
Kenneth DeMason, September 10, 2023

The following is a compilation of the problems I attempted from Gordan Zitkovic’s M385C -
Probability Theory I Fall 2022 course at UT Austin. These problems come from his course notes.

I tend to be very thorough with my solutions. This is especially apparent in the first few homework
sets, where I was still gauging how much work was expected of us. Needless to say, you do not need
to show every single step as I did. Please do not hesitate to reach out for clarification.

Only problems listed with a subtitle are included in the table of contents. You can search for
the remaining ones by using useful keywords.
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HW 1

Problem 1.1. Let (S,S) be a measurable space, and let {An}n∈N be a sequence in S. Show that
the following sets are also in S.

1. The set C1 of all x ∈ S such that x ∈ An for at least 5 different values of n.
2. The set C2 of all x ∈ S such that x ∈ An for exactly 5 different values of n.
3. The set C3 of all x ∈ S such that x ∈ An for all but finitely many n (“finitely many” includes

none).
4. The set C4 of all x ∈ S such that x ∈ An for at most finitely many values of n.

Solution: We express each Ci as the countable union/intersection of measurable sets, which by
properties of σ-algebras implies that the Ci are measurable.

1. Let Ik
≥5 = {I ∈ P({1, ..., k}) | |I| ≥ 5}. Note that Ik

≥5 is finite for all k (in fact empty for

k = 1, ..., 4). Then we can write C1 as

C1 =

∞⋃
k=5

⋃
I∈Ik

≥5

⋂
i∈I

Ai.

2. Let Ik
5 = {I ∈ P({1, ..., k}) | |I| = 5}. Note that Ik

5 is finite for all k (in fact empty for
k = 1, ..., 4). Then we can write C2 as

C2 =

∞⋃
k=5

⋃
I∈Ik

5

⋂
i∈I

Ai ∩
⋂

j∈N\I

Ac
j

 .

3. C3 is precisely the set of x ∈ S such that x is eventually in all the An. That is,

C3 =

∞⋃
k=1

∞⋂
n=k

An.

This is also the lim inf of the An.
4. If x is in An for at most finitely many n, then x ∈ Ac

n for all but finitely many n. Thus

C4 =

∞⋃
k=1

∞⋂
n=k

Ac
n.

Problem 1.2: (Atomic structure of algebras). A partition of a set S is a family P of
non-empty subsets of S with the property that each x ∈ S belongs to exactly one A ∈ P.

1. How many algebras are there on the set S = {1, 2, 3}?
2. By constructing a bijection between the two families, show that the number of different

algebras on a finite set S is equal to the number of different partitions of S. Note: The
elements of the partition corresponding to an algebra are said to be its atoms.

3. Does there exist an algebra with 754 elements?

Solution:

1. There are five, as follows

S1 = {∅, {1}, {2, 3}, {1, 2, 3}}, S2 = {∅, {2}, {1, 3}, {1, 2, 3}}, S3 = {∅, {3}, {1, 2}, {1, 2, 3}}
S4 = {∅, {1, 2, 3}}, S5 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

2. Let S be an algebra of S. We form a partition as follows: For s ∈ S define As by

As :=
⋂

s∈A∈S
A.

Since s ∈ As by definition each is nonempty. We just need to show if t ∈ S then

As ∩At =

{
As if t ∈ As

∅ if t /∈ As

.
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Suppose first t ∈ As. Then if s ∈ A for some A ∈ S it must also be that t ∈ A. Hence,

As :=
⋂

s∈A∈S
A ⊆

⋂
t∈A∈S

A = At.

On the other hand, since t ∈ As it is a valid candidate for the sets used to define At. Thus,

At :=
⋂

t∈A∈S
A ⊆ As.

Together the above two imply As = At. Next suppose r ∈ As ∩ At. Let A ∈ S be such
that s ∈ A. Then since r ∈ As we necessarily have r ∈ A. If t /∈ A then t ∈ Ac, but also
because r ∈ At we must have r ∈ Ac, a contradiction. So s ∈ A implies t ∈ A, and by
applying the same logic as above we get As ⊆ At. Reversing roles of s and t proves the
other containment, so As = At. In other words, either As ∩At = As = At or is empty.

So there is a map F : S → P where S and P denote the collections of algebras on
S and partitions of S respectively. On the other hand there is a natural map G : P → S
defined by G(P) = σ(P) (here the notion of σ-algebra and algebra coincide). We claim that
G ◦ F = IdS while F ◦G = IdP .

To show the former note that for any algebra S on S we have by construction F (S) ⊂ S.
Thus G(F (S)) ⊆ S. Now let A ∈ S and write A = {si}ni=1. Since Asi ⊆ A for all i = 1, ..., n
it follows that ∪iAsi ⊆ A. By our enumeration of elements of A, and recalling that si ∈ Asi ,
it is clear that A ⊆ ∪iAsi . Hence A = ∪iAsi ∈ G(F (S)) since for all i we have Asi ∈ F (S).
Thus S ⊆ G(F (S)).

To show the latter, for any partition P of S write P = {Pi}ni=1. Let s ∈ Pi. Since As

is defined by intersecting all the sets in G(P) containing s, and Pi ∈ G(P), it follows that
As ⊆ Pi. Since all the Pj are disjoint, G(P) is given by

G(P) =

⋃
j∈I

Pj

∣∣∣∣ I ⊆ {1, ..., n}

 .

(if I = ∅ we interpret the union as the empty union). In particular if A ∈ G(P) then
A = ∪j∈IPj for some I ⊂ {1, ..., n}. Because s ∈ Pi and s /∈ Pj for j ̸= i it follows that
s ∈ A if and only if i ∈ I, or Pi ⊆ A. Thus Pi ⊆ A for any A ∈ G(P) with s ∈ A, and as As

is the intersection of all such sets we have Pi ⊆ As.
3. First since G(F (S)) = S it follows that every algebra on S is generated by a partition. So

it suffices to consider G(P) for some partition of S.
In the above description of G(P) there are 2n many choices of I. Since every algebra on

S is generated this way, they must all have 2k many elements for some k ∈ N. 754 is not of
this form, so there is not an algebra with 754 elements.

Problem 1.3: (Notes Problem 1.18). Show that f : R → R is measurable if it is either
monotone or convex.

Solution:

1. Let f : R → R be monotone non-decreasing (since −f is measurable whenever f is, it suffices
to consider such functions only). Set l = limx→−∞ f(x) and consider (a,∞) where possibly
a, l = −∞. There are two cases:

• a ≤ l: In this case we have f−1((a,∞)) = R since f being monotone non-decreasing
implies for x ∈ R that l ≤ f(x) < ∞.

• l < a: We have to account for jump discontinuities in this case. Let

t = inf {x ∈ R | f(x) ≥ a} .

If f(t) > a then f−1((a,∞)) = [t,∞), otherwise f−1((a,∞)) = (t,∞).
2. Convex functions on R are continuous, hence measurable. To see this recall that Lipschitz

implies continuous, and since continuity is a local property we need only check that convexity
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implies locally Lipschitz. To this end let z ∈ R, δ > 0, and consider (x, y) ⊂ R containing z.
Set

L := sup
w∈(x,y)

{∣∣∣∣f(x)− f(w)

x− w

∣∣∣∣, ∣∣∣∣f(w)− f(y)

w − y

∣∣∣∣} .

We show that f is Lipschitz on (x, y) with Lipschitz constant L. That is, for all w1, w2 ∈
(x, y) we have

|f(w2)− f(w1)| ≤ L|w2 − w1|.
Without loss of generality assume w1 < w2. Then we can write w1 = (1− t)w2 + tx, and by
convexity of f

f(w1) ≤ (1− t)f(w2) + tf(x) = f(w2) + t[f(x)− f(w2)].

Rearranging this and applying t = (w1 − w2)/(x− w2), noting w1 − w2 < 0, we get

f(w1)− f(w2)

w1 − w2
≥ f(x)− f(w2)

x− w2
≥ −L.

By the same logic we get

f(w2)− f(w1)

w2 − w1
≤ f(y)− f(w1)

y − w1
≤ L.

The two together show ∣∣∣∣f(w2)− f(w1)

w2 − w1

∣∣∣∣ ≤ L,

as desired.

Problem 1.4: (Notes Problem 1.10). One can obtain the product σ-algebra S on {−1, 1}N as
the Borel σ-algebra corresponding to a particular topology which makes {−1, 1}N compact. Here is
how. Start by defining a mapping d : {−1, 1}N × {−1, 1}N → [0,∞) by

d(s1, s2) = 2−i(s1,s2), where i(s1, s2) = inf{i ∈ N | s1i ̸= s2i },

for sj = (sj1, s
j
2, ...), j = 1, 2.

1. Show that d is a metric on {−1, 1}N.
2. Show that {−1, 1}N is compact under d. Hint: Use the diagonal argument.
3. Show that each cylinder of {−1, 1}N is both open and closed under d.
4. Show that each open ball is a cylinder.
5. Show that {−1, 1}N is separable, i.e. it admits a countable dense subset.
6. Conclude that S coincides with the Borel σ-algebra on {−1, 1}N under the metric d.

Solution:

1. • By definition d maps into [0,∞), so we need only check that d(s1, s2) = 0 implies
s1 = s2. If d(s1, s2) = 0 then necessarily i(s1, s2) = ∞, i.e. s1i = s2i for all i ∈ N.

• We have i(s1, s2) = i(s2, s1) since the definition of i(·, ·) is symmetric. Hence d is too.
• Given sj for j = 1, 2, 3 compare i(s1, s3) and i(s2, s3) to i(s1, s2). Since s1 and s2 differ

at i(s1, s2), and they can only take one of two values, it must be that i(sk, s3) ≤ i(s1, s2)
for k = 1 or k = 2. Hence,

d(s1, s2) = 2−i(s1,s2) ≤ 2−i(sk,s3) < 2−i(s1,s3) + 2−i(s2,s3) = d(s1, s3) + d(s2, s3).

2. Let {sj}∞j=1 ⊂ {−1, 1}N. Construct s as follows: Consider the sequence of first entries

{sj1}∞j=1. As a bounded sequence there exists a convergent subsequence, which after possibly

relabelling we continue to write as {sj1}∞j=1. Consider now {sj2}∞j=1 and extract a convergent

subsequence, etc. In this way we end up with {sj}∞j=1 such that for each i ∈ N the sequence

{sji}∞j=1 converges. Let si = limj→∞ sji and define s = (s1, s2, ...).

Since the sequences {sji}∞j=1 take only finitely many values, for them to converge they

must eventually be constant. Let ji = 1 + sup{j ∈ N | sji ̸= si} (the empty supremum
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is interpreted as zero). It follows that i(s, sj) > k for all j ≥ Jk := max{j1, ..., jk}. In
particular for any k ∈ N there exists Jk such that for j ≥ Jk we have

d(s, sj) = 2−i(s,sj) < 2−k.

So, d(s, sj) → 0.
3. Recall that the cylinders can be described in the following way: For each C ∈ C there exists

an n ∈ N and B ⊂ {−1, 1}n such that

C = {s ∈ {−1, 1}N | (s1, ..., sn) ∈ B}
Let {sj}∞j=1 ⊂ C be such that sj → s ∈ {−1, 1}N. We first show that in fact s ∈ C, so that

C is closed. Since d(sj , s) → 0, in particular there exists a J ∈ N such that for j ≥ J ,

d(sj , s) = 2−i(sj ,s) < 2−n,

in other words i(sj , s) > n. This implies for and j ≥ J and i ≤ n we have sji = si. But

because sj ∈ C for all j we have (sj1, ..., s
j
n) ∈ B. Hence (s1, ..., sn) ∈ B, and s ∈ C.

Next we show C is open. Let s ∈ C and choose 0 < ϵ < 2−n. Then if s′ ∈ {−1, 1}N is
such that d(s, s′) < ϵ < 2−n we have, by the same logic as above that i(s, s′) > n. Again
by the same logic this means s′i = si for i = 1, ..., n and in particular as (s1, ..., sn) ∈ B we
have (s′1, ..., s

′
n) ∈ B. Thus s′ ∈ C, and C is open.

4. Let s ∈ {−1, 1}N and ϵ > 0. Then there exists n ∈ N such that 2−n−1 ≤ ϵ < 2−n. If now
s′ ∈ {−1, 1}N is such that

2−i(s,s′) = d(s, s′) < ϵ < 2−n

then i(s, s′) > n implies si = s′i for i = 1, ..., n. Hence,

Bϵ(s) = {s′ ∈ {−1, 1}N | (s′1, ..., s′n) ∈ B} ∈ C
where B = {(s1, ..., sn)}.

5. Any compact metric space (X, d) is separable. To see this Let rn = 1/n for n ∈ N and
consider {Brn(x)}x∈X . As an open cover of X, owing to compactness it admits a finite

subcover {Brn(x
k
n)}

kn

k=1. Let

D =

∞⋃
n=1

kn⋃
k=1

{xk
n}.

Then D is countable and dense by construction.
6. We have that σ(C) = S. The Borel σ-algebra on ({−1, 1}N, d), being generated by the open

sets, thus contains σ(C) since every cylinder is open.
Next we show B({−1, 1}N, d) ⊆ σ(C) by showing τ ⊂ σ(C), where τ is the topology on

{−1, 1}N induced by d. To do this let (X, d) be any separable metric space, D a countable
dense subset, U open, and

B := {Br(x) ⊂ U | x ∈ D, r ∈ Q} .
We show that

U =
⋃

B∈B

B.

Since each B ∈ B is a subset of U , it suffices to show the forward inclusion. So let x ∈ U ,
then there exists R > 0 such that BR(x) ⊂ U . On the other hand since D is dense there
exists an x′ ∈ D such that d(x, x′) < r < R/2 with r ∈ Q. Then for any z ∈ Br(x

′) we have

d(z, x) ≤ d(z, x′) + d(x, x′) < 2r < R

so that
x ∈ Br(x

′) ⊂ BR(x) ⊂ U.

Hence Br(x
′) ∈ B and x ∈ Br(x

′) implying the forward inclusion.

In our case, each ball is a cylinder. So given U ∈ τ we can express it as the countable
union of cylinders. That is, U ∈ σ(C).
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HW 2

Problem 2.1: (Stronger separation, Notes Problem 2.7). Let (S,S, µ) be a measure space
and let f, g ∈ L0(S,S) satisfy µ({x ∈ S | f(x) < g(x)}) > 0. Prove or construct a counterexample
for the following statement:

“There exist constants a, b ∈ R such that µ({x ∈ S | f(x) ≤ a < b ≤ g(x)}) > 0.”

Solution: For notational purposes define

E = {x ∈ S | f(x) < g(x)}
Ea,b = {x ∈ S | f(x) ≤ a < b ≤ g(x)}

so that we know µ(E) > 0 and we either want to find a, b such that µ(Ea,b) > 0 or show none exist.
We prove the former.

Whenever x ∈ E we can always find p, q ∈ Q such that f(x) ≤ p < q ≤ g(x); that is x ∈ Ep,q for
some p, q ∈ Q. Hence

E =
⋃

p,q∈Q
Ep,q.

By subadditivity,

0 < µ(E) = µ

 ⋃
p,q∈Q

Ep,q

 ≤
∑
p,q∈Q

µ(Ep,q).

If all the Ep,q were µ-null then the sum on the right-hand side would be zero, a contradiction.

Problem 2.2: (A uniform distribution on a circle, Notes Problem 2.11). Let S1 be the
unit circle, and let f : [0, 1) → S1 be the “winding map”

f(x) = (cos(2πx), sin(2πx)), x ∈ [0, 1).

1. Show that the map f is (B([0, 1)),S1)-measurable, where S1 denotes the Borel σ-algebra on
S1 (with the topology inherited from R2).

2. For α ∈ (0, 2π) let Rα denote the (counter-clockwise) rotation of R2 with center (0, 0) and
angle α. Show that Rα(A) := {Rα(x) | x ∈ A} is in S1 if and only if A ∈ S1.

