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Anisotropy

Many physical phenomena can be explained in terms of energy
minimization. E.g., soap bubbles are spheres because they need to
minimize surface tension with a constrained volume.

The formation of crystals in the small mass regime can be explained
similarly. Thermodynamically, crystals at equilibrium should minimize
Gibbs free energy:

∆G :=
∑
i

γiAi = λ
∑
i

hiAi,

where γi is the surface energy per unit area and Ai is the area of the
ith face. The equality is due to Wulff, where he interpreted the
problem in terms of a Lagrange multiplier λ > 0, and hi is the distance
to each face.
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Anisotropy: Wulff Shapes

These optimal configurations are called Wulff shapes. In general,

Definition
A Wulff shape is an open, bounded, convex set K ⊂ Rn containing the
origin.

There are two important 1-homogeneous non-negative functions
naturally associated to K:

The surface tension f : Rn → [0,∞), for which f(ν) is the distance
from the origin to the supporting hyperplane of K with normal ν.
Typically view f as a function on Sn−1.

The gauge function f∗ : Rn → [0,∞), for which K = {f∗ < 1}.
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Anisotropy: The Surface Tension and Gauge

The surface tension and gauge function are always semi-norms on Rn,
norms when K is symmetric about the origin. In this case, f and f∗
are dual to each other.

For example, if f∗ = ℓp then f = ℓq, for p, q conjugate exponents.

In fact, we always have

f(ν) = sup{⟨x, ν⟩ | f∗(x) < 1}
f∗(x) = sup{⟨x, ν⟩ | f(ν) < 1},

so that for any x ∈ Rn and ν ∈ Sn−1,

⟨x, ν⟩ ≤ f(ν)f∗(x).

This is known as the Fenchel inequality.
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Anisotropy: The Anisotropic Perimeter

Given a Wulff shape K we can ask the following question: For what
energy functional Φ is K the volume-constrained minimizer? I.e., find
Φ such that

E ∈ arg min{Φ(F ) | |F | = v} if and only if E = rK + x0, |rK| = v.

It turns out the following energy is appropriate

Definition
The anisotropic perimeter (associated to K) is given by

Φ(E) =

∫
∂∗E

f(νE(x)) dHn−1(x).

The isotropic perimeter is recovered when f = ℓ2, for which the Wulff
shape is a ball.
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Anisotropy: Crystalline Setting

When K is a polytope we say that Φ is crystalline. We denote by N
the number of facets of K, by Fi a generic n− 1 dimensional facet, and
by νi the outer unit normal of this facet.

In this setting we have that f(νi) = hi, the distance from the origin to
the supporting hyperplane of Fi. In particular,

Φ(K) =

∫
∂∗K

f(νK(x)) dHn−1(x) =

N∑
i=1

hiHn−1(Fi),

which is precisely the form the minimum Gibbs free energy takes for a
crystal at equilibrium.
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Anisotropy: The Wulff Inequality

Φ is the right generalization to use because we have an anisotropic
version of the isoperimetric inequality known as the Wulff inequality:

Φ(E) ≥ n|K|1/n|E|(n−1)/n

with equality if and only if |E∆(rK + x0)| = 0 for some r > 0 and
x0 ∈ Rn.

This is the same as the isoperimetric inequality with Φ in place of P
and K = {f∗ < 1} in place of B1. We have a rigidity statement, so we
can ask about stability.

Kenneth DeMason (UT Austin) Strong Form Crystalline Wulff March 26, 2024 8 / 29



Anisotropy: The Wulff Inequality

Φ is the right generalization to use because we have an anisotropic
version of the isoperimetric inequality known as the Wulff inequality:

Φ(E) ≥ n|K|1/n|E|(n−1)/n

with equality if and only if |E∆(rK + x0)| = 0 for some r > 0 and
x0 ∈ Rn.

This is the same as the isoperimetric inequality with Φ in place of P
and K = {f∗ < 1} in place of B1. We have a rigidity statement, so we
can ask about stability.

