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Abstract

In this work, we develop the Gauss-Bonnet theorem from first principles
using calculus on surfaces.

We begin by defining some important quantities on manifolds, and an es-
sential coordinate system used to ease computations. Thereafter, we perform
these computations, calculating variations of Christoffel symbols, components
of the Riemann curvature tensor, and the volume element. Following this, we
specialize to dimension n = 2 and explicitly write out the formulae – this helps
in interpreting the variations. We then provide a reformulation of the variation
of the Gauss curvature in terms of laplacians and divergences, which becomes
important in computing a key integral. Finally, we put all of the above together
and reprove the Gauss-Bonnet theorem.
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2 Introduction

The Gauss-Bonnet theorem is the single most important theorem about compact,
orientable 2-manifolds. It provides a beautiful and remarkable connection between
the geometry and topology of such manifolds. We first provide some history, and
higher dimensional analogs. Then, we detail the structure of the thesis.

In the 1600s, Albert Girard proved the following result relating the interior angles
of a spherical triangle to its area.

Theorem 2.1 (Girard). Let ∆ geodesic triangle on S2 with interior angles α, β, γ.
Then the area of ∆ is given by

A(∆) = α + β + γ − π.

See [Nic03]. A historical remark: this theorem is normally attributed to Legendre,
but he proved a different, yet related theorem approximating spherical excess.
In modern language, this can be restated as∫

∆

1 dA = α + β + γ − π,

where dA is the area element on S2. While rudimentary in form, this equation actually
provides the first insight into the Gauss-Bonnet theorem.

In 1827, Gauss published his fundamental treatise “Disquisitiones generales circa
superficies curvas”. Here, he lays the foundation of classical surface theory. Among
these is Gauss’ Theorem Egregium:

Theorem 2.2 (Theorem Egregium, Gauss 1827). Let M be an orientable surface
embedded in R3. Then its Gauss curvature depends only on the coefficients of its first
fundamental form.

A translation can be found in Chapter 3 of [Spi99].
Yet there is another landmark theorem provided in his book. It is as follows:

Theorem 2.3 (Gauss 1827). Let M ⊂ R3 be an orientable surface and ∆ be a geodesic
triangle on M with angles α, β, γ. Then,∫

∆

K dA = α + β + γ − π.

In proving this, Gauss essentially converts the integral into one using geodesic po-
lar coordinates. These are coordinates obtained as follows: Suppose expp v is defined.
Then there exists ε > 0 such that expp u is defined for

u = tv(s) 0 ≤ t ≤ 1, −ε < s < ε.

Using the fact that expp v is a local diffeomorphism, we obtain geodesic polar coor-
dinates (the geodesic portion comes from the fact that t 7→ expp tv(s0) is a geodesic
for fixed s0). Here, t plays the role of a radial parameter while s plays the role of an
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angular parameter.
This theorem provides the beginning of the Gauss-Bonnet theorem, a remarkable

result in differential geometry. Even Gauss held the simplistic version above in high
regards, calling it “...among the most elegant in the theory of curved surfaces.” In
fact, historically, it seems that Gauss proved Theorem 2.3 first, then saw as a corol-
lary the Gauss curvature ought to only depend on the metric.

In general we can consider what is called the defect of a geodesic polygon. Let
P be a polygon in a surface M ⊂ R3 with geodesic sides. Denote by α1, ..., αn the
angles of P . Let P ′ be a polygon with the same number of edges (here, n edges) in
Euclidean space. Then the defect δ(P ) is defined as the difference in the total angle
measures,

δ(P ) = (α1 + α2 + ...+ αn)− (n− 2)π.

Observe that the defect may be rewritten as

δ(P ) = 2π −
∑
j

(π − αj).

In “Mémoire sur la théorie générale des surfaces”, Bonnet proves a result relating
the angle defect of a simply connected region. It reads

Theorem 2.4 (Bonnet, 1848). On a surface M in R3, let R be a simply connected
region of M with the boundary ∂R consisting of a finite number of smooth curves.
Then ∫

∂R

kg ds+
∑
j

(π − αj) +

∫
R
K dA = 2π,

where kg is the geodesic curvature of the boundary curve. Each αj is the interior
angle at a vertex of the boundary.

Note that this is only a local version of the theorem – it is restricted to a simply
connected region R. By using Gauss’ theorem for geodesic triangles, one may take a
regular region of M and triangualate it. This results in the following global version

Theorem 2.5. Let R be a regular region of an orientable surface M embedded in R3.
Then ∫

∂R

kg ds+
∑
j

(π − αj) +

∫
R
K dA = 2πχ(M).

See section 4.5 of [dC76] for a proof.

Though the Euler characteristic was defined relatively early in the history of mathe-
matics, its importance had not yet been revealed. Indeed, this would not occur until
the rise of algebraic topology. During the 19th century, the Gauss-Bonnet theorem
often took the form with χ(M) = 1 – that is, they proved the formula for disk like
surfaces. Walther von Dyck, in 1888, first realized this should hold true in general
and proved the following:
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Theorem 2.6 (von Dyck 1888). Let M be a compact (orientable) surface without
boundary embedded in R3. Then∫

M

K dA = 2πχ(M).

Note: compact hypersurfaces of Rn are automatically orientable, hence the paren-
thesis. See [Sam69] for a proof.

Observe that the boundary terms from the classical Gauss-Bonnet theorem – those
involving the geodesic curvature and interior angles – disappear.

It still remains that these theorems hold for surfaces embedded in R3. The next
natural generalization would be to prove it for hypersurfaces embedded in Rn. In the
early 1920s, Heinz Hopf began to work on such a generalization and proved:

Theorem 2.7 (Hopf 1925, 26). Let M be an even dimensional compact (orientable)
hypersurface without boundary embedded in R2n+1. Define the map G : M → S2n

as the Gauss map. Let ω2n be the volume form on S2n. It follows that the pullback
G∗ω2n is a 2n-form on M . Then∫

M

G∗ω2n =
Vol(S2n)

2
χ(M).

A summary of his work can be found in [Wu08], and is loosely presented here.
This is the appropriate higher dimensional analog of the Gauss-Bonnet theorem for
hypersurfaces. As an example, when n = 1 it is well known that G∗ω2 = KdA. In
the case of surfaces in R3, we see that∫

M

K dA =

∫
M

G∗ω2 = deg(G)

∫
S2

ω2,

where deg(G) is the topological degree of G. What Hopf further proved is that, for
an even dimensional compact hypersurface,

deg(G) =
1

2
χ(M).

This proof critically relies on the Hopf Index Theorem. The above equality immedi-
ately proves Theorem 2.6 in a more geometric fashion. Further, the same computation
holds in arbitrary even dimension, thus proving Theorem 2.7.

Though it is not necessary in the above proof, Hopf also showed that

G∗ω2n =
Vol(S2n)

2
Ω,

where Ω is called the Gauss-Bonnet integrand of M . Observe that, restated, Hopf
proves that

∫
M

Ω = χ(M).
Although the Gauss map cannot be classically defined when a submanifold has

arbitrary codimension, the 2n-form on the right hand side can. This fact is essential
in generalizing Gauss-Bonnet to arbitrary codimension. Indeed, 1940, Allendoerfer
and Frenchel independently proved the following
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Theorem 2.8 (Allendoerfer, Frenchel 1940). Let M be an even dimensional compact
orientable submanifold without boundary embedded in R2n+k with k > 1. Then∫

M

Ω = χ(M).