3. Let µ1 be the push-forward of the Lebesgue measure λ by the map f . Show that µ1 is
rotation-invariant, i.e. that µ1(A) = µ1(Rα(A)). Note: The measure µ1 is called the
uniform measure (or the uniform distribution) on S1.

Solution:

1. The topology on S1 is the subspace topology, so V ⊂ S1 is open if and only if there exists
U ⊂ R2 open such that V = U ∩ S1. The map above, regarded as a map [0, 1) → R2 is
continuous. Moreover for any V ⊂ S1 open we have

f−1(V ) = f−1(U ∩ S1) = f−1(U),

the last equality holding trivially since f maps into S1. By continuity we have that f−1(V )
is open in [0, 1), and thus lies in B([0, 1)).

2. The map Rα : R2 → R2 is continuous. For V ⊂ S1 open we have V = U ∩ S1 for U ⊂ R2

open and

R−1
α (V ) = R−1

α (U) ∩ S1

so that Rα : R2 → S1 is continuous. Finally the inclusion ι̇S1 : S1 → R2 is continuous so
that the composition Rα ◦ ι̇S1 : S1 → S1 is too. Denoting this composition still by Rα we
see that R−1

α (V ) ∈ S1 whenever V ⊂ S1 is open. So Rα is (S1,S1)-measurable.
Now let α ∈ (0, 2π) and suppose Rα(A) ∈ S1. Then A = R−1

α (Rα(A)) ∈ S1. On the
other hand suppose A ∈ S1. We showed Rα is (S1,S1)-measurable for any α ∈ (0, 2π), so
in particular Rβ is with β = 2π − α. Finally Rα(A) = R−1

β (A) ∈ S1.



M385C HW Problems

3. Define g : [0, 2) → [0, 1) by

g(x) =

{
x x < 1

x− 1 1 ≤ x
.

By translation invariance of the Lebesgue measure we know that if B ∈ B([0, 1)) and x ∈
[0, 1) then λ(g(B + x)) = λ(B). Note that for α ∈ (0, 2π) and A ∈ S1 we have

f−1(Rα(A)) = g
(
f−1(A) +

α

2π

)
and thus by translation invariance,

µ1(Rα(A)) = λ(f−1(Rα(A))) = λ(f−1(A)) = µ1(A).

Problem 2.3: (A change-of-variable formula, Notes Problem 3.19). Let (S,S, µ) and
(T, T , ν) be two measure spaces, and let F : S → T be a measurable function with the property
that ν = F#µ (i.e., ν is the push-forward of µ through F ). Show that for every f ∈ L0

+(T, T ) or
f ∈ L1(T, T ), we have ∫

T

f dν =

∫
S

(f ◦ F ) dµ.

Solution: First let B ∈ T and consider f = χB . Then the above reads exactly as∫
T

χB dν = ν(B) = µ(F−1(B)) =

∫
S

χF−1(B) dµ =

∫
S

χB ◦ F dµ.

The last equality holds since χB(F (s)) = 1 whenever F (s) ∈ B and χB(F (s)) = 0 whenever
F (s) /∈ B. Now notice that the identity in question is linear in f . That is, if f1, f2 satisfy the
identity and α ∈ [0,∞) then∫
T

(αf1 + f2) dν = α

∫
T

f1 dν +

∫
T

f2 dν = α

∫
S

(f1 ◦ F ) dµ+

∫
S

(f2 ◦ F ) dµ =

∫
S

[αf1 + f2] ◦ F dµ.

Thus the identity holds on all non-negative simple functions, and by monotone convergence for
all f ∈ L0

+(T, T ). Precisely, if f ∈ L0
+(T, T ) then there exists a sequence of non-negative simple

functions {gn}∞n=1 such that gn ≤ gn+1 and gn → f . Then by monotone convergence,∫
T

f dν = lim
n→∞

∫
T

gn dν = lim
n→∞

∫
S

gn ◦ F dµ =

∫
S

f ◦ F dµ.

Finally if f ∈ L1(T, T ) we split it into its positive and negative parts and apply the previous result
to each part.

Problem 2.4: (An integrability criterion, Notes Problem 3.14). Let (S,S, µ) be a finite
measure space, and let f ∈ L0

+. Show that∫
S

f dµ < ∞ if and only if
∑
n∈N

µ({f ≥ n}) < ∞

where, as usual, {f ≥ n} = {x ∈ S | f(x) ≥ n}. Hint: Approximate f from below and from above
by a piecewise constant function.

Solution: Consider

ϕ =

∞∑
n=1

χ{f≥n}.

Notice that ϕ(x) ≤ f(x) < ϕ(x)+1. To see this, if x ∈ S and N ∈ N is such that N ≤ f(x) < N +1
then for all n ≤ N we have x ∈ {f ≥ n} and if n > N then x /∈ {f ≥ n}. It follows that
ϕ(x) = N ≤ f(x) < N + 1 = ϕ(x) + 1. Then,

∞∑
n=1

µ({f ≥ n}) ≤
∫
S

f dµ <

∞∑
n=1

µ({f ≥ n}) + µ(S).

Owing to the fact that µ(S) < ∞ we conclude the result.
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Problem 2.5: (Asymptotic density, Notes Problem 2.12). We say that the subset A of N
admits asymptotic density if the limit

D(A) = lim
n→∞

#(A ∩ {1, ..., n})
n

exists (remember that # denotes the number of elements of a set). Let D be the collection of all
subsets of N that admit asymptotic density.

1. Is D a finitely-additive set function on D? How about σ-additive?
2. Is D a σ-algebra?
3. Is D an algebra?

Solution: Changing the notation, we denote by H0 the counting measure and H0
n = H0 {1, ..., n}.

For A ⊆ N define sn(A) = H0
n(A)/n. Thus,

D(A) = lim
n→∞

H0
n(A)

n
= lim

n→∞
sn(A).

1. Let’s start by trying to prove σ-additivity. Given {Ak}∞k=1 ⊂ D, since H0
n is a measure for

every n ∈ N we have

H0
n

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

H0
n(Ak).

Dividing both sides by n yields

sn

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

sn(Ak)

and as n → ∞ we get

D

( ∞⋃
k=1

Ak

)
= lim

n→∞

∞∑
k=1

sn(Ak).

The question now becomes: can we exchange the limit and summation? In general this is
not possible. Noting that sums are really integrals (with respect to the counting measure),
we may try to appeal to a convergence theorem. Neither appear to hold (the sequence sn(A)
need not be monotone for a given A ∈ D, and each sn(A) ≤ 1 but the constant function 1
is not integrable with respect to the counting measure). For example consider Ak = {k} so
that

sn(Ak) =

{
0 n < k

1/n n ≥ k

and thus D(Ak) = 0. However,
⋃

k Ak = N which has D(N) = 1. Hence D is not σ-additive
on D as

1 = D(N) = D

( ∞⋃
k=1

Ak

)
̸=

∞∑
k=1

D(Ak) = 0.

Of course if the union is finite then we can immediately exchange the limit and sum.
Thus for {Ak}Kk=1 ⊂ D disjoint we have

D

(
K⋃

k=1

Ak

)
= lim

n→∞

K∑
k=1

sn(Ak) =

K∑
k=1

lim
n→∞

sn(Ak) =

K∑
k=1

D(Ak).

Hence D is a finitely additive set function on D. Since all the Ak ∈ D, the right hand side
is finite. It follows that ∪K

k=1Ak admits asymptotic density, and D is an algebra.
2. Note for any finite A ⊂ N we have A ∈ D, since if n ∈ N is such that all x ∈ A have x ≤ n

then sn(A) = H0(A)/n, which goes to zero. Now let

Ak = {n | a(k) ≤ n < b(k)}, A =

∞⋃
k=1

Ak
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where a(1) = 1 and a(k) = 1 + 2 · 3k−2 for k ≥ 2, and b(1) = 2 and b(k) = 1 + 4 · 3k−2

for k ≥ 2. Another way to see the construction of A is we alternate between including and
omitting natural numbers in chunks of length 1, then 2 · 3k−1. That is,

A = {1, 3, 4, 7, 8, 9, 10, 11, 12, 19, ..., 36, ...}.
Now set ā(k) = 4 · 3k−2 and b̄(k) = 2 · 3k−1, with ā(1) := 1. We compute sā(k)(A) and
sb̄(k)(A) as follows:

sā(k)(A) =
1 +

∑k−1
i=1 2 · 3i−1

ā(k)
=

32−k

4

(
1 + 2

k−1∑
i=1

3i−1

)

=
32−k

4

(
1 + 2

(
3k−1 − 1

2

))
=

3

4

sb̄(k)(A) =
1 +

∑k−1
i=1 2 · 3i−1

b̄(k)
=

31−k

2

(
1 + 2

k−1∑
i=1

3i−1

)
=

1

2
.

where
∑0

i=1 is interpreted as the empty sum. Since ā(k) and b̄(k) are increasing sequences, it
follows that sn(A) is 3/4 infinitely often and 1/2 infinitely often. In fact 1/2 ≤ sn(A) ≤ 3/4
so that lim supn→∞ sn(A) = 3/4 and lim infn→∞ sn(A) = 1/2. Thus the limit does not
exist, and A /∈ D.

3. See end of 1. We only need to check that D is closed under finite unions of disjoint sets as
we can disjointify if necessary.

HW 3

Problem 3.1: (Notes Problem 3.5). Let (S,S, µ) be a measure space, and suppose f ∈ L1
+ is

such that
∫
f dµ = c > 0. Show that for each α > 0 the limit

lim
n→∞

∫
n log

(
1 +

(
f

n

)α)
dµ

exists in [0,∞] and compute its value. Hint : Consider the cases α < 1, α = 1, and α > 1 separately.
In the case α > 1, prove and use the inequality log(1 + xα) ≤ αx, valid for x ≥ 0.

Solution: We prove the hint first. Consider Fα(x) = 1 + xα and Gα(x) = eαx. We equivalently
prove Fα(x) ≤ Gα(x) for x ≥ 0. Observing Fα(0) = Gα(0) it suffices to show F ′

α(x) ≤ G′
α(x) for

x ≥ 0. Indeed, F ′
α(x) = αxα−1 and G′

α(x) = αeαx, but exponentials grow faster than polynomials
[valid when α ≥ 1].

The idea will be to use a convergence theorem, and so we should compute what

lim
n→∞

n log

(
1 +

(
f(x)

n

)α)
is for various values of α. To this end let

ℓn,α(x) = n log
(
1 +

(x
n

)α)
.

We have that limn→∞ ℓn,α(0) = 0 for any α > 0. To compute the limit at other values of x let’s use
the hint in the following weak form: log(1 + x) ≤ x. Applying this with 1/x− 1 yields

− log(x) = log

(
1 +

[
1

x
− 1

])
≤ 1

x
− 1, ⇒ log(x) ≥ 1− 1

x
=

x− 1

x
.

Applying this now to 1 + (x/n)α yields

log
(
1 +

(x
n

)α)
≥ (x/n)α

1 + (x/n)α
=

xα

nα + xα
.

which holds for all α > 0. In turn we have the following chain of inequalities:

nxα

nα + xα
≤ n log

(
1 +

(x
n

)α)
≤ nxα

nα
=

xα

nα−1
,
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by another application of the (weak version of the) hint. The squeeze theorem then tells us if
0 < α < 1 the limit is ∞, if α = 1 it is x, and if α > 1 the limit is zero. Hence,

ℓα(x) := lim
n→∞

[
n log

(
1 +

(x
n

)α)]
=


0 x = 0
∞ 0 < α < 1

x α = 1

0 α > 1

x ̸= 0

Applying Fatou’s lemma we see that∫
S

ℓα(f(x)) dµ(x) =

∫
S

lim
n→∞

ℓn,α(f(x)) dµ(x) ≤ lim inf
n→∞

∫
S

ℓn,α(f(x)) dµ(x).

To compute the left hand side we break into three cases.

• 0 < α < 1: In this case we have∫
S

ℓα(f(x)) dµ(x) =

∫
{f=0}

0 dµ(x) +

∫
{f ̸=0}

∞ dµ(x) = ∞ · µ({f ̸= 0}) = ∞.

We concluded that µ({f ̸= 0}) > 0 as
∫
S
f(x) dµ(x) > 0. So by Fatou’s lemma,

∞ ≤ lim inf
n→∞

∫
S

ℓn,α(f(x)) dµ(x) ≤ lim sup
n→∞

∫
S

ℓn,α(f(x)) dµ(x) ≤ ∞

where the latter two inequalities are trivial. It follows that the limit exists and

lim
n→∞

∫
S

n log

(
1 +

(
f(x)

n

)α)
dµ(x) =

∫
S

ℓα(f(x)) dµ(x) = ∞.

• α = 1: In this case∫
S

ℓα(f(x)) dµ(x) =

∫
{f=0}

0 dµ(x) +

∫
{f ̸=0}

f(x) dµ(x) =

∫
S

f(x) dµ(x) = c.

Since log(1 + x) ≤ x we get

lim sup
n→∞

∫
S

n log

(
1 +

f(x)

n

)
dµ(x) ≤ lim sup

n→∞

∫
S

f(x) dx = c.

Thus, by Fatou

c =

∫
S

ℓα(f(x)) dµ(x) ≤ lim inf
n→∞

∫
S

n log

(
1 +

f(x)

n

)
dµ(x)

≤ lim sup
n→∞

∫
S

n log

(
1 +

f(x)

n

)
dµ(x) = c.

So the limit exists and

lim
n→∞

∫
S

n log

(
1 +

f(x)

n

)
dµ(x) =

∫
S

ℓ1(f(x)) dµ(x) = c.

• α > 1: In this case ℓα(x) ≡ 0 so that∫
S

ℓα(f(x)) dµ(x) = 0.

The sequence is monotone decreasing after a certain point, so we cannot apply monotone
convergence. However, owing to the hint we have that

ℓn,α(f(x)) = n log

(
1 +

(
f(x)

n

)α)
≤ αf(x)

where αf(x) is integrable, and we can apply dominated convergence. Thus the inequality
in Fatou’s lemma is an equality and

lim
n→∞

∫
S

n log

(
1 +

(
f(x)

n

)α)
dµ(x) =

∫
S

ℓα(f(x)) dµ(x) = 0.
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Altogether we have

lim
n→∞

∫
S

n log

(
1 +

(
f(x)

n

)α)
dµ(x) =


∞ 0 < α < 1

c α = 1

0 α > 1

Problem 3.2: (Convergence in measure, Notes Problem 4.12). A sequence {fn}∞n=1 in L0

is said to converge in measure toward f ∈ L0 if

for all ϵ > 0, µ({|fn − f | ≥ ϵ}) → 0 as n → ∞.

Assume that µ(S) < ∞ (parts marked by (†) are true without this assumption).

1. Show that the mapping

d(f, g) =

∫
|f − g|

1 + |f − g|
dµ, f, g ∈ L0,

defines a pseudo metric on L0 and that convergence in d is equivalent to convergence in
measure.

2. Show that fn → f , a.e., implies that fn → f in measure. Give an example which shows that
the assumption µ(S) < ∞ is necessary.

3. Give an example of a sequence which converges in measure, but not a.e.
4. (†) For f ∈ L0 and a sequence {fn}∞n=1 ⊂ L0, show that fn → f a.e. if the convergence in

measure “happens fast”, i.e. if

∞∑
n=1

µ({|fn − f | ≥ ϵ}) < ∞, for all ϵ > 0.

5. (†) Show that each sequence convergent in measure has a subsequence which converges a.e.
6. (†) Show that each sequence convergent in Lp, for some p ∈ [1,∞), converges in measure.
7. For p ∈ [1,∞), find an example of a sequence which converges in measure, but not in Lp.
8. Let {fn}∞n=1 ⊂ L0 with the property that any of its subsequences admits a (further) subse-

quence which converges a.e. to f ∈ L0. Show that fn → f in measure.
9. Let Φ : R2 → R be a continuous function, and let {fn}∞n=1 and {gn}∞n=1 be two sequences

in L0. If f , g ∈ L0 are such that fn → f and gn → g in measure, then

Φ(fn, gn) → Φ(f, g) in measure.

Note: Φ = + or Φ = × are particularly useful.