Kenneth DeMason (UT Austin) Strong Form Crystalline Wulff March 26, 2024 8 / 29



Quantitative Stability: The isotropic setting
To discuss quantitative stability we introduce the following scale
invariant quantities.

Closeness to equality: Define the isoperimetric deficit δ as

δ(E) =
P (E)

n|B1|1/n|E|(n−1)/n
− 1

which is always non-negative owing to the isoperimetric inequality,
and is zero precisely when E is essentially a ball.

Closeness to a ball: Use an asymmetry index α. Supposed to
capture the geometry and is also such that α(E) = 0 iff E is
essentially a ball.

Qualitative stability says given {Ej}∞j=1, if δ(Ej) → 0 then α(Ej) → 0.
Quantitative stability quantifies this control, e.g. α(E)p ≤ δ(E) for all
sets of finite perimeter.
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Quantitative Stability: Asymmetry Indexes
Many kinds, heuristically measure the distance to the set of minimizers
{Br(x0) | x0 ∈ Rn, r > 0}. For ex. the Hausdorff distance.

The most common asymmetry index is the Fraenkel asymmetry

α(E) = inf
x0∈Rn

{
|E∆Br(x0)|

|E|

∣∣∣∣ |Br| = |E|
}
.
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Quantitative Stability: Previous Results

Theorem (Fusco-Maggi-Pratelli, ‘08)
There exists C(n) > 0 such that for any set of finite perimeter E ⊂ Rn

with 0 < |E| < ∞,
α(E)2 ≤ C(n)δ(E). (Q.S.)

The power of 2 in (Q.S.) is sharp.

The proof exploits symmetrization techniques a la De Giorgi.

Previous results by Fuglede ‘89, Hall-Hayman-Weitsman ‘91, and Hall
‘92 prove (Q.S.) under various other hypotheses, e.g. if E is convex,
nearly spherical, smooth, and/or axially symmetric.
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Quantitative Stability: Selection Principle

In ‘12 Cicalese-Leonardi showed sharp quantitative stability for the
isoperimetric inequality by exploiting the regularity of almost
minimizers. This technique became known as the selection principle.

Idea: proof by contradiction

Use selection principle to replace original sequence with a new one
with upgraded regularity, while still maintaining the contradictory
hypothesis.

Prove directly sharp stability with upgraded regularity.

Derive a contradiction.

Does not use symmetrization!
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Quantitative Stability: A Strong Form

In ‘14 Fusco-Julin, using the selection principle, proved the following
strong form of (Q.S.).

Theorem (Fusco-Julin)
There exists C(n) > 0 such that for any set of finite perimeter E with
0 < |E| < ∞,

α(E)2 + β(E)2 ≤ C(n)δ(E)

where β(E) is the oscillation index.
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Quantitative Stability: Oscillation Index
The oscillation index β is defined as

β(E) = inf
y∈Rn

{
c(n,E)

∫
∂∗E

[
1− ⟨x− y, νE(x)⟩

|x− y|

]
dHn−1(x)

}1/2

where c(n,E) = 1/(n|B1|1/n|E|(n−1)/n). It
measures the deviation from equality in
Cauchy-Schwarz:

⟨(x− y)/|x− y|, νE(x)⟩ ≤ 1,

with equality if and only if
(x− y)/|x− y| = νE(x).
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Quantitative Stability: Oscillation Index vs H1

We suppose here that E is nearly spherical, i.e.
∂E = {x+ u(x)x | x ∈ ∂B1} with u ∈ C1(∂B1) and ∥u∥W 1,∞(∂B1)

small. In this case can parametrize ∂E in terms of ∂B1 and compute

β(E)2 ≲ ∥u∥2H1(∂B1)
.

On the other hand, Fuglede and Fusco-Julin show, respectively, that if
E is nearly spherical then

1

10
∥u∥2H1(∂B1)

≤ δ(E).

and there exists C(n) > 0 such that (for any set of finite perimeter)

α(E) + δ(E)1/2 ≤ C(n)β(E).