They proved this by using a tubular neighborhood, whose boundary turns out to
be a hypersurface in R2n+k, and applying Theorem 2.7 to it. Through a nontrivial
calculation involving integrating along fibers, one arrives at Theorem 2.8.

Up until now, all Gauss-Bonnet type theorems have involved submanifolds of Rn.
It was an open problem to show a Gauss-Bonnet theorem for an arbitrary Riemannian
manifold. Given the Nash Embedding Theorem, this could easily be solved, but that
had not yet been proven. The Nash Embedding Theorem, proven in 1956, roughly
reads

Theorem 2.9 (Nash 1956). Every smooth Riemannian manifold of dimension n can
be isometrically embedded into some Euclidean space RN , where N ≤ n(n+ 1)(3m+
11)/2.

See [Nas56] for details. In 1943 though, Allendoerfer and Weil pushed Theorem
2.8 to its limits and obtained a Gauss-Bonnet theorem for arbitrary Riemannian
manifolds. To do so, they appealed to the following

1. The Whitney Embedding Theorem, which allows them to embed M into Eu-
clidean space locally.

2. Theorem 2.8, or the Gauss-Bonnet theorem for submanifolds.

3. A combinatorial argument to patch everything up, and obtain a global theorem.

Once again, a combinatorial argument appears, and geometric intuition is lacking. In
August 1943, Chern visited the Institute for Advanced Study. There, Weil pointed
out the lack of a geometric argument – Chern solved this issue within weeks. In 1945,
he published his results, and proved the remarkable Chern-Gauss-Bonnet theorem.

Theorem 2.10 (Chern 1945). Let (M, g) be a compact, orientable 2n-dimensional
Riemannian manifold without boundary. Let Ω be the curvature form associated to
the Levi-Civita connection. Denote by Pf the Pfaffian. Then∫

M

Pf(Ω) dµg = (2π)nχ(M).

See [Che45]. Another issue Chern solved is what the analog of G∗ω2n is when the
Gauss map does not exist (as is the case for arbitrary codimension submanifolds).
Thus, he found the most generalized form of KdA.

While Theorem 2.6 has a geometric proof, it is also combinatorial in flavor. The
proof most texts present, for example as in [dC76], involves triangulating the man-
ifold. Then, local Gauss-Bonnet is used to prove a global Gauss-Bonnet. Although
it is geometric in nature, it seems to reduce Gauss-Bonnet to mere combinatorial
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happenstance.
The aim of this paper is to provide a self contained proof of the following altered

version of Theorem 2.6 using only calculus techniques.

Theorem 2.11 (Gauss-Bonnet). Let (M, g) be a compact orientable 2-dimensional
Riemannian manifold without boundary. Then,∫

M

Kdµg = 2πχ(M),

where K is the Gauss curvature.

Why should such proof relying only on calculus of surfaces have any hope of
working? Consider a Riemannian manifold (M, g0) as in Theorem 2.11. Let M
denote the space of metrics on M . We then appeal to the following proposition:

Proposition 2.12. The space of metrics on a manifold is path connected.

Now consider a path γ in M emanating from g0. This induces a one-parameter
family of metrics on M , denoted (M, g(t)). We may instead investigate the quantity

I(t) =

∫
M

K dµg(t).

Since the Euler characteristic is a topological quantity, it does not depend on the
metric. Thus it satisfies to show

d

dt

∫
M

K dµg(t) = 0,

which implies that I(t) is locally constant. Since M is path connected, I(t) is con-
stant. Then we look at the individual genus cases and show I(t) = 2πχ(M). Finally,
by the classification of compact oriented surfaces in R3, we obtain Theorem 2.11.

To this end, we must compute a variational formula for the Gauss curvature. First
we define important quantities, prove Prop 2.12, and establish some crucial results
in Section 3. Included in theses is the existence of Geodesic (Normal) coordinates.
Without these, the computations are too cumbersome to carry out. A combinatorial
proof sketched in Section 6 shows that there would be at least 200 terms, barring
cancellation, to handle.

We then compute variational formulas for the inverse metric, Christoffel symbols,
Riemann curvature tensor. These computations are carried out in full generality in
Section 4.

In Section 5, we explicitly write out these formulae in dimension 2 in terms of the
metric and its time derivative. We break up the computation quantity by quantity for
organizational purposes, eventually culminating in explicit formula for the variation
of the Riemann curvature tensor. Having this in readily leads to a variational formula
for the Gauss curvature. Indeed, in dimension 2 we have Ricg = Kg. Therefore, one
only needs to compute the variation of the components of the Ricci tensor, which
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may be obtained from the Riemann curvature tensor.
Section 6 reformulates the result in Section 5. The primary focus here is to re-

state everything in terms of geometric operators on M . This provides for a purely
geometric interpretation of the variation in Gauss curvature.

Finally, Section 7 shows that d/dtI(t) is indeed zero and that I(t) = 2πχ(M), by
following the instructions set forth above. To achieve this, we employ a clever trick
involving the connected sum. This allows us to inductively prove the theorem using
only information from the genus 0 and 1 cases.

Henceforth, we apply the following conventions. Partial derivatives will be writ-
ten as ∂i = ∂/∂xi. Riemannian manifolds will always be connected and of arbitrary
dimension unless otherwise stated. Denote by X(M),D(M) the set of vector fields
and smooth functions, respectively, on M .
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3 Preliminaries

We present several definitions and fundamental results. Sections 3.2 and 3.3 follow
[dC92] whereas Sections 3.4 and 3.5 follow [CK04] and [LeB04] respectively.

3.1 Path Connectedness of M
Recall that M denotes the space of metrics on a Riemannian manifold (M, g). An
essential step in proving relies on the aforementioned proposition:

Proposition 2.12. The space of metrics on a manifold is path connected.

Proof. Let g, h be two Riemannian metrics on M . We show that there exists a path
γ : [0, 1]→M such that γ(0) = g and γ(1) = h. Tentatively define γ as

γ(t) = (1− t)g + th,

we show that γ(t) ∈ M for all t ∈ (0, 1) (really, for t ∈ [0, 1], but the t = 0, 1 cases
are already handled since γ(0) = g and γ(1) = h). That is, we must show γ(t)
is a symmetric bilinear positive-definite form which varies smoothly. First, g, h are
symmetric forms, so that γ(t) is too. Evidently for u, v ∈ TpM ,

γ(t)(u, v) = (1− t)g(u, v) + th(u, v) = (1− t)g(v, u) + th(v, u) = γ(t)(v, u).

Next, g, h are bilinear forms on TpM for all p ∈ M . Thus for u, v, w ∈ TpM and
λ ∈ R we have

γ(t)(λu+ v, w) = (1− t)g(λu+ v, w) + th(λ+ v, w)

= (1− t)(λg(u,w) + g(v, w)) + t(λh(u,w) + h(v, w))

= λ[(1− t)g(u,w) + th(u,w)] + [(1− t)g(v, w) + th(v, w)]

= λγ(t)(u,w) + γ(t)(v, w).