Solution:

1. We first show d is a pseudo-metric.
• d : L0 × L0 → [0,∞) and d(f, f) = 0: Evidently, since the integrand is non-negative,
we have d(f, g) ≥ 0. To show it is finite notice that

|f − g|
1 + |f − g|

≤ 1

so that d(f, g) ≤ µ(S) < ∞. That d(f, f) = 0 is clear, since the integrand is zero.
• d(f, g) = d(g, f): Symmetry is obvious since

d(f, g) =

∫
S

|f − g|
1 + |f − g|

dµ =

∫
S

|g − f |
1 + |g − f |

dµ = d(g, f).

• d(f, h) ≤ d(f, g) + d(g, h): To prove the triangle inequality first note that the map
t 7→ t/(1 + t) is monotone increasing for non-negative t. To see this write

t

1 + t
= 1− 1

1 + t
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and note that t 7→ 1/(1 + t) is monotone decreasing. Hence,

|f − h|
1 + |f − h|

≤ |f − g|+ |g − h|
1 + |f − g|+ |g − h|

=
|f − g|

1 + |f − g|+ |g − h|
+

|g − h|
1 + |f − g|+ |g − h|

≤ |f − g|
1 + |f − g|

+
|g − h|

1 + |g − h|

where the last inequality holds since we are decreasing the demoninator. Integrating
both sides with respect to µ yields

d(f, h) =

∫
S

|f − h|
1 + |f − h|

dµ

≤
∫
S

|f − g|
1 + |f − g|

dµ+

∫
S

|g − h|
1 + |g − h|

dµ = d(f, g) + d(g, h).

We now show that the topology generated by d coincides with the topology of convergence

in measure. Note that fn
m−→ f if and only if for every ϵ > 0 we have

0 = lim
n→∞

µ ({|fn − f | ≥ ϵ}) = lim
n→∞

µ

({
1

1 + ϵ
≥ 1

1 + |fn − f |

})
.

Define

En,ϵ :=

{
1

1 + ϵ
≥ 1

1 + |fn − f |

}
.

Now,

d(fn, f) =

∫
S

|fn − f |
1 + |fn − f |

dµ =

∫
S

[
1− 1

1 + |fn − f |

]
dµ

= µ(S)−
∫
S

1

1 + |fn − f |
dµ.

Splitting the integral gives∫
S

1

1 + |fn − f |
dµ =

∫
En,ϵ

1

1 + |fn − f |
dµ+

∫
Ec

n,ϵ

1

1 + |fn − f |
dµ

≥
∫
En,ϵ

1

1 + |fn − f |
dµ+

∫
Ec

n,ϵ

1

1 + ϵ
dµ

=

∫
En,ϵ

1

1 + |fn − f |
dµ+

µ(S)

1 + ϵ
.

If fn
m−→ f then µ(En,ϵ) → 0 for any ϵ > 0. Hence,

lim
n→∞

∫
S

1

1 + |fn − f |
dµ ≥ µ(S)

1 + ϵ
.

Applying this in the above yields

lim
n→∞

d(fn, f) = µ(S)− lim
n→∞

∫
S

1

1 + |fn − f |
dµ ≤

(
ϵ

1 + ϵ

)
µ(S)
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and hence fn → f in d. We must show now that if {fn} ∈ L0 is such that d(fn, f) → 0 then

fn
m−→ f . We’ve seen that the map t 7→ t/(1 + t) is increasing. Thus for ϵ > 0,

d(fn, f) =

∫
S

|fn − f |
1 + |fn − f |

dµ

=

∫
{|fn−f |≥ϵ}

|fn − f |
1 + |fn − f |

dµ+

∫
{|fn−f |<ϵ}

|fn − f |
1 + |fn − f |

dµ

≥
∫
{|fn−f |≥ϵ}

ϵ

1 + ϵ
dµ+ Cn,ϵ =

(
ϵ

1 + ϵ

)
µ({|fn − f | ≥ ϵ}) + Cn,ϵ

where Cn,ϵ ≥ 0. But since d(fn, f) → 0, and each of the above terms on the right-hand side
are non-negative, they must both go to zero. In particular,

lim
n→∞

µ({|fn − f | ≥ ϵ}) = 0

and thus fn
m−→ f .

2. Fix ϵ > 0 and let

En = {|fn − f | ≥ ϵ}, Fn =

∞⋃
k=n

Ek.

In this way we have constructed a decreasing sequence {Fn}∞n=1, where also µ(F1) ≤ µ(S) <
∞. By dominated convergence of sets,

µ(Fn) → µ

( ∞⋂
n=1

Fn

)
= µ

( ∞⋂
n=1

∞⋃
k=n

Ek

)
.

Note that if D = {x ∈ S | fn(x) does not converge to f(x)} then µ(D) = 0 and
∞⋂

n=1

∞⋃
k=n

Ek ⊆ D

since if x is in the former set, then |fn(x) − f(x)| ≥ ϵ infinitely often and there is no hope
of convergence. Thus, by monotonicity

lim
n→∞

µ(Fn) = 0.

Fix now η > 0. Then there exists N ∈ N such that for n ≥ N , µ(Fn) < η. By monotonicity,
since Ek ⊂ FN for all k ≥ N ,

µ({|fk − f | ≥ ϵ}) = µ(Ek) ≤ µ(FN ) < η

for all k ≥ N . That is, µ({|fk − f | ≥ ϵ}) → 0.

For a counterexample when µ(S) = ∞, consider the Lebesgue measure on R and let
fn = χ[n−1,n]. Then fn → 0 pointwise everywhere, yet for any ϵ ∈ (0, 1] we have

En = {|fn − f | ≥ ϵ} = [n− 1, n],

which has unit Lebesgue measure.
3. We consider the so-called typewriter sequence. The simple idea is for something to fail to

converge pointwise, you want it to oscillate between values. For example, the alternating
sequence between χ[0,1/2) and χ[1/2,1). Ideally we want this to converge in measure to the
zero function, but (as in the previous counterexample) the measures of the intervals need do
shrink. The typewriter sequence is defined by

fn(x) = χEn,k
(x), where 2k ≤ n < 2k+1 and En,k =

[
n− 2k

2k
,
n− 2k + 1

2k

)
.

How does this sequence work? Fix a k ∈ N and consider f2k , f2k+1, ..., f2k+1−1. Noting that

2k+1−1⋃
n=2k

En,k = [0, 1)



M385C HW Problems

and the En,k are disjoint (for n = 2k, ..., 2k+1 − 1), we see that for any x ∈ [0, 1) there are
infinitely many n, k such that x ∈ En,k. It follows that fn does not converge (anywhere) to
the zero function. Yet, for 0 < ϵ ≤ 1 we have

{|fn| ≥ ϵ} = En,k

and

|{|fn| ≥ ϵ}| = |Enk
| = 1

2k
<

2

n
.

Consequently, fn
m−→ 0. We do not need to check for ϵ > 1 as the super-level sets are empty.

4. Defining Eϵ
n, D as before as in 2 (here we need to keep track of the parameter ϵ). Borel-

Cantelli says that if
∞∑

n=1

µ(Eϵ
n) < ∞,

which is exactly the assumption we have, then

µ

(
lim sup
n→∞

Eϵ
n

)
= 0.

Note that fn(x) does not converge to f(x) if there exists an ϵ > 0 such that for all n ∈ N
there exists an k ≥ n such that |fk(x)− f(x)| ≥ ϵ. Hence,

D ⊂
⋃
ϵ>0

∞⋂
n=1

∞⋃
k=n

{|fk − f | ≥ ϵ} =
⋃
ϵ>0

lim sup
n→∞

Eϵ
n.

The right-hand side is not a countable union, but we can always replace it with

D ⊂
⋃
q∈Q

lim sup
n→∞

Eq
n

as we can always find a rational number less than the extracted ϵ. Finally,

µ(D) ≤
∑
q∈Q

µ

(
lim sup
n→∞

Eq
n

)
= 0

and thus fn → f a.e.
5. Let ϵ > 0 and for k ∈ N choose nk such that

µ({|fnk
− f | ≥ ϵ}) < 1

2k
.

Then,
∞∑
k=1

µ({|fnk
− f | ≥ ϵ}) <

∞∑
k=1

1

2k
= 1 < ∞

and thus fnk
→ f a.e. by 4.

6. Applying Hölder’s inequality with q a conjugate exponent to p yields

d(f, g) =

∫
S

(|f − g|)
(

1

1 + |f − g|

)
dµ ≤ ∥f − g∥Lp

∥∥∥∥ 1

1 + |f − g|

∥∥∥∥
Lq

.

If µ(S) < ∞ the right-hand side is bounded by ∥f − g∥Lpµ(S)1/q since 1/(1 + |f − g|) ≤ 1.
Then fn → f in Lp implies

d(fn, f) ≤ µ(S)1/q∥fn − f∥Lp → 0.

There’s another neat way to do this using Chebyshev’s inequality:

µ({|fn − f | ≥ ϵ}) = µ({|fn − f |p ≥ ϵp}) ≤ 1

ϵp

∫
S

|fn − f |p dµ =
1

ϵp
∥fn − f∥pLp .
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7. It suffices by 2 to find a sequence fn → f a.e. but fn does not converge to f in Lp.
Consider fn(x) = n1/pχ[0,1/n], and let our measure space be [0, 1] with the Lebesgue measure.
Evidently fn → 0 a.e. Computing the Lp norms we see,

∥fn∥Lp =

(∫
[0,1]

nχ[0,1/n]

)1/p

=

(
n · 1

n

)1/p

= 1.

Hence fn does not converge to 0 in Lp.
8. Recall that every sequence {xn}∞n=1 of real numbers, such that all of its subsequences admit

a convergent subsequence to x ∈ R, in fact converges to x itself. Let ϵ > 0 and set

xn = µ({|fn − f | ≥ ϵ}).

Recall by 2 that if fn → f a.e. then fn
m−→ f . Let {fnk

}∞k=1 be a subsequence of {fn}∞n=1.

Then there exists a further subsequence {fnkl
}∞l=1 such that fnkl

→ f a.e. Hence fnkl

m−→
f , implying xnkl

→ 0. Thus for every subsequence {xnk
}∞k=1 of {xn}∞n=1 there exists a

convergent further subsequence to 0. By the recollection at the beginning of the problem, it

follows that xn → 0, i.e. fn
m−→ 0.

9. We show first that hn = (fn, gn) converges in measure to (f, g). To see this note if ϵ > 0
and

x ∈ {|(fn, gn)− (f, g)| ≥ ϵ}

then

(fn(x)− f(x))2 + (gn(x)− g(x))2 ≥ ϵ2.

By the pigeonhole principle

x ∈ {|fn − f | ≥ ϵ2/2} ∪ {|gn − g| ≥ ϵ2/2}.

Hence we’ve shown

{|(fn, gn)− (f, g)| ≥ ϵ} ⊂ {|fn − f | ≥ ϵ2/2} ∪ {|gn − g| ≥ ϵ2/2}

and thus

µ({|(fn, gn)− (f, g)| ≥ ϵ}) ≤ µ({|fn − f | ≥ ϵ2/2}) + µ({|gn − g| ≥ ϵ2/2}) → 0.

We now show if hn
m−→ h and Φ is continuous then Φ(hn)

m−→ Φ(h). To do this we’ll apply 8.

Since hn
m−→ h, for subsequence hnk

m−→ h we can find a further subsequence hnkl
→ h a.e.

by 5. But continuous functions preserve almost everywhere convergence, so Φ(hnkl
) → Φ(h)

a.e. Hence for any subsequence Φ(hnk
) we have found a further subsequence Φ(hnkl

) which

converges to Φ(h) a.e. Applying 8, we see that Φ(hn)
m−→ Φ(h).

Midterm

Problem M.1. Let {fn}n∈N be a sequence of measurable functions on the measure space (S,S, µ)
where µ is a finite measure. Consider the following two statements:

1. Every subsequence {fnk
}k∈N of {fn}n∈N has a further subsequence {fnkl

}l∈N which converges
a.e. to 0.

2. fn → 0, in measure.

Show that 1 ⇒ 2. For extra credit, show that 2 ⇒ 1.

Note: You can use, without proof, the fact that the a.e.-convergence implies convergence in measure
to the same limit (when µ is finite).

Solution: We prove instead the more general equivalence where 0 is replaced by a generic mea-
surable function f .
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i. (1 ⇒ 2) Recall that every sequence {xn}∞n=1 of real numbers, such that all of its subsequences
admit a convergent subsequence to x ∈ R, in fact converges to x itself. Let ϵ > 0 and set

xn = µ({|fn − f | ≥ ϵ}).

Note that if fn → f a.e. then fn
m−→ f . Let {fnk

}∞k=1 be a subsequence of {fn}∞n=1. Then
by hypothesis there exists a further subsequence {fnkl

}∞l=1 such that fnkl
→ f a.e. Hence

fnkl

m−→ f , implying xnkl
→ 0. Thus for every subsequence {xnk

}∞k=1 of {xn}∞n=1 there exists
a convergent further subsequence to 0. By the recollection at the beginning of the problem,

it follows that xn → 0, i.e. fn
m−→ f .

ii. (2 ⇒ 1) We show first that convergence in measure implies the existence of a subsequence
which converges a.e. Define

Eϵ
n := {|fn − f | ≥ ϵ}, D = {x ∈ S | fn(x) does not converge to f(x)}.

Note that fn(x) does not converge to f(x) if there exists an ϵ > 0 such that for all n ∈ N
there exists a k ≥ n such that |fk(x)− f(x)| ≥ ϵ. Hence,

D ⊂
⋃
ϵ>0

∞⋂
n=1

∞⋃
k=n

{|fk − f | ≥ ϵ} =
⋃
ϵ>0

lim sup
n→∞

Eϵ
n.

The right-hand side is not a countable union, but we can always replace it with

D ⊂
⋃
q∈Q

lim sup
n→∞

Eq
n

as we can always find a rational number less than the extracted ϵ. Finally,

µ(D) ≤
∑
q∈Q

µ

(
lim sup
n→∞

Eq
n

)
If µ(D) = 0 then fn → f a.e. Borel-Cantelli says that if

∞∑
n=1

µ(Eϵ
n) < ∞,

then

µ

(
lim sup
n→∞

Eϵ
n

)
= 0.

So, it suffices to find a subsequence fnk
such that for every ϵ > 0

∞∑
k=1

µ(Eϵ
nk
) < ∞.

Since fn
m−→ f we know that µ(Eϵ

n) → 0 for all ϵ > 0. Choose nk+1 ≥ nk such that

µ(E
1/k
nk ) < 1/2k. Let ϵ > 0 and let kϵ ∈ N be the smallest natural number such that

1/kϵ < ϵ. Observe that for any k ≥ kϵ, 1/k < ϵ and so

µ(Eϵ
n) = µ({|fn − f | ≥ ϵ}) ≤ µ

({∣∣fn − f
∣∣ ≥ 1

k

})
= µ(E1/k

n )

for any n ∈ N. Hence,

∞∑
k=1

µ(Eϵ
nk
) ≤

kϵ−1∑
k=1

µ(E1/k
nk

) +

∞∑
k=kϵ

µ(E1/k
nk

) =

kϵ−1∑
k=1

µ(E1/k
nk

) +

∞∑
k=kϵ

1

2k
< ∞.

By the above, fnk
→ f a.e. Now since fn

m−→ f , any subsequence {fnk
}∞k=1 will also converge

in measure to f . Applying the above, we can find a further subsequence {fnkl
}∞l=1 which

converges a.e.
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Problem M.2. Let f ∈ L0
+(S,S, µ), where µ is a finite measure, be such that

lim sup
t→∞

[tp0µ({f > t})] < ∞, where p0 > 1.

Show that f ∈ Lp(S,S, µ) for all p ∈ [1, p0).

Solution: Let ϵ > 0 and set

L := lim sup
t→∞

[tp0µ({f > t})] = lim
T→∞

sup
t≥T

[tp0µ({f > t})].

Then there exists a T0 ≥ 0 such that for all T ≥ T0∣∣∣∣ sup
t≥T

[tp0µ({f > t})]− L

∣∣∣∣ < ϵ.