In particular since α(E) > 0, δ(E) ≤ C(n)β(E)2, we also have
∥u∥2H1(∂B1)

≲ β(E)2.
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Anisotropy: Deficit, Asymmetry, and Oscillation
We define the anisotropic deficit, Fraenkel asymmetry, and oscillation
index as

δΦ(E) :=
Φ(E)

n|K|1/n|E|(n−1)/n
− 1

αΦ(E) := inf
x0∈Rn

{
|E∆(rK + x0)|

|E|

∣∣∣∣ |rK| = |E|
}

βΦ(E) := inf
y∈Rn

{
cΦ(n,E)

∫
∂∗E

[
f(νE(x))−

⟨x− y, νE(x)⟩
f∗(x− y)

]
dHn−1(x)

}1/2

where cΦ(n,K) = 1/(n|K|1/n|E|(n−1)/n). Notice the integrand for βΦ
comes from the Fenchel inequality

⟨x− y, ν⟩ ≤ f(ν)f∗(x− y)

where equality occurs if and only if {⟨x− y, ν⟩ = f(ν)} is a supporting
hyperplane for K at x− y.
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Anisotropy: Previous Results

Theorem (Figalli-Maggi-Pratelli, ‘12)
There exists C(n) > 0 such that for any set of finite perimeter with
0 < |E| < ∞,

αΦ(E)2 ≤ C(n)δΦ(E).

The power of 2 is sharp.

Theorem (Neumayer ‘16)
If K is uniformly convex there exists C(n, ..., ∥∇2f∥C0(∂K)) > 0
such that

αΦ(E)2 + βΦ(E)2 ≤ CδΦ(E).

If instead n = 2 and K is a polygon (a crystalline case), there
exists C(K) > 0 such that the above holds.
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Main Result

The following is the main result, a direct generalization of Neumayer’s
result in the crystalline n = 2 setting.

Theorem (D. ‘24)
Let K be a polytope. There exists C(n,K) > 0 such that for any set of
finite perimeter E ⊂ Rn with 0 < |E| < ∞,

αΦ(E)2 + βΦ(E)2 ≤ C(n,K)δΦ(E).
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Comparison to Isotropic Case

Remark
In the anisotropic setting we lack symmetry, so in particular we
cannot appeal to symmetrization techniques as in the isotropic
setting.
The Figalli-Maggi-Pratelli result uses optimal transport methods,
Neumayer uses the selection principle
Only weak regularity theory is available. For a generic Wulff shape
K can only conclude almost minimizers satisfy uniform density
estimates, not (Λ, r0)-minimizer.
Need to pair uniform density estimates with L1-closeness (by
FMP) to get Hausdorff closeness.
Further, in the crystalline setting ∇2f ≡ 0 making the problem
degenerate elliptic.
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Overview of Argument: Parallel Polytopes

Step 1: Prove the result for parallel polytopes.

We say that K ′ is parallel to K if they share the same set of unit
normals, and hence have the same amount of sides.
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Overview of Argument: The Function γΦ

Recall that βΦ(E) is defined as

βΦ(E) := inf
y∈Rn

{
cΦ(n,E)

∫
∂∗E

[
f(νE(x))−

⟨x− y, νE(x)⟩
f∗(x− y)

]
dHn−1(x)

}1/2

where cΦ(n,E) = 1/(n|K|1/n|E|(n−1)/n). In practice, it is much more
useful to rewrite this using the divergence theorem as

βΦ(E)2 =
Φ(E)− (n− 1)γΦ(E)

n|K|1/n|E|(n−1)/n

where
γΦ(E) := sup

y∈Rn

∫
E

1

f∗(x− y)
dx.
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Overview of Argument: A Preliminary Estimate

In particular, it can be shown that

Φ(K) = (n− 1)γΦ(K) = (n− 1)

∫
K

1

f∗(x)
dx.