Similarly,
γ(t)(u, λw + v) = λγ(t)(u,w) + γ(t)(u, v),

by applying the symmetry of γ(t).
We must now show that γ is a positive definite form. Indeed, since g, h are positive
definite, g(v, v) = ‖v‖g > 0 and h(v, v) = ‖v‖h > 0 for nonzero v ∈ TpM . Thus

γ(t)(v, v) = (1− t)‖v‖g + t‖v‖h > 0,

since γ(t)(v, v) is a convex combination of positive numbers. Now let v = 0. Then
g(v, v) = h(v, v) = 0 so that γ(t)(v, v) = 0. Finally suppose γ(t)(v, v) = 0. Then
(1 − t)‖v‖g = −t‖v‖h. If ‖v‖h > 0 we would obtain ‖v‖g < 0, a contradiction. So
‖v‖h = 0, which implies v = 0.
It is also a well known fact that the set of positive definite matrices is convex.

We now show γ(t) varies smoothly as p varies. Since g, h are metrics, their com-
ponents gij and hij are smooth. Then the components of γ(t) are given by γij(t) =
(1− t)gij + thij, which is smooth (as the sum of smooth functions).
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3.2 Geodesic Coordinates

We now define the aforementioned Geodesic coordinates. To do so, we will need
to define some geometric quantities on a Riemannian manifold.

Definition 3.1. The Christoffel symbols on M are defined by

Γkij =
1

2
{∂igjl + ∂jgil − ∂lgij} glk.

The Christoffel symbols play a role in measuring how curved a space is. They
often provide a defect factor for curved spaces. Some examples of this are seen later
with the Levi-Civita connection and with the Laplacian. It is important to recall here
the definition of the Levi-Civita connection.

Definition 3.2. The Levi-Civita connection ∇ is the unique symmetric affine con-
nection compatible with the metric. In coordinates, it is given by

∇VW =
(
vi∂iw

k + viwjΓkij
)
∂k,

where V = vi∂i, W = wi∂i are vector fields on M . It is a fundamental theorem of
Riemannian geometry that such a connection exists. Notice for flat spaces (Γkij = 0)
the covariant derivative coincides with the standard covariant derivative in Euclidean
space.

We now turn to another fundamental concept in Riemannian geometry, that of
the exponential map. It relates vectors in the tangent space at a point to geodesics
emanating from that point.

Definition 3.3. Let (Mn, g) be an n-dimensional Riemannian manifold equipped
with the Levi-Civita connection ∇. Let p ∈M . We define the exponential map at p,
denoted expp, by

expp(v) = γ(1, p, v)

where γ(1, p, v) denotes the geodesic γ such that γ(0) = p, γ′(0) = v evaluated at
t = 1.

Remark 3.4. The exponential map is well defined since the geodesic γ described above
is unique. This follows from the uniqueness of ODEs.

Geodesic coordinates arise from the following well-known theorem:

Theorem 3.5. There exist neighborhoods U ⊂ M and V ⊂ TpM such that expp is a
diffeomorphism of V onto U .

See chapter 3 of [dC92] for a proof. The heuristic is as follows: We have a standard
orthonormal coordinate system on Rn. Since TpM ' Rn, this naturally carries over to
TpM . Since a diffeomorphism exists between a neigborhood of p ∈ M and 0 ∈ TpM ,
we can carry these coordinates over to M . We call them geodesic coordinates. Some
useful properties of geodesic coordinates are given below.
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Theorem 3.6 (Properties of geodesic coordinates). Let (M, g) be a manifold with
geodesic coordinates at p ∈M . Then,

1. gij(p) = δij.

2. ∂gij/∂x
k(p) = 0.

3. Γkij(p) = 0.

Property (1) follows from the heuristic given. (2) is easily implied by (1), and (3)
follows from (2) using the formula for the Christoffel symbols.

Remark 3.7. In general, quantities like curvature and the Christoffel symbols are
viewed as functions on the manifold, with the background metric fixed. Instead, we
will be fixing a point and varying the metric. Thus, at t = 0, when we have the
original metric in place, we will be able to apply geodesic coordinates.

3.3 Tensors and the Covariant Derivative of Tensors

Here we review the concept of a tensor and covariant differentiation of them.

Definition 3.8. Let (M, g) be a Riemannian manifold. A rank r tensor is a multi-
linear mapping

T : X(M)× ...× X(M)→ D(M)

(where there are r copies of X(M)). We refer to T as an r-tensor.

Like with many objects in Riemannian geometry, we may consider the action of
T in a coordinate system and define, accordingly, the components of T .

Definition 3.9. The components of T are defined as

Tij...k = T (∂xi, ..., ∂xk)

where there are r indices.

Remark 3.10. Tensors are pointwise objects in the following sense. Let V1, ...Vn be
given by

Vk =
∑
ik

vik∂xik .

Then by linearity,

T (V1, ..., Vr) =
∑
i1,...,ir

vi1 ...virT (∂xi1 , ..., ∂xir) =
∑
i1,...,ir

vi1 ...virTi1...ir .

So, the value of T (V1, ..., Vr) at a specific point p ∈ M depends only on the value of
the components of T at p and the values of V1, ..., Vr at p.

We may also consider the covariant derivative of an r-tensor.
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Definition 3.11. The covariant derivative of an r-tensor, denoted ∇T , is given by

∇T (V1, ..., Vr, Z) = Z(T (V1, ..., Vr))− T (∇ZV1, ..., Vr)− ...− T (V1, ...,∇ZVr).

It is an (r + 1)-tensor. We sometimes fix a particular Z and write ∇ZT (...) =
∇T (..., Z).

Remark 3.12. Recall that the covariant derivative of a vector field V = vj∂j is given
by

∇iV = ∇∂iV =
{
∂iv

k − vjΓkij
}
∂k.

Then, at p in geodesic coordinates we get

∇iV |p = ∂iv
k∂k|p.

From this, in geodesic coordinates we conclude that

∇iT (V1, ..., Vr) = ∂iT (V1, ..., Vr).

3.4 The Laplacian, Divergence of Tensors, and the Diver-
gence Theorem

Here we introduce some geometric operators on manifolds. This will be relevant
later on in reformulating an abstract result into a more geometric one. We also discuss
the Divergence Theorem, which plays an essential role in computing the integral of
the variation of the Gauss curvature. We begin with some terminology concerning
function spaces on manifolds.

Definition 3.13. A function f : M → R is said to be of class Ck if for every
combination of nonnegative integers α1, ..., αn such that α1 + ...+ αn ≤ k the partial
derivatives

∂α1
1 ∂α2

2 ...∂αn
n f

exist and are continuous. We will abuse notion and write f ∈ Ck to say f is a function
of class Ck. Smooth functions are said to be of class C∞.

In other words, a function is of class Ck if its partial derivatives up to (and
including) order k exist and are continuous. We now turn to defining an important
operator on manifolds.

Definition 3.14. The Laplacian with respect to g on a Riemannian manifold (M, g),
denoted ∆g, is an operator ∆g : D(M)→ D(M) defined by

∆g = gmn
{
∂m∂n − Γlmn∂l

}
.

(realistically, we only need to require that f ∈ C2).
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Observe then, in geodesic coordinates at p, we have

∆g|p = ∂2
1 |p + ∂2

2 |p
since Γkij(p) = 0.