To estimate ∥f∥Lp(S) for p ∈ [1, p0) we need to introduce tp0µ({f > t}). This looks awfully familiar
to the layer-cake formula,

∥f∥pLp(S) =

∫
S

fp dµ = p

∫ ∞

0

tp−1µ({f > t}) dt,

except the exponent on t is incorrect. We can fix this by multiplying and dividing by an appropriate
factor. In the process we also split the integral, as we only have a bound on tp0µ({f > t}) when
t ≥ T0. Thus,

∥f∥pLp(S) = p

∫ T0

0

tp−1µ({f > t}) dt+ p

∫ ∞

T0

tp−1µ({f > t}) dt

= p

∫ T0

0

tp−1µ({f > t}) dt+ p

∫ ∞

T0

tp−1 t
p0+1−p

tp0+1−p
µ({f > t}) dt

= p

∫ T0

0

tp−1µ({f > t}) dt+ p

∫ ∞

T0

1

tp0+1−p
· [tp0µ({f > t})] dt.

Finally we have supt≥T0
tp0µ({f > t}) < ϵ + L, particularly tp0µ({f > t}) < ϵ + L for t ≥ T0.

Additionally µ({f ≥ t}) ≤ µ(S) < ∞ by monotonicity and the finiteness assumption. Hence,

∥f∥pLp(S) ≤ pµ(S)

∫ T0

0

tp−1 dt+ p[ϵ+ L]

∫ ∞

T0

dt

tp0−p+1
= µ(S)T p

0 +
p[ϵ+ L]

(p0 − p)T p0−p
0

< ∞.

Remark: The map

T 7→ µ(S)T p +
p[ϵ+ L]

(p0 − p)T p0−p

for T ≥ 0 is minimized when

T = Tm :=

(
ϵ+ L

µ(S)

)1/p0

.

If T0 ≤ Tm, then repeating the same work above with Tm instead of T0 (valid since the bound on
the supremum holds for T ≥ T0) yields

∥f∥pLp(S) ≤ µ(S)

(
ϵ+ L

µ(S)

)p/p0

+
p[ϵ+ L]

p0 − p

(
ϵ+ L

µ(S)

)(p−p0)/p0

= (ϵ+ L)p/p0µ(S)1−p/p0 +

(
p

p0 − p

)
(ϵ+ L)p/p0µ(S)1−p/p0

=

(
p0

p0 − p

)
(ϵ+ L)p/p0µ(S)1−p/p0 .

Addendum: We technically haven’t proven (or talked about) the layer-cake formula in class, so let
us prove it here. Let ν on B([0,∞)) be defined by

ν(E) =

∫
E

p · zp−1 dz.
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It is clear that ν ≪ L1 [0,∞) and that dν/d(L1 [0,∞))(t) = ptp−1. Note that ν({t}) = 0 for any
t ∈ [0,∞) so that

ν([0, t)) = ν([0, t]) =

∫ t

0

p · zp−1 dz = zp
∣∣z=t

z=0
= tp.

Since µ ⊗ ν is the product of two σ-finite measures and g(x, t) := χf>t(x) = χ[0,f(x))(t) is non-
negative, Tonelli’s theorem guarantees that∫ ∞

0

µ({f > t}) dν(t) =
∫ ∞

0

[∫
S

χ{f>t}(x) dµ(x)

]
dν(t)

=

∫
S

[∫ ∞

0

χ[0,f(x))(t) dν(t)

]
dµ(x)

=

∫
S

ν([0, f(x))) dµ(x) =

∫
S

f(x)p dµ(x).

On the other hand, applying the Radon-Nikodym derivative yields∫
S

f(x)p dµ(x) =

∫ ∞

0

µ({f > t}) dν

d(L1 [0,∞))
(t) dt = p

∫ ∞

0

tp−1 · µ({f > t}) dt.

HW 4

Problem 4.1: (The “layered” representation, Notes Problem 5.10). Let ν be a measure
on B([0,∞)) such that N(u) = ν([0, u)) < ∞ for all u ∈ R. Let (S,S, µ) be a σ-finite measure space.
For f ∈ L0

+(S), show that

1.
∫
N ◦ f dµ =

∫
[0,∞)

µ({f > u}) dν(u).
2. For p > 0 we have

∫
fp dµ = p

∫
[0,∞)

up−1µ({f > u}) du where du represents integration

with respect to the Lebesgue measure.

Solution:

1. First note that ν([0,∞)) ≤ 1, and so is a finite measure. Next consider g : S × [0,∞) by
g(x, u) = χ{f>u}(x) = χ[0,f(x))(u). Since µ⊗ ν is the product of two σ-finite measures and
g ≥ 0, Tonelli’s theorem guarantees that∫ ∞

0

µ({f > u}) dν(u) =
∫ ∞

0

[∫
S

χ{f>u}(x) dµ(x)

]
dν(u)

=

∫
S

[∫ ∞

0

χ[0,f(x))(u) dν(u)

]
dµ(x)

=

∫
S

ν([0, f(x))) dµ(x) =

∫
S

N(f(x)) dµ(x).

2. Let ν on B([0,∞)) be defined by

ν(E) =

∫
E

p · zp−1 dz.

It is clear that ν ≪ L1 [0,∞) and that dν/d(L1 [0,∞))(u) = pup−1. Note that ν({u}) = 0
for any u ∈ [0,∞) so that

ν([0, u)) = ν([0, u]) =

∫ u

0

p · zp−1 dz = zp
∣∣z=u

z=0
= up.

It follows that N(u) = up < ∞ for all u ∈ [0,∞) and so we may apply part 1. Doing so
yields∫
S

fp dµ =

∫
S

N ◦ f dµ =

∫ ∞

0

µ({f > u}) dν(u)

=

∫ ∞

0

µ({f > u}) dν

d(L1 [0,∞))
(u) dL1(u) =

∫ ∞

0

pup−1 · µ({f > u}) du.

Problem 4.2: (A Dirichlet integral, Notes Problem 5.11).
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1. Show that
∫∞
0

| sin(x)/x| dx = ∞. Hint: Find a function below | sin(x)/x| which is easier to
integrate.

2. For a > 0 let f : R2 → R be given by

f(x, y) =

{
e−xy sin(x) 0 ≤ x ≤ a, 0 ≤ y,

0 otherwise.

Show that f ∈ L1(R2,B(R2),L2), where L2 denotes the Lebesgue measure on R2.
3. Establish the equality∫ a

0

sinx

x
dx =

π

2
− cos(a)

∫ ∞

0

e−ay

1 + y2
dy − sin(a)

∫ ∞

0

ye−ay

1 + y2
dy.

4. Conclude that for a > 0, ∣∣∣∣ ∫ a

0

sin(x)

x
dx− π

2

∣∣∣∣ ≤ 2

a
,

so that lima→∞
∫ a

0
sin(x)/x dx = π/2.

Hint: You can use the fact (no need to prove it) that the Lebesgue integral (with respect to the
Lebesgue measure) of a continuous function on a compact interval coincides with its Riemann inte-
gral.

Solution:

1. Define f : [0,∞) → [0, 1] by

f(x) =

{
2/πx− 2k x ∈ [kπ, (k + 1/2)π)

−2/πx+ 2(k + 1) x ∈ [(k + 1/2)π, (k + 1)π).

The graph is a sawtooth which lies below | sin(x)| since all the maxima and minima occur
at the same locations and | sin(x)| is concave. Then,∫ ∞

0

∣∣∣∣ sin(x)x

∣∣∣∣ dx =

∞∑
k=0

[∫ (k+1/2)π

kπ

| sin(x)|
x

dx+

∫ (k+1)π

(k+1/2)π

| sin(x)|
x

dx

]

≥
∞∑
k=0

∫ (k+1/2)π

kπ

(
2

π
− 2k

x

)
dx+

∞∑
k=0

∫ (k+1)π

(k+1/2)π

(
− 2

π
+

2(k + 1)

x

)
dx

= −2

∞∑
k=0

k

∫ (k+1/2)π

kπ

1

x
dx+ 2

∞∑
k=0

(k + 1)

∫ (k+1)π

(k+1/2)π

1

x
dx

≥
∞∑
k=0

∫ (k+1/2)π

kπ

−2k

kπ
dx+

∞∑
k=0

∫ (k+1)π

(k+1/2)π

2(k + 1)

(k + 1)π
dx

∫ ∞

0

∣∣∣∣ sin(x)x

∣∣∣∣ dx =

∞∑
k=0

[∫ (k+1/2)π

kπ

| sin(x)|
x

dx+

∫ (k+1)π

(k+1/2)π

| sin(x)|
x

dx

]

≥
∞∑
k=0

∫ (k+1/2)π

kπ

| sin(x)|
x

dx ≥
∞∑
k=0

∫ (k+1/2)π

kπ

(
2

π
− 2k

x

)
dx

where we have used the fact that x 7→ 1/x is decreasing for x > 0.
2. We want to show that ∫

R2

|f(x, y)| dL2(x, y) < ∞.

Since L2 = L1 ⊗ L1 and |f | is non-negative, we can use Tonelli’s theorem to conclude that∫
R2

|f(x, y)| dL2(x, y) =

∫ a

0

[∫ ∞

0

e−xy| sin(x)| dy
]
dx =

∫ ∞

0

[∫ a

0

e−xy| sin(x)| dx
]
dy.
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The inner integral is easier to compute:∫ a

0

[∫ ∞

0

e−xy| sin(x)| dy
]
dx =

∫ a

0

| sin(x)|e
−xy

−x

∣∣∣∣y=∞

y=0

dx =

∫ a

0

| sin(x)|
x

dx.

Then since | sin(x)| ≤ |x| we have∫ a

0

| sin(x)|
x

dx ≤
∫ a

0

1 dx = a < ∞.

3. What is ∫ a

0

e−xy sin(x) dx?

Integration by parts twice yields∫ a

0

e−xy sin(x) dx = − cos(x)e−xy
∣∣x=a

x=0
−
∫ a

0

ye−xy cos(x) dx

= − cos(a)e−ay + 1− y

(
e−xy sin(x)

∣∣x=a

x=0
+

∫ a

0

ye−xy sin(x) dx

)
= − cos(a)e−ay + 1− ye−ay sin(a)− y2

∫ a

0

e−xy sin(x) dx

Thus, ∫ a

0

e−xy sin(x) dx =
1

1 + y2
− cos(a)

(
e−ay

1 + y2

)
− sin(a)

(
ye−ay

1 + y2

)
.

Integrating over y ≥ 0 finally gives∫ ∞

0

[∫ a

0

e−xy sin(x) dx

]
dy =

π

2
− cos(a)

∫ ∞

0

e−ay

1 + y2
dy − sin(a)

∫ ∞

0

ye−ay

1 + y2
dy.

If we could interchange the order of integration (Fubini’s theorem) we’d be done, as∫ ∞

0

[∫ a

0

e−xy sin(x) dx

]
dy =

∫ a

0

[∫ ∞

0

e−xy sin(x) dy

]
dx

=

∫ a

0

sin(x)e−xy

−x

∣∣∣∣y=∞

y=0

dx =

∫ a

0

sin(x)

x
dx.

So it suffices to show the conditions of Fubini’s theorem hold. To do this we just need that
f ∈ L0(R2) and f− ∈ L1(R2). As a piecewise continuous function f is measurable, so we
just check the latter. Observe that f is negative precisely when sin(x) is. Hence

f−(x, y) = −e−xy sin(x)χ{sin(·)<0}∩[0,a](x)χR≥0(y).

By Tonelli’s theorem, we can always interchange the order of integration for non-negative
functions. Hence,∫

R2

f−(x, y) dL2(x, y) =

∫
{sin(·)<0}∩[0,a]

[∫ ∞

0

−e−xy sin(x) dy

]
dx

=

∫
{sin(·)<0}∩[0,a]

− sin(x)

x
dx ≤ |{sin(·) < 0} ∩ [0, a]| ≤ a.

4. We have from 3 that∣∣∣∣ ∫ a

0

sin(x)

x
dx− π

2

∣∣∣∣ ≤ ∫ ∞

0

(1 + y)e−ay

1 + y2
dy

since | cos(a)|, | sin(a)| ≤ 1. Because t 7→ (1 + t)/(1 + t2) is continuous and has limit 0 as
t → ∞, it follows that it is bounded on [0,∞), say by C. Hence,∣∣∣∣ ∫ a

0

sin(x)

x
dx− π

2

∣∣∣∣ ≤ C

∫ ∞

0

e−ay dy =
C

a
.
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Problem 4.3: (Push-forward and Radon-Nikodym). Let µ and ν be σ-finite measures on
(S,S) with ν ≪ µ. For a measurable space (R,R) and a measurable map T : S → R, let

µT = T#µ and νT = T#ν

denote the push-forwards of µ and ν by T . Show that νT ≪ µT and find an expression for (a version
of) dνT /dµT in terms of T and dν/dµ.

Solution: We first show νT ≪ µT . Suppose µT (A) = 0. Then by definition of the push-forward,
0 = µT (A) = µ(T−1(A)). Now since ν ≪ µ and T−1(A) is µ-null, we have by absolute continuity of
ν with respect to µ that ν(T−1(A)) = 0 too. But this is precisely νT (A).

Technically speaking dνT /dµT is an equivalence class of functions, but here I will treat it just as
a function. It is defined by the integral equality∫

R

f dνT =

∫
R

f
dνT
dµT

dµT

for any f ∈ L0
+(R). So we just need to find a function which obeys this property. By the change of

variables for push-forward measures, if f, g ∈ L0
+(R) then∫

R

f dνT =

∫
S

f ◦ T dν,

∫
R

g dµT =

∫
S

g ◦ T dµ.

Hence, ∫
R

f dνT =

∫
S

f ◦ T dν =

∫
S

f ◦ T · dν
dµ

dµ

HW 5

Problem 5.1: (Notes Problem 6.16). An absolutely continuous random variable X is said to
have the standard normal distribution (denoted by X ∼ N(0, 1)), if it admits a density of the
form

f(x) =
1√
2π

e−x2/2, x ∈ R.

1. Show that ∫
R
f(x) dx = 1.

Hint : Consider the double integral∫
R2

f(x)f(y) dxdy

and pass to polar coordinates.
2. For X ∼ N(0, 1), show that E[|X|n] < ∞ for all n ∈ N. Then compute the n-th moment

E[Xn], for n ∈ N.
3. A random variable with the same distribution as X2, where X ∼ N(0, 1), is said to have

the χ2-distribution. Find an explicit expression for the density of the χ2-distribution.
4. Let Y have the χ2-distribution. Show that there exists a constant λ0 > 0 such that

E[exp(λY )] < ∞ for λ < λ0 and E[exp(λY )] = ∞ for λ ≥ λ0.

Note: For a random variable Y ∈ L0
+, the quantity E[exp(λY )] is called the exponen-

tial moment of order λ.
5. Let α0 > 0 be a fixed, but arbitrary constant. Find an example of a random variable X ≥ 0

with the property that E[Xα] < ∞ for α ≤ α0 and E[Xα] = ∞ for α > α0.

Note: This is not the same situation as in 4. - this time the critical case α0 is included
in a different alternative.

Solution:
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1. Because f ≥ 0, Tonelli’s theorem guarantees that F (x, y) := f(x)f(y) satisfies∫
R2

F (x, y) d(x, y) =

∫
R
f(y)

[∫
R
f(x) dx

]
dy =

[∫
R
f(x) dx

]2
.

So it suffices to show the former is equal to 1 (again, because f ≥ 0). Converting to polar
coordinates, we have∫

R2

F (x, y) d(x, y) =
1

2π

∫
R2

e−(x2+y2)/2 d(x, y) =

∫ 2π

0

[∫ ∞

0

re−r2/2dr

]
dθ

= − 1

2π

∫ 2π

0

e−r2/2

∣∣∣∣r=∞

r=0

dθ =
1

2π

∫ 2π

0

1 dθ = 1.

2. The expectation is

E[|X|n] =
∫
R
|x|n dµX(x) =

∫
R
|x|nf(x) dx

=
1√
2π

∫ ∞

−∞
|x|ne−x2/2 dx =

√
2

π

∫ ∞

0

xne−x2/2 dx.

