Rn (minus regularization!)

ii) We really didn’t use the measure much. There is an entire alternative
approach, more related to the geometry of the Wasserstein space.
The two are equivalent.
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