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Outline

i) Basics of gradient flows of λ-convex functions in Rn.

ii) A priori estimates.

iii) Uniqueness and existence of gradient flows.

iv) Equivalent perspectives of gradient flows.

v) Generalizations to metric spaces.
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λ-Convex Functions:

Basically just generalizations of convex functions.

Definition (λ-convexity)

A map ϕ ∈ C 2(Rn) is λ-convex if one of the following (equivalent)
properties holds

i) ∇2ϕ ≥ λ Id (i.e., for all ξ ∈ Rn it holds that 〈∇2ϕ[ξ], ξ〉 ≥ λ|ξ|2).

ii) 〈∇ϕ(x0)−∇ϕ(x1), x0 − x1〉 ≥ λ|x0 − x1|2.
iii) ϕ(xt) ≤ (1− t)ϕ(x0) + tϕ(x1) + λ

2 t(1− t)|x1 − x0|2, where
xt := (1− t)x0 + tx1 and t ∈ [0, 1].

iv) ϕ(x1)− ϕ(x0) ≥ 〈∇ϕ(x0), x1 − x0〉+ λ
2 |x1 − x0|2.

Remark

ϕ is λ-convex when ϕ(x)− λ/2|x |2 is convex. In particular, ϕ is convex
exactly when λ = 0.
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Gradient Flows:

Definition (Gradient Flows)

The gradient flow of ϕ with initial datum u0 ∈ Rn is the unique
C 1((0,∞)) solution to {

u′(t) = −∇ϕ(u(t))

u(0+) = u0

Do solutions exist? How do we know the exist for long-time? What about
uniqueness?
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A priori Estimates for Gradient Flows:

Theorem

Given ϕ ∈ C 2(Rn) a λ-convex function, and u a gradient flow of ϕ, we
have

EVI: 1
2

d
dt |u(t)− v |2 + λ

2 |u(t)− v |2 ≤ ϕ(v)− ϕ(u(t)) for any v ∈ Rn;

EI: d
dtϕ(u(t)) = −|u′(t)|2 = −|∇ϕ(u(t))|2 ≤ 0;

SI: d
dt (e2λt |∇ϕ(u(t))|2) = d

dt (e2λt |u′(t)|2) ≤ 0.

Moreover, if v is another gradient flow of ϕ (with possibly different initial
datum) then

Cont d
dt (eλt |u(t)− v(t)|) ≤ 0.
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A priori Estimates for Gradient Flows:

Proof.

EVI: Using the subgradient property iv),

1

2

d

dt
|u(t)− v |2 = 〈u′(t), u(t)− v〉 = −〈∇ϕ(u(t)), u(t)− v〉

≤ ϕ(v)− ϕ(u(t))− λ

2
|u(t)− v |2.

Cont: Using the monotonicity of the gradient,

d

dt
|u(t)− v(t)|2 = 2〈u′(t)− v ′(t), u(t)− v(t)〉

= −2〈∇ϕ(u(t))−∇ϕ(v(t)), u(t)− v(t)〉
≤ −2λ|u(t)− v(t)|2.
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A priori Estimates for Gradient Flows:

With the evolution variational inequality we can derive uniqueness via a
“doubling of variables” technique. I.e., for gradient flows u(t) and v(s) we
have

1

2

d

dt
|u(t)− v(s)|2 +

λ

2
|u(t)− v(s)|2 ≤ ϕ(v(s))− ϕ(u(t))

1

2

d

ds
|v(s)− u(t)|2 +

λ

2
|u(t)− v(s)|2 ≤ ϕ(u(t))− ϕ(v(s))

Adding these and setting t = s implies

d

dt
|u(t)− v(t)|2 ≤ 0,

so if u(t) and v(t) start at the same point, they must remain the same.
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A priori Estimates for Gradient Flows:

Corollary

If u and v are gradient flows for the λ-convex function ϕ, then

|u(t)− v(t)| ≤ e−λt |u0 − v0|

Proof.

Gronwall’s lemma applied to the contraction property.

Importantly, this shows uniqueness of gradient flows with the same initial
datum.
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A Semigroup Perspective:

For each initial datum u0 we define St(u0) to be the unique gradient flow
of ϕ. Then, {St}t>0 is a contractive semigroup. That is,

StSh(u0) = St+h(u0)

with St(u0)→ u0 as t → 0+. By the previous contraction property,

|St(u0)− St(v0)| ≤ e−λt |u0 − v0|.

This shows, for example, uniqueness and continuous dependence with
respect to the initial datum.
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Approximating Solutions:

To show existence, we construct approximate solutions and show they
converge to a C 1 solutions. The approximation scheme is known as
backwards (or implicit) Euler.

Let τ > 0 and partition [0,∞) as

Pτ = {0 = t0τ < t1τ < .. < tnτ < ...}

with tnτ = nτ .

We search for a sequence {Un
τ }∞n=0 such that Un

τ ≈ u(tnτ ). By defining
Ūτ (t) = Un

τ on (tn−1τ , tnτ ], we hope that Ūτ (t) converges to a gradient flow
u.
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Approximating Solutions:

We construct Un
τ iteratively, starting with U0

τ = u0. Given Un−1
τ define Un

τ

by solving
Un
τ − Un−1

τ

τ
= −∇ϕ(Un

τ ).