Now set for t ∈ [1,∞)

I(t) =

∫ ∞

0

xte−x2/2 dx =

∫ ∞

0

xt−1 · xe−x2/2 dx.

Integration by parts yields for t > 1

I(t) = −xt−1e−x2/2

∣∣∣∣x=∞

x=0

+ (t− 1)

∫ ∞

0

xt−2 · e−x2/2 dx = (t− 1)I(t− 2).

In particular, for n ≥ 2

I(n) =


I(0)

k∏
i=1

(2i− 1) n = 2k

I(1)

k∏
i=1

(2i) n = 2k + 1.

Observing that

k∏
i=1

(2i− 1)

k∏
i=1

(2i) = (2k)!,

k∏
i=1

(2i) = 2kk!,

the above reduces to

I(n) =

I(0) · (2k)!
2kk!

n = 2k

I(1) · 2kk! n = 2k + 1

which is actually valid for all n ≥ 0. We now just need to compute I(0) and I(1). These are
simple:

I(0) =

∫ ∞

0

e−x2/2 dx =

√
π

2

∫ ∞

−∞
f(x) dx =

√
π

2
;

I(1) =

∫ ∞

0

xe−x2/2 dx = −e−x2/2

∣∣∣∣x=∞

x=0

= 1.

In total:

E[|X|n] =
√

2

π
I(n) =


(2k)!

2kk!
n = 2k

2kk!

√
2

π
n = 2k + 1.
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Thus E[|X|n] < ∞ for all n ∈ N. In principle to just estimate the expectation, one could
probably just split the integral in a desirable way. The above analysis lets us compute the
n-th moments immediately:

E[Xn] =

∫ ∞

−∞
xnf(x) dx =


(2k)!

2kk!
n = 2k

0 n = 2k + 1

owing to the symmetry.
3. Recall that

F (x) =

∫ x

−∞
f(t) dt

is absolutely continuous (as a function) and thus satisfies the fundamental theorem of cal-
culus:

F (b)− F (a) =

∫ b

a

f(t) dt, F ′(x) = f(x).

In particular for an absolutely continuous random variable with cdf F (x) and pdf f(x) it
follows that F ′(x) = f(x). Computing the cdf of X2 gives

FX2(x) = P[X2 ≤ x],

which is evidently zero if x < 0. For x ≥ 0 we can continue and write

FX2(x) = P[X2 ≤ x] = P[−
√
x ≤ X ≤

√
x]

= P[X ≤ x]− P[X < −
√
x] = P[X ≤

√
x]− (1− P[X ≥ −

√
x]).

To proceed let us write down P[X ≥ −
√
x] explicitly to rewrite it (one can do this heuristi-

cally using a graph of the pdf).

P[X ≥ −
√
x] = P[X−1([−

√
x,∞))] = µX([−

√
x,∞)) =

∫ ∞

−
√
x

f(t) dt.

Owing to the symmetry f(t) = f(−t) we get∫ ∞

−
√
x

f(t) dt =

∫ √
x

−∞
f(t) dt = P[X ≤

√
x].

In total:
FX2(x) = 2P[X ≤

√
x]− 1 = 2FX(

√
x)− 1

for x ≥ 0, and is zero for x < 0. Since F ′
X(x) = f(x) we have

fX2(x) = F ′
X2(x) = 2

d

dx
FX(

√
x) = 2f(

√
x) · x

−1/2

2
=

e−x/2

√
2πx

.

4. Writing out the expectation, we have

E[eλY ] =
∫ ∞

−∞
eλy dµY (y) =

∫ ∞

−∞
eλyfY (y) dy =

∫ ∞

0

e(λ−1/2)y

√
2πy

dy

Making the change of variables u2 = y we get

E[eλY ] = 2

∫ ∞

0

e(λ−1/2)u2

√
2π

du

which is clearly infinite when λ ≥ 1/2 and finite whenever λ < 1/2. Thus λ0 = 1/2.
5. As a heuristic we consider the following example. Let X be a random variable such that

µX =

∞∑
n=1

1

n2
δn.

Then the expectations are

E[Xα] =

∞∑
n=1

nα

n2
=

{
ζ(2− α) α < 1

∞ α ≥ 1.
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which is almost what we want for α0 = 1. The idea now is to try and modify by an expo-
nential factor to perturb the edge case.

Let Y be a random variable such that

µY =

∞∑
n=1

anδn, an > 0.

With X = eY the distribution becomes

µX =

∞∑
n=1

anδen

and so the moments are computed as

E[Xα] =

∫ ∞

−∞
xα dµX(x) =

∞∑
n=1

ane
αn.

At this point the rate of decay of the an matters, because if α > 0 then the exponential will
dominate any polynomial decay. Let α0 > 0 be given and set an = c · e−α0n/n2 where c is a
normalization constant, i.e.

c−1 =

∞∑
n=1

e−α0n

n2
≤

∞∑
n=1

1

n2
< ∞ ⇒

∞∑
n=1

an = 1.

Then substituting into the above we have

E[Xα] = c

∞∑
n=1

e(α−α0)n

n2
=

{
Cα α ≤ α0

∞ α > α0

for some Cα < ∞. The contribution 1/n2 is necessary to establish convergence when α = α0.

Problem 5.2: (Notes Problem 6.17). A random variable is said to have exponential distri-
bution with parameter λ > 0 – denoted by X ∼ Exp(λ) – if its distribution function FX is given
by

FX(x) = 0, and Fx(x) = 1− e−λx, for x ≥ 0.

1. Compute E[Xα], for α ∈ (−1,∞). Combine your result with the result of part 3. of the
previous problem to show that

Γ

(
1

2

)
=

√
π,

where Γ is the Gamma function.
2. Remember that the conditional probability P[A | B] of A, given B, for A,B ∈ F , P[B] > 0

is given by

P[A | B] =
P[A ∩B]

P[B]
.

Compute P[X ≥ x2 | X ≥ x1], for x2 > x1 > 0 and compare it to P[X ≥ (x2 − x1)].

Note: This can be interpreted as follows: the knowledge that the bulb stayed functional
until x1 does not change the probability that it will not burn in the next x2 − x1 units of
time; bulbs have no memory (at least in probability textbooks).

Conversely, suppose that Y is a random variable with the property that

P[Y ≥ y2 | Y ≥ y1] = P[Y ≥ (y2 − y1)], for all y2 > y1 > 0.

Show that Y ∼ Exp(λ) for some λ > 0.

Hint : You can use the following fact: let ϕ : (0,∞) → R be a Borel-measurable function
such that ϕ(y) + ϕ(z) = ϕ(y + z) for all y, z > 0. Then there exists a constant u ∈ R such
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that ϕ(y) = uy for all y > 0. Interestingly, ϕ does not have to be linear if the measurability
hypothesis is omitted.

Solution:

1. We recall that fX(x) = F ′
X(x) so that

E[Xα] =

∫ ∞

−∞
xαF ′

X(x) dx =

∫ ∞

0

λxαe−λx dx =
1

λα

∫ ∞

0

xαe−x dx.

Moreover, by definition

Γ(α) =

∫ ∞

0

xα−1e−x dx, α > 0

so

E[Xα] =
Γ(α+ 1)

λα
.

When λ = 1 and α = −1/2 we have

Γ

(
1

2

)
=

∫ ∞

0

e−x

√
x

dx =

∫ ∞

0

e−x/2

√
2x

dx =
√
π

∫ ∞

0

e−x/2

√
2πx

dx =
√
π.

We recognize the last integral as the integral of the pdf of the χ2-distribution, so that the
integral is just 1.

2. By definition

P[X ≥ x2 | X ≥ x1] =
P[{X ≥ x2} ∩ {X ≥ x1}]

P[X ≥ x1]
=

P[X ≥ x2]

P[X ≥ x1]
=

1− P[X ≤ x2]

1− P[X ≤ x1]
.

To justify the above, we must remark that X ∼ Exp(λ) and thus µX is atomless. Computing
1− P[X ≤ x] for x > 0 yields

1− P[X ≤ x] = 1− FX(x) = 1− [1− e−λx] = e−λx.

Particularly,

P[X ≥ x2 | X ≥ x1] =
e−λx2

e−λx1
= e−λ(x2−x1) = P[X ≥ (x2 − x1)].

On the other hand, let FY be the cdf of Y . The same work above holds with the following
modification

P[Y ≥ y2 | Y ≥ y1] =
1− P[Y < y2]

1− P[Y < y1]
,

as we do not know that µY is atomless. Combined with the assumption, we get

1− P[Y < (y2 − y1)] =
1− P[Y < y2]

1− P[Y < y1]
.

Let p(y) = 1−P[Y < y] for y > 0 – we implicitly assume p : (0,∞) → (0,∞) since if p(y) = 0
then the definition for conditional probability was meaningless (we need P[Y ≥ y1] > 0).
The above says for any y, z > 0 that p(y)p(z) = p(y + z). To see this replace y2 − y1 by y
and y1 by z, then rearrange. Defining ϕ(y) = log(p(y)) we get ϕ(y) + ϕ(z) = ϕ(y + z). Per
the hint, it means that there exists a u ∈ R such that ϕ(y) = uy for all y > 0. With λ = −u
we see that 1− P[Y < y] = e−λy, or that P[Y < y] = 1− e−λy for y > 0.

Since P[Y < y] is monotone in y and limy→0+ P[Y < y] = 0, it follows that P[Y < y]
for y ≤ 0. Finally let y∞ ∈ R and let {yn}∞n=1 ⊂ R be such that yn → y∞ and yn+1 ≤ yn,
e.g. yn = y∞ + 1/n. By dominated convergence of sets, since {Y < yn} form a decreasing
sequence of sets with P[Y < yn] < ∞ (trivially), and continuity of y 7→ P[Y < y] we get

P[Y < y∞] = lim
n→∞

P[Y < yn] = P

[ ∞⋂
n=1

{Y < yn}

]
= P[Y ≤ y∞].
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That is to say, we have shown the cdf of Y satisfies FY (y) = 0 for y ≤ 0 and FY (y) = 1−e−λy

for y > 0, i.e. Y ∼ Exp(λ).

Problem 5.3: (Scheffe’s lemma, Notes Problem 7.6). Let {Xn}n∈N be absolutely continu-
ous random variables with densities fXn

, such that fXn
→ f , λ-a.e., where f is the density of the

absolutely continuous random variable X and λ denotes the Lebesgue measure on R. Show that

Xn
D−→ X.

Hint : Show that ∫
R
|fXn − f | dλ → 0

by writing the integrand in terms of (f − fXn
)+ ≤ f .

Solution: Xn
D−→ X means that µXn

w−⇀ µX . Generally this occurs if for all ϕ ∈ Cb(R) we have∫
R
ϕ dµXn →

∫
R
ϕ dµX .

For absolutely continuous measures there is a nicer formulation. The above reads∫
R
ϕ(x)fXn

(x) dx →
∫
R
ϕ(x)f(x) dx,

which is implied by the stronger requirement that∫
R
ϕ(x)|fXn

(x)− f(x)| dx → 0.

Since ϕ(x) is bounded ∥ϕ∥L∞ < ∞ and we get∫
R
ϕ(x)|fXn

(x)− f(x)| dx ≤ ∥ϕ∥L∞(R)

∫
R
|fXn

(x)− f(x)| dx.

So it suffices to show that ∫
R
|fXn

(x)− f(x)| dx → 0.

Now observe for a real-valued function g that |g(x)| = g+(x)+g−(x) while g(x) = g+(x)−g−(x). In
turn |g(x)| = 2g+(x)−g(x). Applying this to g = f−fXn

yields |f−fXn
| = 2(f−fXn

)+−(f−fXn
).

Importantly,∫
Rn

|f − fXn | dx = 2

∫
R
(f − fXn)

+(x) dx−
∫
R
f(x) dx+

∫
R
fXn(x) dx = 2

∫
R
(f − fXn)

+(x) dx,

as f and the fXn are pdfs and integrate to 1. The trivial inequality (f − fXn)
+ ≤ f lets us apply

dominated convergence to conclude that

lim
n→∞

∫
R
(f − fXn

)+(x) dx = 0

as fXn
→ f a.e. implies (f − fXn

)+ → 0 a.e.

HW 6

Problem 6.1: (The multivariate normal distribution, Notes Problem 8.7). The charac-
teristic function φ = φX : Rn → C of a random vector X = (X1, ..., Xn) is given by

φ(t1, t2, ..., tn) = E

[
exp

(
i

n∑
k=1

tkXk

)]
for t1, ..., tn ∈ R. We will use the shortcut t for (t1, ..., tn) and t · X for the random variable∑n

k=1 tkXk. Take for granted the following fact (the proof of which is similar to the proof of the
1-dimensional case): Random vectors X1 and X2 have the same distribution if φX1

(t) = φX2
(t)

for all t ∈ Rn, and prove the statements below:

1. Random variables X and Y are independent if and only if φ(X,Y )(t1, t2) = φX(t1)φY (t2) for
all t1, t2 ∈ R.
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2. Random vectors X1 and X2 have the same distribution if and only if random variables
t ·X1 and t ·X2 have the same distribution for all t ∈ Rn. (This fact is known as Wald’s
device.)

An n-dimensional random vector X is said to be Gaussian (or, to have the multivariate normal
distribution) if there exists a vector µ ∈ Rn and a symmetric positive semi-definite matrix Σ ∈ Rn×n

such that

φX(t) = exp

(
i⟨t,µ⟩ − 1

2
tTΣt

)
,

where t is interpreted as a column vector, and ()T is transposition. This is denoted as X ∼ N (µ,Σ).
X is said to be non-degenerate if Σ is positive definite. Note that, according to this definition, every
constant random variable is automatically Gaussian.

3. Show that a random vector X is Gaussian, if and only if the random vector t ·X is normally
distributed (with some mean and variance) for each t ∈ Rn. Note: Be careful, nothing in
the second statement tells you what the mean and variance of t ·X are.

4. Let X = (X1, X2, ..., Xn) be a Gaussian random vector. Show that Xk and Xl, k ̸= l, are
independent if and only if they are uncorrelated.

5. Construct a random vector (X,Y ) such that both X and Y are normally distributed, but
that X = (X,Y ) is not Gaussian.

6. Let X = (X1, X2, ..., Xn) be a random vector consisting of n independent random variables
with Xi ∼ N (0, 1). Let Σ ∈ Rn×n be a given positive semi-definite symmetric matrix, and
µ ∈ Rn a given vector. Show that there exists an affine transformation T : Rn → Rn such
that the random vector T (X) is Gaussian with T (X) ∼ N(µ,Σ).

Solution:

1. Suppose first that X and Y are independent. By definition of the characteristic function,

φ(X,Y )(t1, t2) = E[ei(t1X+t2Y )] =

∫
R2

ei(t1x+t2y) dµ(X,Y )(x, y)

=

∫
R2

eit1xeit2y dµ(X,Y )(x, y).

Owing to independence we have that µ(X,Y ) = µX ⊗ µY so that∫
R2

eit1xeit2y dµ(X,Y )(x, y) =

∫
R2

eit1xeit2y d(µX ⊗ µY )(x, y)

But, Fubini’s theorem (valid even in the complex-valued case) yields∫
R2

eit1xeit2y d(µX ⊗ µY )(x, y) =

∫
R

∫
R
eit1xeit2y dµX(x)dµY (y)

=

∫
R
eit1x dµX(x)

∫
R
eit2y dµY (y) = φX(t1)φY (t2).