An important operator on tensors is that of the divergence. In general, it takes
an r-tensor and results in an (r− 1)-tensor (whereas the covariant derivative resulted
in an (r + 1)-tensor).

Definition 3.15. The divergence of a 2-tensor A is given by

(divA)k = gij∇iAjk,

which results in a 1-tensor.

In geodesic coordinates at p, we obtain the following particularly simple form of
the divergence.

(divA)k|p = gij∇iAjk|p =
n∑
i=1

∂iAik|p.

Definition 3.16. The divergence of a 1-tensor α with components αk is given by

divα = glk∇lαk,

which results in a smooth function.

Likewise, at p, we see that

div(divA)|p =
n∑
k=1

∂k

n∑
i=1

∂iAik|p.

Remark 3.17. When n = 2 we obtain

div(divA)|p =
n∑
k=1

∂k(∂1A1k + ∂2A2k)|p

= ∂1(∂1A11 + ∂2A21) + ∂2(∂1A12 + ∂2A22)

= ∂2
1A11 + 2∂1∂2A12 + ∂2

2A22,

where the RHS is evaluated at p.

One last important theorem we need is the so-called divergence theorem.

Theorem 3.18. Let (M, g) be a compact, orientable Riemannian manifold without
boundary. Let X be a differentiable vector field on M . Then∫

M

divX dµg = 0.

See [Cha06] for details.

Remark 3.19. This also implies for f ∈ C2(M) that∫
M

∆f dµg = 0.

This follows easily via a direct application of the divergence theorem with X = ∇f .
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3.5 The Connected Sum

A key concept used in the latter half of the proof is that of the connected sum.
We define it here for surfaces.

Definition 3.20. Let M1 and M2 be two closed, oriented Riemannian 2-manifold.
The connected sum of M1 and M2, denoted M1#M2 is the resulting manifold obtained
via the following procedure:

Step 1: Remove a (small) ball from each of M1 and M2.

Step 2: Identify the resulting S1 boundaries (via a reflection). That is, glue a
cylinder connecting the two S1 boundaries.

Step 3: Smooth any corners.

The connected sum results in a closed, oriented Riemannian 2-manifold, unique
up to diffeomorphism. An example is shown below.

Example 3.21. Here we demonstrate the process in obtaining the connected sum of
two tori.

Figure 3.22. Two tori embedded in R3.

Step 1: We remove a small ball from each torus. This results in S1 boundaries,
shown below in Figure 3.23.

Figure 3.23. Two tori with a small ball removed.

Step 2: We identify the resulting S1 boundaries via a reflection.
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Figure 3.24. Two tori with identified S1 boundaries.

Step 3: We smooth out the manifold.

Figure 3.25. The connected sum M = T 2#T 2, once smoothed out.

The connected sum is only unique up to diffeomorphism! The following genus 2
surface is diffeomorphic to it.

Figure 3.26. A diffeomorphic genus 2 surface.

We could have also done this process anywhere along each T 2.

Remark 3.27. Note the following property of integrals on a connected sum: Let M =
M1#M2 with metric g and let f : M → R be smooth. Let S1 be in the cylindrical
portion of M . Then M is separated into two halves – denote by N1 one half and N2

the other. Then, ∫
M

f dµg =

∫
N1

f dµg +

∫
N2

f dµg.

The above works since S1 is a measure zero set in M . In a measure theoretic sense,
we are integrating f̃ which is f on N1, N2 and zero on S1. Then, appeal to the fact
that f = f̃ a.e.

17



It should be made clear here that when speaking of the connected sum, we mean
the manifold given in Figure 3.25. Although it is diffeomorphic to the manifold in
Figure 3.26, integration on the two are very different.

Connected sums allow for a fundamental classification of compact, orientable Rie-
mannian 2-manifolds.

Theorem 3.28. Let M be a compact, orientable Riemannian 2-manifold. Then M
is diffeomorphic to either a sphere or the connected sum of n tori for n ≥ 1.

Thus, it suffices to perform all integrals on a sphere or a connected sum of n tori.
The Euler characteristic distinguishes all of these, and is given by

χ(M) = 2(1− n),

where n is the number of tori in the connected sum (equivalently, the number of holes
in M , usually called the genus).

18



4 Variational Formulas

Here we prove variational formulas for several geometric quantities, including the
Christoffel symbols, volume form, and Riemann curvature tensor.

Let (M, g(t)) be a compact, orientable Riemannian manifold equipped with the one
parameter family of metrics g(t). Set hij = ∂tgij. This set of computations follows
the one given in [CK04].
In what follows, we will make use of Remark 3.12. That is, a tensor evaluated at p
depends only on the value of its components at p. We can then perform the following:

Step 1: Approach the problem at one particular point using geodesic coordinates.

Step 2: By Remark 3.12, that formula will hold in any coordinate system

Step 3: Since the same process can be repeated for any point, it holds over M .

We first compute the variation of the inverse metric.

Proposition 4.1. The inverse metric evolves by

∂tg
ij = −gikgjlhkl.

Proof. The inverse metric is defined by

gikgkj = δij.

Here,

δij = δij = δij =

{
0 i 6= j

1 i = j

is the standard Kronecker delta. The indices are raised or lowered to follow the
summation convention. Taking time derivatives we get

gkj∂tg
ik + gik∂tgkj = 0.

By definition, ∂tgij = hij so that

gkj∂tg
ik = −gikhkj.

It follows, after changing some notation on the indices, that

∂tg
ij = −gikgjlhkl.

We can also easily compute the variation in dµg(t).
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Proposition 4.2. The volume form dµg(t) evolves by

∂

∂t
dµg(t) =

1

2

(
gij

∂

∂t
gij

)
dµg(t).

Proof. In local coordinates,

dµg(t) =
√

det g dx1dx2...dxn.

For invertible matrices A(t) we have

d

dt
detA(t) = detA(t) tr

(
A−1(t)

d

dt
A(t)

)
.

Then,

∂

∂t

√
det g =

1

2
√

det g

∂

∂t
det g

=
1

2
√

det g
det g tr

(
g−1 ∂

∂t
g

)
=

1

2
tr

(
g−1 ∂

∂t
g

)√
det g.

Substituting this gives

∂

∂t
dµg(t) =

∂

∂t

√
det g dx1dx2...dxn

=
1

2
tr

(
g−1 ∂

∂t
g

)√
det g dx1dx2...dxn

=
1

2
tr

(
g−1 ∂

∂t
g

)
dµg(t),

as desired.

Using the variation of the inverse metric, we can find the variation of the Christoffel
symbols.

Proposition 4.3. The Christoffel symbols evolve by

∂tΓ
l
ij =

1

2
{∇ihjk +∇jhik −∇khij} gkl

where ∇i = ∇∂i.