Solutions exist by looking for minimizers of the functional

v 7→ Φ(τ,Un−1
τ ; v) :=

1

2τ
|v − Un−1

τ |2 + ϕ(v).

Since Φ is (τ−1 + λ)-convex, it admits a unique minimizer whenever
τ−1 > −λ. In particular, if λ ≥ 0 we always have unique minimizers.
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The Generalized Setting:

Before moving into a more general framework, we’ll discuss two
approaches to viewing the gradient flow.

Curves of maximal slope,

Evolution variational inequalities.

Both of these ideas rest on characterizing the gradient flow equation in a
different way, which can be adapted to a metric setting.
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Curves of Maximal Slope:

Based off of the energy inequality.

Proposition (Curves of maximal slope)

A C 1 curve u : [0,∞)→ Rn is a gradient flow of ϕ if and only if it
satisfies the energy dissipation inequality

d

dt
ϕ(u(t)) ≤ −1

2
|u′(t)|2 − 1

2
|∇ϕ(u(t))|2

or the weaker integrated form

ϕ(u(t)) +
1

2

∫ t

0

(
|u′(s)|2 + |∇ϕ(s)|2

)
ds ≤ ϕ(u0).
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Curves of Maximal Slope:

Proof.

If u is a C 1 curve, then by the chain rule

ϕ(u(t)) = ϕ(u0) +

∫ t

0
〈∇ϕ(u(s)), u′(s)〉 ds.

By applying the (weak) energy dissipation inequality, we have

1

2

∫ t

0
|u′(s) +∇ϕ(u(s))|2 ds =

1

2

∫ t

0

(
|u′(s)|2 + |∇ϕ(u(s))|2

)
ds

+

∫ t

0
〈∇ϕ(u(s)), u′(s)〉 ds ≤ 0.

That is, u′(s) = −∇ϕ(u(s)) for L1-a.e. s ∈ (0, t), for all t > 0.

Note: We did not use λ-convexity!
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Evolution Variational Inequality:

Similar to the previous, we have

Proposition (Curves of maximal slope)

A C 1 curve u : [0,∞)→ Rn satisfying the EVI is a gradient flow of ϕ.

Proof.

By differentiating the norm in the EVI,

〈u′(t), u(t)− v〉 ≤ ϕ(v)− ϕ(u(t))− λ

2
|v − u(t)|2.

For ξ ∈ Rn and ε > 0 set v = u(t) + εξ. Then the above reads

−ε〈u′(t), ξ〉 = 〈∇ϕ(u(t)), v − u(t)〉 ≤ ϕ(u(t) + εξ)− ϕ(u(t))− λε2

2
|ξ|2.

Dividing by ε and taking ε→ 0 concludes.
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Approaches in Generalized Settings:

There are four main approaches we will (briefly) discuss.

i) Curves of maximal slope in metric spaces.

ii) Generalized minimizing movements

iii) Differential inclusions and Hilbert spaces.

iv) Evolution variational inequalities in metric spaces.

For all, we need to relax our notion of derivative (since in a metric setting
we do not generally have access to a differential structure). This is known
as metric calculus.
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The Basics of Metric Calculus

Typically we work with a complete, separable metric space (X , d) and
φ : (−∞,∞] a proper, lower-semicontinuous functional. The idea of this
theory is to work with curves. For example, if φ is differentiable then

|∇φ| ≤ g ⇔ |(φ ◦ v)′| ≤ g(v)|v ′|

for any regular curve v on Rn.

Definition (Metric derivative)

Given an absolutely continuous curve v : (a, b)→ X , the metric derivative
is defined by

|v ′|(t) = lim
s→t

d(v(t), v(s))

|t − s|
.

Kenneth DeMason (UT) Gradient Flows for λ-Convex Functions April 17, 2022 17 / 18



The Basics of Metric Calculus

Typically we work with a complete, separable metric space (X , d) and
φ : (−∞,∞] a proper, lower-semicontinuous functional. The idea of this
theory is to work with curves. For example, if φ is differentiable then

|∇φ| ≤ g ⇔ |(φ ◦ v)′| ≤ g(v)|v ′|

for any regular curve v on Rn.

Definition (Metric derivative)

Given an absolutely continuous curve v : (a, b)→ X , the metric derivative
is defined by

|v ′|(t) = lim
s→t

d(v(t), v(s))

|t − s|
.

Kenneth DeMason (UT) Gradient Flows for λ-Convex Functions April 17, 2022 17 / 18



The Basics of Metric Calculus

Definition (Metric Slope)

The metric slope of φ at a point v ∈ X is defined by

|∂φ|(v) = lim sup
w→v

(φ(v)− φ(w))+

d(v ,w)
.

The metric slope is an example of an upper gradient g defined previously.

These allow one to replace derivatives in the energy dissipation inequality
and evolution variational inequality with the metric derivatives and slope.
By finding curves which satisfy these inequalities, we say that the curve is
a gradient flow (using the equivalent formulation in the smooth case as
justification).
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