On the other hand suppose that φ(X,Y )(t1, t2) = φX(t1)φY (t2) for all t1, t2 ∈ R. The only
line above which used independence is the third middle display. Particularly the last display
reads φµX⊗µY

(t1, t2) = φX(t1)φY (t2). Owing to the assumption, and the notation that
φ(X,Y ) = φµ(X,Y )

we have

φµ(X,Y )
(t1, t2) = φµX⊗µY

(t1, t2)

for all t1, t2 ∈ R. It follows by the provided fact taken for granted that µ(X,Y ) = µX ⊗ µY ,
i.e. X and Y are independent.
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2. Let t = (t1, ..., tn) ∈ Rn and X = (X1, ..., Xn) so that t ·X = t1X1 + ...+ tnXn. Then for
s ∈ R we have

φt·X(s) = E[eist·X ] = E

[
exp

(
is

(
n∑

k=1

tkXn

))]

= E

[
exp

(
i

n∑
k=1

stkXn

)]
= φX(st),

where st := (st1, ..., stn). Assuming t · X1 and t · X2 have the same distribution for all
t ∈ Rn, it follows that φt·X1(s) = φt·X2(s) for all s ∈ R. In particular by testing at s = 1
we see that φX1(t) = φX2(t) for all t ∈ Rn. By the fact taken for granted, this means
precisely that X1 and X2 have the same distribution. Now, X1 and X2 have the same
distribution then φX1

(t) = φX2
(t) for all t ∈ Rn. Let t ∈ Rn and s ∈ R. Then applying

this to t̄ = st we have that

φt·X1(s) = φX1(st) = φX2(st) = φt·X2(s),

i.e. for any t ∈ Rn the functions φt·X1
and φt·X2

are equal. This once again means that
t ·X1 and t ·X2 have the same distribution.

3. Suppose first that t·X is normally distributed for each t ∈ Rn. To show thatX is Gaussian it
suffices to compute its characteristic function. We previously showed that φX(st) = φt·X(s).
Taking s = 1 we see φX(t) = φt·X(1). Thus we aim to explicitly compute φt·X(s) for any
t ∈ Rn. Fixing t ∈ Rn, since t · X is normally distributed there exist µt ∈ R and σt > 0
such that

φt·X(s) = eiµts−1/2σ2
ts

2

.

Moreover, it follows that all the n-th moments of the random variable t ·X exist for n ∈ N.
In particular, we may compute the first and second moments as:

E[t ·X] = (−i)
d

ds

[
eiµt−1/2σ2

ts
2
]
s=0

= −i
[
(iµt − σ2

t s)e
iµt−1/2σ2

ts
2
]
s=0

= µt

E[(t ·X)2] = (−i)2
d2

d2s
φt·X(s)

∣∣∣∣
s=0

= − d2

d2s

[
eiµts−1/2σ2

ts
2
]
s=0

= − d

ds

[(
iµt − σ2

t s
)
eiµts−1/2σ2

ts
2
]
s=0

= −
[
−σ2

t e
iµts−1/2σ2

ts
2

+
(
iµt − σ2

t s
)2

eiµts−1/2σ2
ts

2
]
s=0

= −
[
−σ2

t + (iµt)
2
]
= σ2

t + µ2
t = σ2

t + E[t ·X]2.

Recalling that Var(t ·X) = E[(t ·X)2]−E[t ·X]2, we see that σ2
t = Var(t ·X). In total we

have shown for any t ∈ Rn that

φX(t) = φt·X(1) = eiµt−1/2σ2
t = eiE[t·X]−1/2Var(t·X).

ForX to be Gaussian there must be µ ∈ Rn andΣ an n×n symmetric, positive semi-definite
matrix such that

φX(t) = ei⟨t,µ⟩−1/2tTΣt.

So we make the ansatz that there exist µ and Σ such that

⟨t,µ⟩ = E[t ·X], tTΣt = Var(t ·X).

Finding µ is easy. Noting that µk = ⟨ek,µ⟩ and that ek ·X = Xk we have

µ = (E[X1], ...,E[Xn]) .

For Σ a generic symmetric n× n matrix we have that

tTΣt =

n∑
j=1

tj

n∑
k=1

(Σ)jktk =

n∑
j=1

t2j (Σ)jj + 2
∑
j>k

n∑
k=1

tjtk(Σ)jk.
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Thus to determine Σ such that tTΣt = Var(t ·X) we must express the latter as above:

Var(t ·X) = E[(t ·X)2]− E[t ·X]2

= E[(t1X1 + ...+ tnXn)
2]− E[t1X1 + ...+ tnXn]

2

=

 n∑
j=1

t2jE[X2
j ] + 2

∑
j>k

n∑
k=1

tjtkE[XjXk]


−

 n∑
j=1

t2jE[Xj ]
2 + 2

∑
j>k

n∑
k=1

tjtkE[Xj ]E[Xk]


=

n∑
j=1

t2j
(
E[X2

j ]− E[Xj ]
2
)
+ 2

∑
j>k

n∑
k=1

tjtk (E[XjXk]− E[Xj ]E[Xk])

=

n∑
j=1

t2j Cov(Xj , Xj) + 2
∑
j>k

tjtk Cov(Xj , Xk).

Setting (Σ)jk = Cov(Xj , Xk) we have tTΣt = Var(t ·X) = σ2
t > 0. So indeed

φX(t) = ei⟨t,µ⟩−1/2tTΣt,

for some µ ∈ R and Σ an n×n symmetric positive semi-definite matrix. In particular, these
are given by

(µ)k = E[Xk], (Σ)jk = Cov(Xj , Xk).

Suppose now that X is Gaussian. Then we can write

φt·X(s) = φX(st) = ei⟨st,µ⟩−1/2(st)TΣ(st) = φX(st) = ei⟨t,µ⟩s−1/2tTΣts2

for any s ∈ R and t ∈ Rn, and some µ ∈ Rn and Σ an n× n positive semi-definite matrix.
Setting µt = ⟨t,µ⟩ and σt = (tTΣt)1/2, which is well defined sinceΣ is positive semi-definite,
we see that t ·X ∼ N (µt, σt).

4. Recall that independent random variables are uncorrelated. It suffices then to prove that if
X is a random vector then Xk and Xl, for k ̸= l, are independent if they are uncorrelated.
Assuming they are uncorrelated, we have Cov(Xj , Xk) = 0. In particular the random vector
X̄ = (Xj , Xk) is such that Σ̄ is diagonal. Hence for t ∈ R2 we have

tT
(
Var(Xj) 0

0 Var(Xk)

)
t = t21 Var(Xj) + t22 Var(Xk).

It follows that

φX̄(t1, t2) = ei(t1E[Xj ]+t2E[Xk])−1/2(t21 Var(Xj)+t22 Var(Xk))

= eit1E[Xj ]−1/2t21 Var(Xj)eit2E[Xk]−1/2t22 Var(Xk) = φXj
(t1)φXk

(t2).

By part 1, Xj and Xk are independent.
5. We saw in part 3 that X is Gaussian whenever t1X + t2Y is normally distributed for any

(t1, t2) ∈ R. We thus aim to construct X and Y such that X+Y in particular is not normally
distributed.

Let X and X ′ be independent. Suppose that X is normally distributed with mean zero
and

P[X ′ ≥ 0] = P[X ′ < 0] =
1

2
.

Let Y = X · sgn(X ′). For B ∈ B(R) note that

[{X ∈ B} ∩ {X ′ ≥ 0}] ∪ [{X ∈ −B} ∩ {X ′ < 0}] = {Y ∈ B}

where −B = {−x ∈ R | x ∈ B}. Since the former two sets are disjoint,

µY (B) = P[Y ∈ B] = P[{X ∈ B} ∩ {X ′ ≥ 0}] + P[{X ∈ −B} ∩ {X ′ < 0}].
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Owing to independence we have

P[{X ∈ B} ∩ {X ′ ≥ 0}] = P[X ∈ B] · P[X ′ ≥ 0] =
1

2
P[X ∈ B]

since X ′ is normally distributed. Similarly we have

P[{X ∈ −B} ∩ {X ′ < 0}] = P[X ∈ B] · P[X ′ < 0] =
1

2
P[X ∈ −B] =

1

2
P[X ∈ B],

where we use the fact that the pdf of X is symmetric about the origin. Consequently
µY (B) = µX(B) for all B ∈ B(R) and Y is normally distributed. However,

P[X + Y = 0] = P[X(1 + sgn(X ′)) = 0] = P[X = 0] + P[{X ̸= 0} ∩ {X ′ < 0}]

= P[X ̸= 0] · P[X ′ < 0] = P[X ′ < 0] =
1

2
.

Since normal distributions are absolutely continuous, it follows that X + Y is not normally
distributed.

6. Affine transformations are characterized as T (x) = Ax + b where A ∈ Rn×n and b ∈ Rn.
Then

T (X)k =
n∑

j=1

AkjXj + bk

and the characteristic function of T (X) is then given by

φT (X)(t) = E

[
exp

(
i

n∑
k=1

tkT (X)k

)]
= E

exp
i

n∑
k=1

tk

 n∑
j=1

AkjXj + bk


= ei⟨t,b⟩E

exp
i

n∑
j=1

(
n∑

k=1

tkAkj

)
Xj

 = ei⟨t,b⟩φX

(
n∑

k=1

tkAk1, ...,

n∑
k=1

tkAkn

)
.

Since Xi ∼ N (0, 1) it follows that

φX(s) = e−1/2|s|2 .

Hence,

φX

(
n∑

k=1

tkAk1, ...,

n∑
k=1

tkAkn

)
= exp

−1

2

n∑
j=1

(
n∑

k=1

tkAkj

)2


= exp

−1

2

n∑
j=1

(
n∑

k=1

t2kA
2
kj +

∑
m>k

n∑
k=1

tktmAkjAmj

)
= exp

−1

2

 n∑
k=1

t2k

n∑
j=1

A2
kj +

∑
m>k

n∑
k=1

tktm

n∑
j=1

AkjAmj


= exp

(
−1

2
tTAAT t

)
.

In total,

φT (X)(t) = ei⟨t,b⟩−1/2tTAAT t.

If we want T (X) ∼ N (µ,Σ) then we simply need to choose b = µ and find A ∈ Rn×n such
that AAT = Σ. Equivalently, ATA = Σ. Since Σ is positive semi-definite there exists Σ1/2.
As Σ is symmetric so too is Σ1/2. So, choose A = Σ1/2.

Problem 6.2: (Notes Problem 8.5). Let µ be a probability measure on B(R), and let φ = φµ

be its characteristic function.

1. Show that

µ({a}) = lim
T→∞

1

2T

∫ T

−T

e−itaφ(t) dt.
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2. Show that µ has no atoms if limt→∞ |φ(t)| = limt→−∞ |φ(t)| = 0.
3. Let {Xn}∞n=1 be a sequence of independent random variables with P[Xn = ±1] = 1/2 and

let Y =
∑∞

k=1 3
−kXk. Use the distribution of Y to show the converse of 2 above does not

hold.

Hint : Evaluate φY (tm) along a well-chosen geometric sequence {tm}∞m=1. Use and prove
the inequality log(cos(x)) ≥ −x2 for x small enough, to make sure that φY (tm) ̸→ 0.

Solution:

1. Mimicking the proof of the inversion formula, we consider the integral

IT (a) =
1

2T

∫ T

−T

e−itaφ(t) dt =
1

2T

∫ T

−T

∫ ∞

−∞
e−itaeitx dµ(x)dt =

1

2T

∫ T

−T

∫ ∞

−∞
eit(x−a) dµ(x)dt.

Note that
1

2T

∫ T

−T

∫ ∞

−∞
|eit(x−a)| dµ(x)dt ≤ 1

2T

∫ T

−T

µ(R) dt = 1,

so that Fubini’s theorem guarantees

IT (a) =
1

2T

∫ ∞

−∞

∫ T

−T

eit(x−a) dtdµ(x)

=
1

2T

∫ ∞

−∞

∫ T

−T

(cos(t(x− a)) + i sin(t(x− a)) dtdµ(x)

=

∫ ∞

−∞

1

2T

∫ T

−T

cos(t(x− a)) dtdµ(x).

We now aim to show that

lim
T→∞

1

2T

∫ T

−T

cos(t(x− a)) dt =

{
1 x = a

0 x ̸= a.

Clearly the above holds when x = a. Suppose that x ̸= a, then∫ T

−T

cos(t(x− a)) dt =
2 sin(T (x− a))

x− a
≤ 2

x− a
.

Consequently

lim
T→∞

1

2T

∫ T

−T

cos(t(x− a)) dt ≤ lim
T→∞

1

T (x− a)
= 0.

Hence,

lim
T→∞

IT (a) =

∫ ∞

−∞
lim

T→∞

1

2T

∫ T

−T

cos(t(x− a)) dtdµ(x) =

∫ ∞

−∞
χ{a} dµ(x) = µ({a}).

2. Let ϵ > 0. Then there exists a T > 0 such that for |t| ≥ T0 we have |φ(t)| < ϵ. Then for
T > T0,

1

2T

∫ T

−T

e−itaφ(t) dt =
1

2T

(∫ −T0

−T

e−itaφ(t) dt+

∫ T0

−T0

e−itaφ(t) dt+

∫ T

T0

e−itaφ(t) dt

)

<
1

2T

(
ϵ

∫ −T0

−T

e−ita dt+ 2T0 + ϵ

∫ T

T0

e−ita dt

)

=
1

2T

(
2T0 + ϵ

(
eiTa − eiT0a

ia

)
+ ϵ

(
e−iT0a − e−iTa

ia

))
=

1

T

(
T0 + ϵ

(
sin(Ta)− sin(T0a)

a

))
= ϵ

(
sin(Ta)

Ta

)
+

C(ϵ, a)

T
.
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As sin(t)/t → 0 as T → ∞, it follows that

µ({a}) = lim
T→∞

1

2T

∫ T

−T

e−itaφ(t) dt = lim
T→∞

(
ϵ

(
sin(Ta)

Ta

)
+

C(ϵ, a)

T

)
= 0.

3. We prove the inequality in the hint first. Let f : (−π/2, π/2) → R be given by f(x) =
log(cos(x)). Then f is analytic and

f ′(x) = − tan(x), f ′′(x) = − sec(x)2,

f ′′′(x) = −2 sec(x)2 tan(x), f ′′′′(x) = −4 sec(x)2 tan(x)2 − 2 sec(x)4

It follows that

f(0) = 0, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0, f ′′′′(0) = −2.

The second order Taylor approximation of f(x) at x = 0 is thus −1/2x2, and since the
next non-zero derivative is negative, for small x we have −1/2x2 ≥ f(x). Moreover, for any
a < −1/2 we have ax2 < f(x) in a neighborhood of zero.

Since all the Xn are independent, we have that

φY (t) =

∞∏
k=1

φ3−kXk
(t) =

∞∏
k=1

φ3−kXk
(t) =

∞∏
k=1

φXk
(3−kt).

Since P[X = 1] = P[X = −1] = 1/2, it follows that µXn
= 1/2δ−1 + 1/2δ1 for all n, and

thus φXn(t) = cos(t). Consequently,

φY (t) =

∞∏
k=1

cos(3−kt).

Note now that

φY (3t) =

∞∏
k=1

cos(3−k+1t) = cos(t)

∞∏
k=2

cos(3−k+1t) = cos(t)φY (t).

We aim to choose tm so that φY (tm) is independent of m. To this end let tm = c ·am. Then
we need 3tm = tm+1, so that 3 · am = am+1. Hence, a = 3. Next we need cos(c · am) = 1.
Since am is always an integer it suffices to choose c = 0, 2π, .... We also want tm → ∞, so
choose e.g. c = 2π. Hence we select tm = 2π · 3m.

To show that φY (tm) ̸→ 0 it suffices to show φY (2π) ̸= 0, as φY (tm) = φY (2π). Equiva-
lently, we prove log(φY (2π)) > −∞. Note that

log(φY (t)) =

∞∑
k=1

log(cos(3−kt))

for small t. Per the hint, we want to estimate log(cos(2π/3k)). The issue is that 2π/3k may be
too large to apply the hint. Let M ≥ 0 be such that for |x| ≤ M we have log(cos(x)) ≥ −x2.
Choose K ∈ N large enough so that 2π/3k ≤ M for all k ≥ K. Then,

log(φY (2π)) =

K−1∑
k=1

log(cos(2π/3k)) +

∞∑
k=K

log(cos(2π/3k))

≥
K−1∑
k=1

log(cos(2π/3k))− 4π2
∞∑

k=K

1

9k
> −∞.

Problem 6.3: (Notes Problem 8.9).