Proof. First recall that the Christoffel symbols are given by

Γlij =
1

2
{∂igjk + ∂jgik − ∂kgij} gkl.
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Recall that the covariant derivative differs from the regular derivative by a factor
involving Christoffel symbols. It follows that, in geodesic coordinates centered at p,
∇i(p) = ∂i(p). Taking the time derivative at p gives,

∂

∂t
Γlij

∣∣∣∣
p

=
1

2

{
∂

∂t
(∂igjk) +

∂

∂t
(∂jgik)−

∂

∂t
(∂kgij)

}
gkl
∣∣∣∣
p

+
1

2
{∂igjk + ∂jgik − ∂kgij}

∂

∂t
gkl
∣∣∣∣
p

=
1

2

{
∂i

(
∂

∂t
gjk

)
+ ∂j

(
∂

∂t
gik

)
− ∂k

(
∂

∂t
gij

)}
gkl
∣∣∣∣
p

=
1

2
{∂ihjk + ∂jhik − ∂khij} gkl

∣∣∣∣
p

=
1

2
{∇ihjk +∇jhik −∇khij} gkl

∣∣∣∣
p

,

since ∂igjk(p) = 0, and by commuting partial derivatives. Since both sides are com-
ponents of tensors, this holds at any point in any coordinate system.

From here we find the variation of the components of the Riemann curvature
tensor.

Proposition 4.4. The components of the Riemann curvature tensor evolve by

∂

∂t
Rl
ijk = ∇i

(
∂

∂t
Γljk

)
−∇j

(
∂

∂t
Γlik

)
.

Proof. First recall that the components are given by

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓsjkΓ

l
is − ΓsikΓ

l
js.

A derivation of this formula can be found in [dC92]. At p, the time derivatives of all
Christoffel symbols vanish. Thus

∂

∂t
ΓsjkΓ

l
is

∣∣∣∣
p

= 0.

We are then left with

∂

∂t
Rl
ijk

∣∣∣∣
p

= ∂i

(
∂

∂t
Γljk

) ∣∣∣∣
p

− ∂j
(
∂

∂t
Γlik

) ∣∣∣∣
p

= ∇i

(
∂

∂t
Γljk

) ∣∣∣∣
p

−∇j

(
∂

∂t
Γlik

) ∣∣∣∣
p

after commuting partial derivatives and again applying ∂i(p) = ∇i(p). This compu-
tation holds everywhere.

The computations performed in this section were done in full generality using
geodesic coordinates. In theory, one can specialize to n = 2 and attempt to use
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isothermal coordinates. The advantage is that the Gauss curvature becomes a Lapla-
cian, which is easy to work with. The disadvantage is that the variation must stay
conformal to Euclidean space – hence, the matrix h must be diagonal. Furthermore,
the computations are more cumbersome. Early work on this thesis was done in this
setting. A special case of Gauss-Bonnet can be proven using this method. Interest-
ingly, the techniques employed were available to Gauss, since he showed existence of
isothermal coordinates on a surface with real analytic metric [Gau73].
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5 Explicit Formulae For Variational Quantities

In this section, we explicitly compute the variations in Section 4 in dimension 2. All
computations are done in geodesic coordinates at p.

5.1 The Inverse Metric

Recall from Prop 4.1 that the variation of the inverse metric is given by

∂

∂t
gij = −gikgjlhkl.

Therefore,

∂

∂t
g11

∣∣∣∣
p

= −g1kg1lhkl|p

= −g1k(g11hk1 + g12hk2)|p = −g1k(g11hk1)|p
= −g11(g11h11 + g12h12)|p = −(g11)2h11|p = −h11|p.

Similarly,

∂

∂t
g12

∣∣∣∣
p

= −h12|p,

∂

∂t
g22

∣∣∣∣
p

= −h22|p.

5.2 The Christoffel Symbols

Recall from Prop 4.3 that the variation of the Christoffel symbols is given by

∂

∂t
Γkij =

1

2
gkl {∇ihjl +∇jhil −∇lhij} ,

so that at p,
∂

∂t
Γkij

∣∣∣∣
p

=
1

2
gkl {∂ihjl + ∂jhil − ∂lhij} |p.

Then,

∂

∂t
Γ1

11

∣∣∣∣
p

=
1

2
g11 {∂1h11 + ∂1h11 − ∂1h11} |p

+
1

2
g12 {∂1h12 + ∂1h12 − ∂2h11} |p

=
1

2
{∂1h11 + ∂1h11 − ∂1h11} |p =

1

2
∂1h11|p,
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∂

∂t
Γ2

11

∣∣∣∣
p

=
1

2
g21 {∂1h11 + ∂1h11 − ∂1h11} |p

+
1

2
g22 {∂1h12 + ∂1h12 − ∂2h11} |p

=
1

2
{∂1h12 + ∂1h12 − ∂2h12} |p =

1

2
{2∂1h12 − ∂2h11} |p,

∂

∂t
Γ1

12

∣∣∣∣
p

=
1

2
g11 {∂1h21 + ∂2h11 − ∂1h12} |p

+
1

2
g12 {∂1h22 + ∂2h12 − ∂2h12} |p

=
1

2
{∂1h21 + ∂2h11 − ∂1h12} |p =

1

2
∂2h11|p.

In each, expand the summation on l first, then evaluate the inverse metric at p,
then simplify. Observe that the remaining Christoffel symbols may be computed by
interchanging (1↔ 2). In summary,

∂

∂t
Γ1

11

∣∣∣∣
p

=
1

2
∂1h11|p

∂

∂t
Γ2

11

∣∣∣∣
p

=
1

2
{2∂1h12 − ∂2h11} |p

∂

∂t
Γ1

12

∣∣∣∣
p

=
1

2
∂2h11|p

∂

∂t
Γ2

12

∣∣∣∣
p

=
1

2
∂1h22|p

∂

∂t
Γ1

22

∣∣∣∣
p

=
1

2
{2∂2h12 − ∂1h22} |p

∂

∂t
Γ2

22

∣∣∣∣
p

=
1

2
∂2h22|p

5.3 Components of the Riemann Curvature Tensor

Recall from Prop 4.4 that the variation of the components of the Riemann curvature
tensor is given by

∂

∂t
Rl
ijk

∣∣∣∣
p

= ∂i

(
∂

∂t
Γljk

) ∣∣∣∣
p

− ∂j
(
∂

∂t
Γlik

) ∣∣∣∣
p

Since this formula is antisymmetric in i, j we see that

∂

∂t
Rl
iik

∣∣∣∣
p

= 0,

so that

∂

∂t
R1

111

∣∣∣∣
p

=
∂

∂t
R2

111

∣∣∣∣
p

=
∂

∂t
R1

112

∣∣∣∣
p

=
∂

∂t
R2

112

∣∣∣∣
p

=

∂

∂t
R1

221

∣∣∣∣
p

=
∂

∂t
R2

221

∣∣∣∣
p

=
∂

∂t
R1

222

∣∣∣∣
p

=
∂

∂t
R2

222

∣∣∣∣
p

= 0.
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This takes care of 8 of the 16 components. Now,

∂

∂t
R1

121

∣∣∣∣
p

= ∂1

(
∂

∂t
Γ1

21

) ∣∣∣∣
p

− ∂2

(
∂

∂t
Γ1

11

) ∣∣∣∣
p

= ∂1

(
1

2
∂2h11

) ∣∣∣∣
p

− ∂2 (∂1h11)

∣∣∣∣
p

= 0.

Note that this cancellation occurs since ∂i∂j = ∂j∂i, and

∂

∂t
Γkik

∣∣∣∣
p

=
1

2
∂ihkk|p.