Furthermore, by the Wulff inequality Φ(K) = n|K|. Accordingly, if
|E| = |K| then by testing γΦ(E) at the origin,

βΦ(E)2 ≤ Φ(E)

n|K|
− (n− 1)

n|K|

∫
E

1

f∗(x)
dx

= δΦ(E) +
(n− 1)

n|K|

[∫
K

1

f∗(x)
dx−

∫
E

1

f∗(x)
dx

]
= δΦ(E) +

(n− 1)

n|K|

[∫
K\E

1

f∗(x)
dx−

∫
E\K

1

f∗(x)
dx

]
.
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Overview of Argument: The Anisotropic Co-Area
Formula

For any Borel g : R → [0,∞), Lipschitz u : Rn → R, and open Ω ⊂ Rn

the (weighted) Anisotropic co-area formula states that∫
Ω
f(∇u(x)) g(f∗(x)) dx =

∫ ∞

0
Φ({u < r}; Ω) g(r) dr.

With u(x) = f∗(x) and g(r) = 1/r this reads∫
Ω

1

f∗(x)
dx =

∫ ∞

0

1

r
Φ({f∗ < r}; Ω) dr =

∫ ∞

0

1

r
Φ(rK; Ω) dr

since f(∇f∗(x)) = 1 for a.e. x ∈ Rn by duality.
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Overview of Argument: Parallel Polytopes
Recall that Φ(K) takes the nice form

Φ(K) =

N∑
i=1

f(νi)Hn−1(Fi).

So the computation simply involves bounding∫
K\K′

1

f∗(x)
dx =

∫ ∞

0

1

r
Φ(rK;K \K ′) dr

=

N∑
i=1

∫ 1

0

f(νi)

r
Hn−1(rFi ∩ (K \K ′)) dr,∫

K′\K

1

f∗(x)
dx =

∫ ∞

0

1

r
Φ(rK;K ′ \K) dr

=

N∑
i=1

∫ ∞

1

f(νi)

r
Hn−1(rFi ∩ (K ′ \K)) dr.
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Overview of Argument: Uniform Density Estimates

Step 2: Prove the result for E satisfying uniform density estimates.
Allows to upgrade L1 control to Hausdorff.

Need to use the following projection theorem

Theorem (Figalli-Zhang ‘22)
There exists σ(n,K) > 0 and γ(n,K) > 0 such that for any set of finite
perimeter E ⊂ Rn with |E| = |K| and |E∆K| ≤ σ, there exists a
parallel polytope K ′ such that |K ′| = |K| and

Φ(E)− Φ(K ′) ≥ γ|E∆K ′|

We’ll call the polytope obtained from this theorem K∗.
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Overview of Argument: Uniform Density Estimates

Observe that since δΦ(E) = Φ(E)/(n|K|)− 1 (and similarly for K∗),
we have that

δΦ(E)− δΦ(K
∗) =

Φ(E)

n|K|
− Φ(K∗)

n|K|
≥ γ

n|K|
|E∆K ′|.

In particular, this implies that δΦ(K
∗) ≤ δΦ(E).

Use Hausdorff control to show that

|γΦ(E)− γΦ(K
∗)| ≤ 1

2
|E∆K∗|.
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Overview of Argument: Uniform Density Estimates

Combining these with the identity

βΦ(E)2 =
Φ(E)− (n− 1)γΦ(E)

n|K|

yields

βΦ(E)2 ≤Φ(E)

n|K|
− (n− 1)γΦ(K

∗)

n|K|
+ C|E∆K∗|

=
1

n|K|
[Φ(E)− Φ(K∗)] + βΦ(K

∗)2 + C|E∆K∗|

≤ C[δΦ(E)− δΦ(K
∗)] + βΦ(K

∗)2.
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Overview of Argument

Step 3: Selection Principle

Aiming for a contradiction, generate a sequence {Ej}∞j=1.

Choose

Fj ∈ arg min{Φ(F ) + C1|βΦ(F )2 − βΦ(Ej)
2|+ C2

∣∣|F | − |K|
∣∣}

These are almost minimizers in the sense they minimize a
perturbed volume-constrained problem.

Need to show Fj satisfies same properties as Ej and control βΦ(Fj)
and Φ(Fj). Replace {Ej}∞j=1 with almost minimizers {Fj}∞j=1.

Appeal to regularity theory of almost minimizers (uniform density
estimates) to apply Step 2.
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Thanks for coming!
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