1. Let {Xn}∞n=1 be a sequence of normally-distributed random variables converging in distri-
bution towards a random variable X. Show that
a) E[Xn] → E[X] and Var(Xn) → Var(X), and that
b) X must be normally distributed itself.
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Hint : You can use, without proof, the following fact from analysis: if {µn}∞n=1 ⊆ R has the
property that eitµn converges in R for each t, then the sequence µn must be convergent in
R.

2. Let Xn be a sequence of random variables in Lp such that Xn → X, a.s., and E[|Xn|p] →
E[|X|p], for some X ∈ Lp. Show that Xn

Lp

−−→ X. Hint : Use the inequality 2p(|Xn|p +
|X|p)− |Xn −X|p ≥ 0.

3. Show that for sequences of normal random variables, the almost-sure convergence implies
the convergence in Lp for each p.

Solution:

1. Recall that since the Xn are normally distributed there exist µn ∈ R and σn > 0 such that

φXn
(t) = eitµn−1/2σ2

nt
2

.

a) Since x 7→ eitx is continuous and bounded it follows that µXn

w−⇀ µX implying

φXn
(t) = E[eitXn ] → E[eitX ] = φX(t).

The goal is to find µ ∈ R and σ ≥ 0 such that

φX(t) = eitµ−1/2σ2t2 .

Analyzing the modulus, we have that

|φXn
(t)| = e−1/2σ2

nt
2

converges to |φX(t)|. In particular, this holds at t = 1 so that

σn →
√

−2 log(|φX(1)|) := σ ≥ 0

Now we establish convergence of the µn. Since

φX(t) = lim
n→∞

[
eitµn−1/2σ2

nt
2
]

=
[
lim
n→∞

eitµn

]
·
[
lim
n→∞

e−1/2σ2
nt

2
]
= e−1/2σ2t2

[
lim
n→∞

eitµn

]
,

it follows that the last limit exists and is such that

lim
n→∞

eitµn = e1/2σ
2t2φX(t).

Via the hint we see that {µn}∞n=1 converges to some µ ∈ R.

Showing that µ = E[X] and σ = Var(X) is deferred to the next part.
b) To show that X ∼ N (µ, σ) just note that by continuity of the exponential

φX(t) = lim
n→∞

φXn
(t) = lim

n→∞
eitµn−1/2σ2

nt
2

= eitµ−1/2σ2t2 .

2. We say that Xn
Lp

−−→ X if E[|Xn−X|p] → 0. Since Xn → X a.s. we have that |Xn−X|p → 0
a.s. Moreover since E[|Xn|p] → E[|X|p] we have for ϵ > 0 that there exists N ∈ N such that
for n ≥ N ,

E[|X|p]− ϵ < E[|Xn|p] < E[|X|p] + ϵ.

In particular, for all n ∈ N we have

E[|Xn|p] ≤ max{E[|X1|p], ...E[|XN−1|p],E[|X|p] + ϵ} := Mϵ.

Finally, via the upper bound we have

E[2p(|Xn|p + |X|p)] ≤ 2p(E[|Xn|p] + E[|X|p]) < 2p(E[|X|p] +Mϵ) < ∞.

Hence the inequality in the hint, |Xn−X|p ≤ 2p(|Xn|p+|X|), allows for the use of dominated
convergence to conclude.
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3. I’m not entirely sure. My best guess is to consider new random variables Yn = µn + σnχ
and Y = µ + σχ where χ ∼ N (0, 1), which has the same distribution as the Xn and X by
problem 5.1 part 6. Via problem 5.3 part 2, it suffices to prove that E[|Yn|p] → E[|Y |p]. This
seems reasonable, as the almost-sure convergence of Xn to X implies µn → µ and σn → σ,
so for n large enough ||Yn|p − |Y |p| < ϵ. Then,

|Yn|p ≤ |Y |p + |Yn − Y |p < |Y |p + ϵ

for large n, and so the sequence is dominated by |Y |p + ϵ (integrable since the measure is
finite). Finally E[|Xn|p] = E[|Yn|p] → E[|Y |p] = E[|X|p] by dominated convergence.

Final

Problem F.1: (Doob’s lemma). Let X be a random variable on the probability space (Ω,F ,P)
and let G = σ(X) be the σ-algebra generated by X. Show that for any random variable Y , measur-
able with respect to G, there exists a Borel function h : R → R such that Y = h(X).

Solution: Suppose first that Y = χX−1(B) for some B ∈ B(R). Then

h(X(ω)) = Y (ω) = χX−1(B)(ω) =

{
1 ω ∈ X(B)

0 ω /∈ X(B)
,

i.e. h(x) is an indicator function and must be h = χB . By linearity we have that if Y is a simple
function then

Y =

n∑
i=1

aiχX−1(Bi) =

n∑
i=1

aiχBi
(X) =

(
n∑

i=1

aiχBi

)
(X)

so that the conclusion holds for simple functions too. Now if Y ≥ 0 is G-measurable then there
exists a sequence Y1 ≤ Y2 ≤ ... ≤ Y of simple G-measurable functions Yi ≥ 0 such that

Y (ω) = lim
i→∞

Yi(ω)

for all ω ∈ Ω. Let hi be the representative for each Yi, that is Yi = hi(X), and define

h(x) = sup
i∈N

hi(x).

On the one hand, Yi ≤ Y for all i ∈ N so that hi(X(ω)) ≤ Y (ω). Taking the sup over i ∈ N gives
h(X(ω)) ≤ Y (ω). On the other hand,

Y (ω) = lim
i→∞

Yi(ω) = lim sup
i→∞

hi(X(ω)) = lim
n→∞

sup
i≥n

hi(X(ω)) ≤ h(X(ω)).

Consequently Y (ω) = h(X(ω)). This implies in particular that h takes finite values. As h is the
supremum of B(R) measurable functions, it too is B(R) measurable. Finally, for generic Y , write
Y = Y + − Y − and find h+ and h− such that Y ± = h±(X). Then owing to linearity Y = h(X) for
h = h+ − h−.

Problem F.2: (Barndorff-Nielsen’s extension of the Borel-Cantelli lemma). Let {An}∞n=1

be a sequence of events.

1. Show that
(lim sup

n→∞
An) ∩ (lim sup

n→∞
Ac

n) ⊆ lim sup
n→∞

(An ∩Ac
n+1).

2. If lim infn→∞ P[An] = 0 and
∑

n P[An ∩Ac
n+1] < ∞, show that P[lim supn→∞ An] = 0.

Solution:

1. Recall that

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
k=n

Ak.

We need to show that for every n ∈ N there exists kn ≥ n such that ω ∈ Akn
∩ Ac

kn+1.
By definition, ω ∈ (lim supn→∞ An) ∩ (lim supn→∞ Ac

n) if for every n ∈ N there exists
k1n, k

2
n ≥ n such that ω ∈ Ak1

n
∩ Ac

k2
n
. Without loss of generality assume k2n > k1n; this

can be done, for example, by replacing k2n by k2n′ with n′ > k1n if necessary. Now define
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f(k1n, k
2
n) =

∑k2
n

i=k1
n
χAc

i
(ω). Note that there exists k1n ≤ i < k2n for which ω ∈ Ai ∩ Ac

i+1 if

and only if f(k1n, k
2
n) > 0; the forward implication is trivial while for the reverse one we may

find an i > k1n for which ω ∈ Ac
i , then choose the smallest such i. But f(k1n, k

2
n) > 0 since

ω ∈ χAc
k2
n

.

2. Borel-Cantelli guarantees that
∑

n P[An∩Ac
n+1] < ∞ implies P[lim supn→∞(An∩Ac

n+1)] = 0.
Let A = lim supn→∞ An and B = lim supn→∞ Ac

n. By monotonicity and part 1, it follows
that P[A ∩B] = 0. Noting that

P[A ∪B] = P[A] + P[B]− 2P[A ∩B] = P[A] + P[B],

it suffices to show that P[B] = P[A ∪B]. Since lim infn→∞ P[An] = 0, it follows

lim sup
n→∞

P[Ac
n] = lim sup

n→∞
(1− P[An]) = 1− lim inf

n→∞
P[An] = 1.

Note that the sets ∪∞
k=nA

c
k are decreasing, so that by dominated convergence (valid in a

finite measure space) we have

P[B] = P[lim sup
n→∞

Ac
n] = P

[ ∞⋂
n=1

∞⋃
k=n

Ac
k

]
= lim

n→∞
P

[ ∞⋃
k=n

Ac
k

]

= lim sup
n→∞

P

[ ∞⋃
k=n

Ac
k

]
≥ lim sup

n→∞
P[Ac

n] = 1.

Accordingly, P[B] = 1. Now for any ω ∈ Ω and n ∈ N either ω ∈ An or ω ∈ Ac
n. Hence

ω is in either infinitely many of the An or infinitely many of the Ac
n, i.e. ω ∈ A ∪ B. So

P[A ∪B] = P[Ω] = 1 and we conclude.

Problem F.3: (A criterion for membership in L logL). Let X be a non-negative random
variable, and let F be its cumulative distribution function (cdf). Show that

E[X log+(X)] < ∞ if and only if

∫ ∞

1

∫ ∞

1

(1− F (uv)) dudv < ∞,

where log+(x) = max(log(x), 0).

Solution: Observe that, making the change of variables t = uv, we get∫ ∞

1

∫ ∞

1

(1− F (uv)) dudv =

∫ ∞

1

1

v

∫ ∞

v

(1− F (t)) dtdv.

Let us evaluate the inner integral. By an application of Fubini,∫ ∞

v

(1− F (t)) dt =

∫ ∞

v

P[X > t] dt =

∫ ∞

v

∫
Ω

χ{X>t}(ω) dPdt

=

∫
Ω

∫ ∞

v

χ{X>t}(ω) dtdP = E
[∫ ∞

v

χ{X>t} dt

]
Now, ∫ ∞

v

χ{X>t}(ω) dt =

∫
R
χ(v,∞)(t)χ(−∞,X(ω))(t) dt =

∫
R
χ(v,X(ω))(t)

=

{
0 v ≥ X(ω)

X(ω)− v v < X(ω)
=

{
0 v −X(ω) ≥ 0

X(ω)− v X(ω)− v > 0

= (X(ω)− v)+.

In total, ∫ ∞

v

(1− F (t)) dt = E[(X − v)+]
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and so returning to the original integral,∫ ∞

1

∫ ∞

1

(1− F (uv)) dudv =

∫ ∞

1

1

v
E[(X − v)+] dv = E

[∫ ∞

1

1

v
(X − v)+ dv

]
=

∫ ∞

−∞

∫ ∞

1

1

v
(x− v)+ dvdµX(x) =

∫ ∞

1

∫ x

1

1

v
(x− v) dvdµX(x)

=

∫ ∞

1

∫ x

1

(x
v
− 1
)

dvdµX(x) =

∫ ∞

1

(x log(x)− (x− 1)) dµX(x)

On the other hand,

E[X log+(X)] =

∫ ∞

1

x log(x) dµX(x)

Evidently x log(x) ≥ x log(x)− x+ 1 for x ≥ 1 so that

E[X log+(X)] ≥
∫ ∞

1

∫ ∞

1

(1− F (uv)) dudv,

proving the forward implication. For the reverse assume that∫ ∞

1

(x log(x)− (x− 1)) dµX(x) =

∫ ∞

1

∫ ∞

1

(1− F (uv)) dudv < ∞.

Fix now x0 ≥ 1. It suffices to find C > 0 such that C(x log(x)− x+ 1) ≥ x log(x) on [x0,∞) as

∞ > C

∫ ∞

1

(x log(x)− x+ 1) dµX(x) ≥ C

∫ x0

1

(x log(x)− x+ 1) +

∫ ∞

x0

x log(x) dµX(x).

Owing to the fact that both x log(x) and x log(x)− x+1 are non-negative on [1,∞) this implies, in
particular, that ∫ ∞

x0

x log(x) dµX(x) < ∞

which is enough to conclude∫ ∞

1

x log(x) dµX(x) =

∫ x0

1

x log(x) dµX(x) +

∫ ∞

x0

x log(x) dµX(x) < ∞.

Observe that x log(x) is monotone increasing on [1,∞), hence C(x log(x) − x + 1) is too for any
C > 0. There is one intersection point at x = 1, so for another to exist at say x0 > 1 we just need
to check that C(x log(x)− x+ 1) grows faster than x log(x) for judiciously chosen C > 0. But,

d

dx
(x log(x)) = log(x) + 1,

d

dx
(C(x log(x)− x+ 1)) = C log(x).

Thus the latter eventually grows faster for any C > 1, and there is some x0 > 1 for which C(x log(x)−
x+ 1) ≥ x log(x) on [x0,∞).

Problem F.4: (The “Chi-squared” and “Student’s t” distributions). Let {Xk}∞k=1 be an
iid sequence of standard normal random variables.

1. Given d ∈ N, the distribution of the random variable X2
1 + ...+X2

d is called the chi-squared
distribution with d degrees of freedom, denoted by χ2(d). Compute its pdf.

Hint : Use the convolutional identity gα∗gβ = gα+β , where gα(x) = xα−1 exp(−x/2)/(2αΓ(α))χ{x>0},
and Γ is the Gamma function.

2. For n ∈ N, let X be the random (row) vector X = (X1, ..., Xn) and let M be a n × n
symmetric matrix such that M2 = M . What is the distribution of XMXT ?

Hint : Use the properties of the multivariate normal from Problem 5.1 in HW5.
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3. For n ≥ 2, what is the joint distribution of Q2 :=
∑n

i=1(Xi − X̄)2 and X̄ := 1/n(X1 + ...+
Xn)?

Hint : Same hint as in 2 above.

4. Show that there exists a constant C ′, which depends only on n, such that the pdf of the
random variable

T =

√
nX̄√

Q2/(n− 1)

is given by

fT (t) = C ′
(
1 +

t2

d

)−(d+1)/2

where d = n− 1.

Note: The distribution of T is called the Student’s t distribution with d degrees of
freedom and is denoted by t(d). The value of the constant C ′ turns out to be Γ((d +

1)/2)/(
√
πdΓ(d/2)). The only reason we use both d = n− 1 and n is to be consistent with

the standard terminology.

Note: Look up the “Student’s t-test” if you are curious about the significance of this problem in
statistics.

Solution

1. Recall if X and Y are independent random variables with pdfs fX and fY respectively then

fX+Y = fX ∗ fY .
So, we just need to compute fX2 where X is a standard normal random variable. Then

fX2
1+...+X2

d
= fX2 ∗ ... ∗ fX2

where the convolution is done d-many times. This computation was already made in HW 5
problem 1, part 3:

fX2(x) =

0 x ≤ 0

e−x/2

√
2πx

x > 0.

which is precisely gα(x) for α = 1/2 (note that Γ(1/2) was computed in a previous homework
problem to be 1/

√
π). Hence, per the hint,

fX2
1+...+X2

d
(x) = gd/2(x) =


0 x < 0

xd/2−1e−x/2

2d/2Γ(d/2)
x ≥ 0.

2. Since M is symmetric it is diagonalizable: There exists an orthogonal n × n matrix P and
an n× n diagonal matrix D such that M = PTDP . Moreover, M2 = M so that

PTDP = PTDPPTDP = PTD2P

implying that D2 = D as P is invertible. It follows that Dii = 1, 0. Next, we showed in HW
6 problem 1.6 that if T (X) = XA then

φT (X)(t) = e−1/2tTATAt.