Thus,
∂

∂t
R1

121

∣∣∣∣
p

=
∂

∂t
R1

211

∣∣∣∣
p

=
∂

∂t
R2

122

∣∣∣∣
p

=
∂

∂t
R2

212

∣∣∣∣
p

= 0.

(you can also use antisymmetry of Rl
ijk in i, j). Finally,

∂

∂t
R2

121

∣∣∣∣
p

= ∂1

(
∂

∂t
Γ2

21

) ∣∣∣∣
p

− ∂2

(
∂

∂t
Γ2

11

) ∣∣∣∣
p

= ∂1

(
1

2
∂1h22

) ∣∣∣∣
p

− ∂2

(
1

2
(2∂1h12 − ∂2h11)

) ∣∣∣∣
p

=
1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
|p.

Note that this is symmetric with respect to interchanging (1↔ 2). Thus,

∂

∂t
R1

212

∣∣∣∣
p

=
∂

∂t
R2

121

∣∣∣∣
p

=
1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
|p.

Moreover, by applying antisymmetry of Rl
ijk in i, j we obtain

∂

∂t
R2

211

∣∣∣∣
p

=
∂

∂t
R1

122

∣∣∣∣
p

= − ∂

∂t
R2

121

∣∣∣∣
p

= −1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
|p.

5.4 Components of the Ricci Tensor

Recall that the components of the Ricci tensor are given by

Rik = Rj
ijk =

n∑
j=1

Rj
ijk.

See [dC92] for a definition. It follows that

∂

∂t
Rik =

n∑
j=1

∂

∂t
Rj
ijk.
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Thus,

∂

∂t
R11

∣∣∣∣
p

=
∂

∂t
R1

111

∣∣∣∣
p

+
∂

∂t
R2

121

∣∣∣∣
p

=
1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
|p,

∂

∂t
R12

∣∣∣∣
p

=
∂

∂t
R21

∣∣∣∣
p

=
∂

∂t
R1

112

∣∣∣∣
p

+
∂

∂t
R2

122

∣∣∣∣
p

= 0,

∂

∂t
R22

∣∣∣∣
p

=
∂

∂t
R1

212

∣∣∣∣
p

+
∂

∂t
R2

222

∣∣∣∣
p

=
1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
|p.

5.5 The Gauss Curvature

Recall (from [dC92]) that the scalar curvature is given by

R = gijRij,

so that

∂R

∂t
=

(
∂

∂t
gij
)
Rij + gij

(
∂

∂t
Rij

)
.

At p, this reduces to

∂R

∂t

∣∣∣∣
p

= −
2∑
i=1

2∑
j=1

hijRij|p

+

[
g11

(
∂

∂t
R11

)
+ 2g12

(
∂

∂t
R12

)
+ g22

(
∂

∂t
R22

)]
p

= −
2∑
i=1

2∑
j=1

hijRij|p +

(
∂

∂t
R11

)
p

+

(
∂

∂t
R22

)
p

= −
2∑
i=1

2∑
j=1

hijRij|p +
[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
|p.

We therefore conclude that

∂R

∂t
= −

2∑
i=1

2∑
j=1

hijRij +
[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
.

For n = 2, recall that Rij = Kgij since Ricg = Kg. It follows that

R = gijKgij = K tr g = 2K.

Thus,

∂K

∂t
=

1

2

∂R

∂t
= −1

2

2∑
i=1

2∑
j=1

hijRij +
1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
. (1)
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6 Reformulation of the Variation of Gauss Curva-

ture

In this section, we reformulate the quantity in the right hand side of (1). This will
make it easier to geometrically interpret. These will naturally come from the previ-
ous computations. We will also begin to omit the evaluation at p when it becomes
cumbersome to show.

Definition 6.1. let g, h be matrices. Then the trace of h with respect to g, denoted
trg(h), is defined as

trg(h) = gijhij.

Next, define by H the quantity

H := trg

(
∂

∂t
g

)
so that in geodesic coordinates at p,

H|p = h11|p + h22|p.

Now observe that

〈h,Ricg〉 = gikgjlhijRkl

〈h,Ricg〉|p = gikgjlhijRkl|p
= gik(g11hi1Rk1 + g12hi1Rk2 + g21hi2Rk1 + g22hi2Rk2)p

= gik(hi1Rk1 + hi2Rk2)p

= (g11h11R11 + g12h11R21 + g21h21R11 + g22h21R21)p

+ (g11h12R12 + g12h12R22 + g21h22R12 + g22h22R22)p

= (h11R11 + h21R21)p + (h12R12 + h22R22)p =
2∑
i=1

2∑
j=1

hijRij|p.

By Definition 3.14, we obtain

∆gH = ∂2
1h11 + ∂2

2h11 + ∂2
1h22 + ∂2

2h22,

where each side is evaluated at p. Then by applying Remark 3.17 to A = ∂g/∂t|t=0 =
h,

∆gH − div(div h) = ∂2
1h11 + ∂2

2h11 + ∂2
1h22 + ∂2

2h22

−∂2
1h11 − 2∂1∂2h12 − ∂2

2h22

= ∂2
1h22 + ∂2

2h11 − 2∂1∂2h12.
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Combining all of this, it follows that

∂K

∂t
= −1

2

2∑
i=1

2∑
j=1

hijRij+
1

2

[
∂2

1h22 + ∂2
2h11 − 2∂1∂2h12

]
= −1

2
〈h,Ricg〉+

1

2
∆gH−

1

2
div(div h).

(2)
Note also that

∂

∂t
dµg(t) =

H

2
dµg(t).

Remark 6.2. We briefly demonstrate that it is imperative to use geodesic coordinates
to vastly simplify the computations. Without geodesic coordinates, we sketch a com-
binatorial argument that there are more than 200 terms in the expression for ∂K/∂t
(assuming there is little to no cancellation). To do so, we estimate the number of
terms in ∆gH.

For simplicity, consider the 2 dimensional case. Observe that, without geodesic coor-
dinates, H = g11h11 + 2g12h12 + g22h22. Recall that the Laplacian is

∆g = gmn
{
∂m∂n − Γlmn∂l

}
.

Let us look at gmn
{
∂m∂n − Γlmn∂l

}
for fixed m,n. The index l can take values l = 1, 2,

so there are three terms here. Since m,n = 1, 1; 1, 2; 2, 2, there are three terms like
this, giving a total of 9 terms in the Laplacian. Six of these involve a first derivative
while three involve a second derivative.
Those six which involve a first derivative also involve a Christoffel symbol. Recall
that

Γlmn =
1

2
{∂mgnk + ∂ngmk − ∂kgmn} gkl.

So, for each k there are three terms. Once more, because we are in dimension 2, k
can range from 1 to 2, and hence each Christoffel symbol has six terms. In total,
there are 36 terms involving a first derivative (by expanding each Christoffel symbol)
and three that involve a second derivative.

Fixing i, j and applying the product rule on gijhij shows that, for each k, ∂kg
ijhij is

the sum of two terms, each being a product of two terms. Applying product rule once
more shows that, for each l, k, ∂l∂kg

ijhij is the sum of four terms. Thus, for fixed
i, j,m, n, the quantity gmn

{
∂m∂n − Γlmn∂l

}
(gijhij) has (1)(4) + (6)(2) + (6)(2) = 28

terms. Again, the contribution of 1 comes from the second partial derivative term,
which results in four terms. The contributions of 6 come from each Christoffel sym-
bol, which is multiplied by a first partial.

Finally, allowing m,n to range, we get three copies of this. So there are approxi-
mately 84 terms in ∆gg

ijhij. But this is for fixed i, j. We are interested in H, which
is the sum of three terms like gijhij. Thus ∆gH has approximately 252 terms. An
attempt by hand shows that there is little to no cancellation. And this is only one of
the quantities involved in computing ∂K/∂t.
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7 Gauss-Bonnet Revisited

We now have everything necessary to prove Theorem 2.11 stated in the introduction.

Theorem 2.11 (Gauss-Bonnet). Let (M, g) be a compact, orientable 2-dimensional
Riemannian manifold without boundary. Then,∫

M

Kdµg = 2πχ(M)

where K is the Gauss curvature.

The proof is broken into two parts. First, we show that the time derivative
∂/∂t

∫
M
Kdµg(t) is zero. Hence,

∫
M
Kdµg(t) is locally constant. By the path con-

nectedness of the space of metrics, it is actually constant. Then, we must establish
which constant. To this end, we consider a general compact, orientable 2-dimensional
Riemannian manifold. By the classification result of surfaces, it follows that this
manifold is diffeomorphic to a sphere, torus, or the connected sum of tori. It suffices
then to compute ∂/∂t

∫
M
Kdµg for these special cases.

7.1 Step 1: Showing the time derivative is zero

Here we aim to prove the following lemma:

Lemma 7.1. Let (M, g0) be a compact, orientable 2-dimensional Riemannian man-
ifold without boundary. Consider a one-parameter family of metrics g(t) on M such
that g(0) = g0. Then,

∂

∂t

∫
M

Kdµg(t) = 0

Proof. First, observe that in the case n = 2 at p we have

〈h,Ricg〉 = 〈h,Kg〉 = K〈h, g〉
= Kgikgjlhijgkl

= Kgikhijδ
j
k = Kgijhij = KH

(since δjk = 1 iff j = k).
Notice that, due to Prop 4.2 and (2), the time derivative is

∂

∂t

∫
M

Kdµg(t) =

∫
M

∂

∂t
Kdµg(t) +

∫
M

K
∂

∂t
dµg(t)

=

∫
M

[
−HK

2
+

1

2
∆gH −

1

2
div(div h)

]
dµg(t) +

∫
M

HK

2
dµg(t)

=

∫
M

[
1

2
∆gH −

1

2
div(div h)

]
dµg(t)

Now, by application of Theorem 3.18, we see that

∂

∂t

∫
M

Kdµg(t) =

∫
M

[
1

2
∆gH −

1

2
div(div h)

]
dµg(t) = 0.
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7.2 Step 2: Computation of the Integral

We now turn to which constant
∫
M
Kdµg is equal to when M is a genus n = 0, 1, ...

surface. We first compute this in the genus 0 and 1 cases. Then, we use an inductive
proof to show the general case. Henceforth, I write dµg as dS.

Since surfaces of revolution are relatively simple, we may compute the integral for
surfaces of revolution in general. Afterwards, we may specialize to S2 and T 2 to
obtain the genus 0 and 1 cases.

Let (g(t), f(t)) be a simple curve in R2 parameterized by t ∈ [a, b]. We may graph
this as a curve in R3 as γ = (g(t), 0, f(t)). Then, the surface of revolution S generated
by rotating γ around the z axis is given by

X(u, v) = (g(u) cos(v), g(u) sin(v), f(u))

where u ∈ [a, b] and v ∈ [0, 2π). The first partial derivatives are

Xu = (g′(u) cos(v), g′(u) sin(v), f ′(u)),

Xv = (−g(u) sin(v), g(u) cos(v), 0).

The coefficients of the first fundamental form are given by

E = 〈Xu, Xu〉 = (g′(u) cos(v))2 + (g′(u) sin(v))2 + f ′(u)2 = g′(u)2 + f ′(u)2,

F = 〈Xu, Xv〉 = −g(u)g′(u) cos(v) sin(v) + g(u)g′(u) sin(v) cos(v) + f ′(u)(0) = 0,

G = 〈Xv, Xv〉 = (−g(u) sin(v))2 + (g(u) cos(v))2 + 02 = g(u)2.

The unit normal is given by

Xu ×Xv = (−f ′(u)g(u) cos(v),−f ′(u)g(u) sin(v), g(u)g′(u))

= g(u)(−f ′(u) cos(v),−f ′(u) sin(v), g′(u)),

‖Xu ×Xv‖ = |g(u)|
√
f ′(u)2 + g′(u)2,

N(u, v) =
g(u)

|g(u)|
√
f ′(u)2 + g′(u)2

(−f ′(u) cos(v),−f ′(u) sin(v), g′(u)).

The second partial derivatives are

Xuu = (g′′(u) cos(v), g′′(u) sin(v), f ′′(u)),

Xuv = (−g′(u) sin(v), g′(u) cos(v), 0),

Xvv = (−g(u) cos(v),−g(u) sin(v), 0).

The coefficients of the second fundamental form are given by

e = 〈Xuu, N〉 =
g(u)(g′(u)f ′′(u)− f ′(u)g′′(u))

|g(u)|
√
f ′(u)2 + g′(u)2

,

f = 〈Xuv, N〉 =
g(u)(f ′(u)g′(u) cos(v) sin(v)− f ′(u)g′(u) sin(v) cos(v)

|g(u)|
√
f ′(u)2 + g′(u)2

= 0,

g = 〈Xvv, N〉 =
g(u)2f ′(u)

|g(u)|
√
f ′(u)2 + g′(u)2

.
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The Gauss curvature may be computed by

K =
eg − f 2

EG− F 2
=

eg

EG

since the parameterization of S is orthogonal (F = f = 0). Then

eg =
g(u)(g′(u)f ′′(u)− f ′(u)g′′(u))

|g(u)|
√
f ′(u)2 + g′(u)2

g(u)2f ′(u)

|g(u)|
√
f ′(u)2 + g′(u)2

=
g(u)f ′(u)(g′(u)f ′′(u)− f ′(u)g′′(u))

(f ′(u)2 + g′(u)2)

and
EG = g(u)2(f ′(u)2 + g′(u)2).

Thus,

K =
f ′(u)(g′(u)f ′′(u)− f ′(u)g′′(u))

g(u)(f ′(u)2 + g′(u)2)2
.

We are now ready to compute the integral of the Gaussian curvature. Recall that the
surface and area elements are related by

dS =
√
EG− F 2dA = |g(u)|

√
f ′(u)2 + g′(u)2dA

so that∫
S

KdS =

∫
A

K
√
EG− F 2dA =

∫ 2π

0

∫ b

a

|g(u)|f ′(u)(g′(u)f ′′(u)− f ′(u)g′′(u))

g(u)(f ′(u)2 + g′(u)2)3/2
dudv

(recall that u ranges over [a, b] and v ranges over [0, 2π)). By Fubini’s theorem, we
conclude that ∫

S

KdS = 2π

∫ b

a

Λdu

where

Λ =
|g(u)|f ′(u)(g′(u)f ′′(u)− f ′(u)g′′(u))

g(u)(f ′(u)2 + g′(u)2)3/2
.