Applying this with A = PT , we see since PPT = Id that

φT (X)(t) = e−1/2tTPPT t = e−1/2|t|2 = φχ(t)

where χ ∼ N (0, Id). It follows that Y = XPT is still a standard multivariate normal.
Consequently each Yi ∼ N (0, 1) and are independent. Finally,

XMXT = XPTDPXT = Y DY T =
∑
j∈J

Y 2
j

where J = {j ∈ {1, ..., n} | Djj = 1}. Hence XMXT ∼ χ2(d) where d = |J | = Rank(M).
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3. We first compute the distributions of Q2 and X̄ separately. Is there a symmetric matrix M
such that Q2 = XMXT ? Computing both sides individually gives

Q2 =

n∑
i=1

(Xi −X)2 =

n∑
i=1

Xi −
1

n

n∑
j=1

Xj

2

=

n∑
i=1

X2
i − 2

n

n∑
j=1

XiXj +
1

n2

 n∑
j=1

Xj

2


=

n∑
i=1

X2
i − 2

n

n∑
i=1

Xi

n∑
j=1

Xj +
1

n

 n∑
j=1

Xj

2

=

n∑
i=1

X2
i − 1

n

(
n∑

i=1

Xi

)2

=

n∑
i=1

X2
i − 1

n

 n∑
i=1

X2
i + 2

n∑
i=1

∑
j>i

XiXj


=

n− 1

n

n∑
i=1

X2
i − 2

n

n∑
i=1

∑
j>i

XiXj ;

XMXT = (X1, ..., Xn)

M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn


X1

...
Xn

 = (X1, ..., Xn)



n∑
j=1

M1jXj

...
n∑

j=1

MnkXj


=

n∑
i=1

n∑
j=1

MijXiXj =

n∑
i=1

MiiX
2
i + 2

n∑
i=1

∑
j>i

MijXiXj .

Hence, Mii = (n − 1)/n and Mij = Mji = −1/n for i ̸= j. It follows that M = Id−1/nI
where I is a matrix of all ones. Note that

M2 = Id−2/nI + 1/n2I2 = Id−1/nI = M

as I2 = nI. Consequently Q2 ∼ χ(n − 1)2 as Rank(M) = n − 1 (this follows easily by
induction and row reducing).

Since the Xi are iid with µ = 0 and σ = 1 we have

φX̄(t) = (φ1/nχ(t))
n =

(
e−1/2(t/n)2

)n
= e−1/2t2/n

where χ ∼ N (0, 1). So X ∼ N (0, 1/
√
n).

We now show that Q2 and X̄ are independent. By definition of Q2, we have that

Q2 =

n∑
i=1

(Xi − X̄)2 = X̃X̃T

where X̃ = (X1 − X̄, ..., Xn − X̄). Since deterministic functions preserve independence

it suffices then to show that X̃ and X̄ are independent (in the sense that X̃i and X̄ are
independent for all i = 1, ..., n). To this end we show that the random vector (X̄,X1 −
X̄, ..., Xn − X̄) is a multivariate Gaussian and compute its covariance matrix. First, for any
i = 1, ..., n we have that

Xi − X̄ = Xi −
1

n

n∑
j=1

Xj =

n∑
j=1

cjXi
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where cj = −1/n for j ̸= i and ci = (n− 1)/n. Next, similar to the above we have

φXi−X̄(t) = (φ−1/nχ(t))
n−1φ(n−1)/nχ(t) =

(
e−1/2(−t/n)2

)n−1

e−1/2((n−1)t/n)2

= e−1/2(n−1)t2/n2

e−1/2(n−1)2t2/n2

= e−1/2((n−1)/n)t2

so that Xi − X̄ ∼ N (0,
√
(n− 1)/n). This implies that (X̄,X1 − X̄, ..., Xn − X̄) ∼ N (0,Σ)

where Σ is the covariance matrix.1 To check for independence, per HW 6 problem 1.4 it
suffices to check that Cov(X̄,Xi − X̄) = 0. So,

Cov(X̄,Xi − X̄) = E[X̄(Xi − X̄)]− E[X̄]E[Xi − X̄]

= E[X̄Xi]− E[X̄2] =
1

n
E [X1Xi + ...+XnXi]−

1

n

=
1

n

∑
j ̸=i

E[Xj ]E[Xi]

+
1

n
E[X2

i ]−
1

n
= 0

and X̄ is independent from Xi − X̄ for i = 1, ..., n. The joint distribution then is just the
product measure:

µ(Q2,X̄) = µQ2 ⊗ µX̄ .

4. Suppose U and V are independent absolutely continuous random variables. We claim that

fUV (t) =

∫ ∞

−∞
fU (u)fV

(
t

u

)
1

|u|
du.

Indeed, from the cdf we have

FUV (t) = P[UV ≤ t] = P[UV ≤ t, U > 0] + P[UV ≤ t, U < 0]

= P[V ≤ t/U, U > 0] + P[V ≥ t/U, U < 0]

=

∫ ∞

0

∫ t/u

−∞
fU (u)fV (v) dvdu+

∫ 0

−∞

∫ ∞

t/u

fU (u)fV (v) dvdu.

Differentiating both sides then yields

fUV (t) =

∫ ∞

0

fU (u)fV

(
t

u

)
1

u
du+

∫ 0

−∞
fU (u)fV

(
t

u

)
−1

u
du

=

∫ ∞

−∞
fU (u)fV

(
t

u

)
1

|u|
du.

Next we compute the pdf of 1/
√
Q2/d (where d = n− 1): for x > 0 we have

F
1/
√

Q2/d
(x) = P

[ √
d√
Q2

≤ x

]
= P

[
d

x2
≤ Q2

]
= 1− P

[
Q2 <

d

x2

]
= 1− FQ2

(
d

x2

)
where the last equality holds sinceQ2 ∼ χ2(d) is absolutely continuous. Evidently F

1/
√

Q2/d
(x) =

0 for x ≤ 0. Hence,

f
1/
√

Q2/d
(x) =

2d

x3
fQ2

(
d

x2

)
=

2d

x3

(
(d/x2)d/2−1e−d/(2x2)

2d/2Γ(d/2)
χ{x>0}

)

=
dd/2

2d/2−1Γ(d/2)

(
e−d/(2x2)

xd+1

)
χ{x>0}.

1Really you should check this for every linear combination of the X̄ and Xi − X̄, but it follows the same logic as

above.
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As X̄ ∼ N (0, 1/
√
n) it follows that

√
nX̄ ∼ N (0, 1). Thus via the computation above:

fT (t) = f√
nX̄/

√
Q2/d

(t) =

∫ ∞

−∞
f
1/
√

Q2/d
(u)fχ

(
t

u

)
1

|u|
du

=

∫ ∞

0

(
dd/2

2d/2−1Γ(d/2)

e−d/(2u2)

ud+1

)(
e−t2/(2u2)

√
2π

)
1

u
du

=
dd/2

2d/2−1/2
√
πΓ(d/2)

∫ ∞

0

e−(d+t2)/(2u2)

ud+2
du

We aim to turn the integral into a Gamma function (motivated by the expression for C ′,
which contains a Γ((d + 1)/2) in the numerator). Let us make the change of variables
x = (d+ t2)/(2u2). Then,∫ ∞

0

e−(d+t2)/(2u2)

ud+2
du =

1

d+ t2

∫ ∞

0

e−(d+t)2/(2u2)

ud−1

(d+ t2)du

u3

=
1

d+ t2

∫ ∞

0

e−x

[(d+ t2)/(2x)]
d/2−1/2

dx

=
2d/2−1/2

(d+ t2)d/2+1/2

∫ ∞

0

xd/2−1/2e−x dx

=
2d/2−1/2

dd/2+1/2(1 + t2/d)d/2+1/2
Γ

((
d+ 1

2

))
.

Substituting into the above then yields the desired expression:

fT (t) =
Γ((d+ 1)/2)√

πdΓ(d/2)

(
1 +

t2

d

)−(d+1)/2

.

Problem F.5: (A probabilistic proof of Stirling’s formula). Let {Xn}∞n=1 be an iid sequence
with the Poisson(λ) distribution, i.e., P[X1 = k] = e−λλk/k! for k ∈ N0.

1. What is the distribution of Yn = X1 + ...+Xn, for n ∈ N?
2. Set λ = 1 and let Zn = Yn/

√
n −

√
n. Without evaluating it, show that E[|Zn|] admits a

limit and identify it.

Hint : Use the fact that, in this case, the function x 7→ |x| can be used to “test” weak
convergence, as if it belonged to Cb(R). Prove this for extra credit.

3. Evaluate E[|Zn|] explicitly and derive Stirling’s formula

lim
n→∞

n!

(n/e)n
√
2πn

= 1.

Solution:

1. We start with the following identity for the convolution of sums of diracs:( ∞∑
n=0

anδxn ∗
∞∑
k=0

bkδyk

)
(B) =

∫
R

∞∑
n=0

anδxn(B − z) d

( ∞∑
k=0

bkδyk
(z)

)

=

∞∑
k=0

bk

∫
R

∞∑
n=0

anδxn
(B − z) dδyk

(z)

=

∞∑
k=0

∞∑
n=0

anbk

∫
R
δxn

(B − z) dδyk
(z)

=

∞∑
k=0

∞∑
n=0

anbkδxn
(B − yk) =

∞∑
k=0

∞∑
n=0

anbkδxn+yk
(B).
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For a Poisson(λ) distribution, we have that

µX =

∞∑
n=0

e−λλn

n!
δn.

Hence,

µX1+X2
= µX1

∗ µX2
=

∞∑
k=0

∞∑
n=0

e−2λλn+k

n!k!
δn+k =

∞∑
m=0

cmδm

where

cm =

m∑
j=0

e−2λλm

j!(m− j)!
=

e−2λλm

m!

m∑
j=0

(
m

j

)
=

e−2λ(2λ)m

m!
.

It follows that Y2 = X1 +X2 ∼ Poisson(2λ). Inductively suppose that Yn−1 ∼ Poisson((n−
1)λ). We will show Yn ∼ Poisson(nλ). Indeed, since Yn = Yn−1 +Xn we have that

µYn
= µYn−1

∗ µXn
=

∞∑
k=0

∞∑
j=0

(
e−(n−1)λ((n− 1)λ)k

k!

)(
e−λλj

j!

)
δk+j

=

∞∑
k=0

∞∑
j=0

e−nλ(n− 1)kλk+j

k!j!
δk+j

=

∞∑
m=0

e−nλλm
m∑
i=0

(n− 1)i

i!(m− i)!
δm

=

∞∑
m=0

e−nλλm

m!

m∑
i=0

(
m

i

)
(n− 1)iδm

=

∞∑
m=0

e−nλλm

m!
((n− 1) + 1)mδm =

∞∑
m=0

e−nλ(nλ)m

m!
δm.

2. Recall that the central limit theorem says if {Xn}∞n=1 is an iid sequence of random variables
with 0 < Var(X1) < ∞ then

1√
σ2n

n∑
k=1

(Xk − µ)
D−→ χ

where χ ∼ N (0, 1) and µ = E[X1], σ
2 = Var(X1). Defining Zn = Yn/

√
n−

√
n, we can write

this in the above form:

Zn =
1√
n

n∑
k=1

Xk −
√
n =

1√
n

n∑
k=1

(Xk − µ+ µ)−
√
n

=
1√
n

n∑
k=1

(Xk − µ) +
nµ√
n
−

√
n =

1√
n

n∑
k=1

(Xk − µ) +
√
n(µ− 1)

where µ = σ = 1. Note that

f1(x) :=

∞∑
k=0

kxk

k!
=

∞∑
k=1

xk

(k − 1)!
=

∞∑
k=0

xk+1

k!
= xex;

f2(x) :=

∞∑
k=0

k2xk

k!
=

∞∑
k=1

kxk

(k − 1)!
=

∞∑
k=0

(k + 1)xk+1

k!

=

∞∑
k=0

kxk+1

k!
+

∞∑
k=0

xk+1

k!
= (x2 + x)ex
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Since

E[X1] =

∫ ∞

−∞
x dµX1

(x) =

∞∑
k=0

k

ek!
=

1

e
f1(1) = 1;

Var(X1) = E[X2
1 ]− E[X1] =

∫ ∞

−∞
x2 dµX1

(x)− 1 =

∞∑
k=0

k2

ek!
− 1 =

1

e
f2(1)− 1 = 1,

It follows by the central limit theorem that µZn

w−⇀ µχ. Testing weak convergence with
x 7→ |x| (valid per the hint) tells us

E[|Zn|] =
∫ ∞

−∞
|x| dµZn

(x) →
∫ ∞

−∞
|x| dµχ(x)

where ∫ ∞

−∞
|x| dµχ(x) =

∫ ∞

−∞

|x|e−x2/2

√
2π

dx =

√
2

π

∫ ∞

0

xe−x2/2 dx

=

√
2

π

[
−e−x2/2

]x=∞

x=0
=

√
2

π
.

3. Computing E[|Zn|] explicitly,

E[|Zn|] =
1√
n
E[|Yn − n|] = 1√

n

∫ ∞

−∞
|y − n| dµYn

(y) =
1

en
√
n

∞∑
k=0

nk|k − n|
k!

Let’s analyze the last sum in more detail.

∞∑
k=0

nk|k − n|
k!

= −
n−1∑
k=0

nk(k − n)

k!
+

∞∑
k=n+1

nk(k − n)

k!

= −2

n−1∑
k=0

nk(k − n)

k!
+

∞∑
k=0

nk(k − n)

k!
.

The latter sum is easy to evaluate:
∞∑
k=0

nk(k − n)

k!
=

∞∑
k=0

knk

k!
− n

∞∑
k=0

nk

k!
= nen − n(en) = 0.

The former sum telescopes:

n−1∑
k=0

nk(k − n)

k!
=

n−1∑
k=0

knk

k!
−

n−1∑
k=0

nk+1

k!
=

n−1∑
k=1

nk

(k − 1)!
−

n∑
k=1

nk

(k − 1)!
= − nn

(n− 1)!
.

Then, the expectation is explicitly computed as

E[|Zn|] =
1

en
√
n

∞∑
k=0

nk|k − n|
k!

=
2nn−1/2

en(n− 1)!
=

√
2

π

(n/e)n
√
2πn

n!
.

By the previous part,

lim
n→∞

E[|Zn|] =
√

2

π
so that

lim
n→∞

(n/e)n
√
2πn

n!
= 1

as desired.

Problem F.6: (Two exercises in conditional expectation).

1. Give an example of a probability space (Ω,F ,P), a random variable X ∈ L1, and two
sub-σ-algebras G and H of F such that

P
[
E
[
E[X | G] | H

]
= E[X | H]

]
< 1.
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2. For X,Y ∈ L2 and a sub-σ-algebra G of F , show that the following “self-adjointness”
property holds

E
[
E[X | G] · Y

]
= E

[
X · E[Y | G]

]
.

Solution:

1. Consider Ω = {a, b, c}, F = P(Ω), P the uniform measure on Ω, and G = σ({a}), H = σ({b}).
For any random variable X on Ω we have that

E[X | G](ω) =

{
X(a) ω = a

(X(b) +X(c))/2 ω ∈ {b, c}

E[E[X | G] | H](ω) =

{
X(a)/2 + (X(b) +X(c))/4 ω ∈ {a, c}
(X(b) +X(c))/2 ω = b

E[X | H](ω) =

{
(X(a) +X(c))/2 ω ∈ {a, c}
X(b) ω = b

.

So, observe that E[E[X | G] | H] = E[X | H] if and only if X(b) = X(c). In fact, if
X(b) ̸= X(c) then E[E[X | G] | H](ω) ̸= E[X | H](ω) for all ω ∈ Ω. Thus

P
[
E
[
E[X | G] | H]

]
= E[X | H

]
= 0

for such X.
2. Note since E[X | G] is G-measurable, so too is E[X | G] · Y . Hence,

E[X | G] · Y = E[E[X | G] · Y | G]
Recall that if ZW ∈ L1 with Z a G-measurable random variable then

E[ZW | G] = Z · E[W | G].
Set Z = E[X | G] and W = Y . Then since X ∈ L2 we also have Z ∈ L2, and by Hölder it
follows ZW ∈ L1. Applying the above yields

E[E[X | G] · Y | G] = E[ZY | G] = E[X | G] · E[Y | G].
In total

E[X | G] · Y = E[X | G] · E[Y | G].
The exact same work holds replacing X with Y , but the last quantity is symmetric in X
and Y . Hence,

E[X | G] · Y = X · E[Y | G].
Of course, the above only holds almost surely. Taking the expectation of both sides gives
true equality:

E
[
E[X | G] · Y

]
= E

[
X · E[Y | G]

]
.
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