We can then prove the following specialize to S2 and T 2 to obtain the following
lemmas:

Lemma 7.2 (Genus 0 case). For M = S2 embedded in R3, we have∫
M

KdS = 2πχ(M).

Proof. Consider the curve
(sin t, cos t)

where t ∈ [0, π]. Following the procedure above we set g(u) = sinu and f(u) = cosu.
Note that g(u) ≥ 0 on [0, π] and g′(u) = f(u). Thus

Λ =
f ′(u)(f(u)f ′′(u)− f ′(u)2)

(f ′(u)2 + f(u)2)3/2
.
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Now f ′′(u) = −f(u) so that

Λ =
f ′(u)(−f(u)2 − f ′(u)2)

(f ′(u)2 + f(u)2)3/2
= − f ′(u)

(f ′(u)2 + f(u)2)1/2
.

Finally we obtain
Λ = sin(u).

Thus, ∫
S2

KdS = 2π

∫ π

0

sinu du = −2π cosu|π0 = 4π = 2πχ(S2).

Lemma 7.3 (Genus 1 case). For M = T 2 embedded in R3, we have∫
M

KdS = 2πχ(M).

Proof. Consider the curve r = cos θ. In Cartesian coordinates this is given by

(cos2 t, sin t cos t)

where t ∈ [0, π]. Following the procedure above we set g(u) = cos2 u and f(u) =
sinu cosu. Note that g(u) ≥ 0 on [0, π] and g′(u) = −2f(u). Thus,

Λ =
f ′(u)(−2f(u)f ′′(u) + 2f ′(u)2)

(f ′(u)2 + 4f(u)2)3/2
.

Now f(u) = 1/2 sin(2u) so that f ′′(u) = −4f(u) = −2 sin(2u). Then

Λ =
cos(2u)(− sin(2u)(−2 sin(2u)) + 2 cos(2u)2)

(cos(2u)2 + sin(2u)2)3/2
= 2 cos(2u).

It follows that∫
T 2

KdS = 2π

∫ π

0

2 cos(2u)du = −2π sin(2u)|π0 = 0 = 2πχ(T 2).

We now turn to prove the general genus case:

Lemma 7.4 (Genus g ≥ 2 case). For M with genus g ≥ 2 embedded in R3, we have∫
M

KdS = 2πχ(M).

We cannot simply apply the earlier result for surfaces of revolution – there is no
clear way to realize, for example, a genus 2 surface in R3 as a surface of revolution.
However, we can apply the fact that any surface with genus g ≥ 2 is a connected sum
of tori, and apply Lemmas 7.2 and 7.3.
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Proof. We proceed by induction. Suppose Lemma 7.4 holds for genus g = n ≥ 2; We
show it holds for genus g = n+ 1.

Let M be a compact, orientable Riemannian 2-manifold with genus g = n+ 1. Then
M is diffeomorphic to a genus g = n compact surface connected sum a torus via a
cylindrical portion with unit radius.

Figure 7.5. The genus n + 1 manifold M defined above. Note that not all n + 1
handles are depicted.

Figure 7.6. The diffeomorphic manifold described above

We now perform the following series of cuts and gluings:

Step 1: Cut M (as shown in Figure 7.6) orthogonally through the cylindrical portion.
This results in two new closed manifolds. Call these N1 and N2, as depicted below.

Figure 7.7. Manifolds N1 (above) and N2 (below)
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Observe that M = N1#N2, with identification along the obvious S1 boundary.

Step 2: Let H be a (closed) unit hemisphere. We may attach a copy of H to
each of N1 and N2 (along the obvious S1 boundaries). Call these M ′ and T ′, as
depicted below. Note that S2 = H#H.

Figure 7.8. Manifolds M ′ (above) and T ′ (below)

The resulting surfaces M ′ and T ′ are diffeomorphic to general g = n and g = 1
surfaces. Therefore, we may apply Lemmas 7.4 and 7.3. Doing so, in conjunction
with Remark 3.27, results in the following:∫

N1

K dS +

∫
H

K dS =

∫
M ′
K dS = 2πχ(M ′),∫

N2

K dS +

∫
H

K dS =

∫
T ′
K dS = 2πχ(T ′) = 2πχ(T 2).

By observation that S2 = H#H, application of Remark 3.27 with Lemma 7.2 also
gives ∫

H

K dS +

∫
H

K dS =

∫
S2

K dS = 2πχ(S2),

and it follows that∫
N1

K dS +

∫
N2

K dS = 2πχ(M ′) + 2πχ(T 2)− 2πχ(S2).

Finally, splitting the integral across the connected sum and substituting the above
gives ∫

M

K dS =

∫
N1

K dS +

∫
N2

K dS

= 2πχ(M ′) + 2πχ(T 2)− 2πχ(S2)

= 2π(χ(M ′)− χ(S2))

= 4π(1− n− 1) = 4π(1− (n+ 1)) = 2πχ(M),

where we have applied the fact that χ(M) = 2(1− g).
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7.3 Completing the Proof

We are now ready to prove Theorem 2.11.

Proof of Thm 2.11. Lemma 7.1 asserts that

∂

∂t

∫
M

K dµg(t) = 0.

Thus,
∫
M
K dµg is a constant. Lemmas 7.2, 7.3, and 7.4 together assert that if M is

a sphere, torus, or connected sum of tori then∫
M

K dµg = 2πχ(M).

By the classification of compact orientable surfaces, it follows that any prescribed M
as in Theorem 2.11 is diffeomorphic to one of these surfaces – call it M ′. By applying
Lemma 7.1, we see that

∫
M
K dµg coincides with

∫
M ′ K

′ dµg′ .
Thus, ∫

M

K dµg =

∫
M ′
K ′ dµg′ = 2πχ(M ′) = 2πχ(M),

where the last equality follows since M and M ′ are diffeomorphic and χ(M) is a
topological quantity. This completes the proof.
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8 Conclusion and Further Work

We presented an overview of the history of Gauss-Bonnet and provided an alter-
native, self-contained proof of it for compact, orientable 2-manifolds. To this end,
we computed variations of geometric quantities. We reformulated the variation of
Gauss curvature in terms of the Laplacian on M and divergence of tensors. Finally,
we made use of the classification of compact, orientable surfaces to show that the
integrals evaluate to the 2πχ(M). The advantage of this proof is that it relies only
on calculus of surfaces.

One can ask whether such an approach would work for higher dimensional cases.
The first obstacle to overcome is to find the correct higher dimensional analog of
KdA. For hypersurfaces of R2n+1, this was answered by Hopf and is G∗ω2n. In full
generality, it was answered by Chern and is Pf(Ω)dµg where Pf is the Pfaffian, Ω is
the so-called curvature form of the Levi-Civita connection. Note the presence of the
familiar volume form, which we have already computed the variation of. In theory,
one could compute the variation of Pf(Ω) as well.

The second part of the proof, though, relied on the classification of surfaces. Such
a result exists in dimension 3 due to the work of Perelman, but does not exist for
higher dimensions. Thus, the second part of the proof does not immediately general-
ize.
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