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DANIEL WESER

These notes are from two talks given in a GMT reading seminar at UT Austin on February
27th and March 6th, 2019.

1 Introduction and preliminary results

Definition 1.1. [Sim84]
Let G(n, k) be the set of k-dimensional linear subspaces of Rn. Let M be locally Hk-rectifiable,

and let θ : Rn → N be in L1
loc. Then, an integral varifold V of dimension k in U is a Radon

measure on U ×G(n, k) acting on functions ϕ ∈ C0
c (U ×G(n, k) by

V (ϕ) =

∫
M
ϕ(x, TxM) θ(x) dHk.

By “projecting” U ×G(n, k) onto the first factor, we arrive at the following definition:

Definition 1.2. [Lel12]
Let U ⊂ Rn be an open set. An integral varifold V of dimension k in U is a pair V = (Γ, f),

where (1) Γ ⊂ U is a Hk-rectifiable set, and (2) f : Γ → N \ {0} is an L1
loc Borel function (called

the multiplicity function of V ).

We can naturally associate to V the following Radon measure:

µV (A) =

∫
Γ∩A

f dHk for any Borel set A.

We define the mass of V to be M(V ) := µV (U).

We define the tangent space TxV to be the approximate tangent space of the measure µV ,
whenever this exists. Thus, TxV = TxΓ Hk-a.e.

Definition 1.3. [Lel12]
If Φ : U →W is a diffeomorphism and V = (Γ, f) an integral varifold in U , then the pushfor-

ward of V is Φ#V = (Φ(Γ), f ◦ Φ−1), which is itself an integral varifold in W .

Definition 1.4. [Lel12]
If V is a varifold in U and X ∈ C1

c (U ;Rn), then the first variation of V along X is defined
by

δV (X) =
d

dt

∣∣∣∣
t=0

M
(
(Φt)#V

)
, (1.1)

where Φt is the one-parameter family generated by X.
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Proposition 1.5. [Lel12]
Let V = (Γ, f) be an integral varifold in U ⊂ Rn. Then the right hand side of (1.1) is well-

defined and

δV (X) =

∫
U

divTxΓX dµV for all X ∈ C1
c (U ;Rn). (1.2)

Proof. By the standard simplifying arguments, we may assume Γ = F (Rk) for F Lipschitz. Then,

M((Φt)#V ) =

∫
Φt(Γ)

f(Φ−1
t (z)) dHk(z)

=

∫
Γ
f(z) JΦt|z dHk(z)

=

∫
F (Rk)

f(z) JΦt|z dHk(z)

=

∫
Rk
f(F (x))) JΦt|F (x) JF |x dHk(x).

Hence,

δV (X) =
d

dt

∣∣∣
t=0
M((Φt)#V ) =

∫
Rk
f(F (x)))

(
d

dt

∣∣∣
t=0

JΦt|F (x)

)
JF |x dHk(x).

From computations before, we know that d
dt

∣∣
t=0

JΦt|y = divTxΓX(y), which concludes the proof.

Definition 1.6. [Lel12]
We say that V has bounded generalized mean curvature if there exists a C ≥ 0 such that

|δV (X)| ≤ C

∫
U
|X| dµV for all X ∈ C1

c (U ;Rn). (1.3)

Proposition 1.7. [Lel12]
If V is a varifold in U with bounded generalized mean curvature, then there is a bounded Borel

map H : U → Rn such that

δV (X) = −
∫
U
X · ~H dµV for all X ∈ C1

c (U ;Rn). (1.4)

~H is called the generalized mean curvature of V and is defined µV -a.e.

Proof. First, (1.2) tells us that δV is continuous in C1
c (U ;Rn). Since inequality (1.3) holds for

all X ∈ C1
c (U ;Rn) and doesn’t involve derivatives, by density it extends to all X ∈ C0

c . For
X ∈ C0

c (U ;Rn), let sptX ⊂ BR. Thus, δV is a bounded linear functional on C0
c (U ;Rn), so by

Riesz we can find a Radon measure ||δV ||, which is the total variation measure of δV , and a
||δV ||-measurable function ~ν with |~ν| = 1 ||δV ||-a.e. such that

δV (X) =

∫
U
X · ~ν d||δV ||.

Furthermore, for A open,

||δV ||(A) = sup{δV (X) : X ∈ C0
c (A;Rn), ||X||C0 ≤ 1}. (1.5)
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Looking back at (1.3), for each X ∈ C0
c (A;Rn), we know

|δV (X)| ≤ C

∫
U
|X| dµV ≤ µV (A ∩ U) ||X||C0 . (1.6)

Hence, we combine (1.5) and (1.6) to get

||δV ||(A) = sup{δV (X) : . . .} ≤ sup{CµV (U ∩A)||X||C0 : . . .} ≤ CµV (U ∩A),

so ||δV || is absolutely continuous with respect to µV . Hence, if we label the Radon-Nikodym
derivative of ||δV || with resepct to µV as −H, which exists µV -a.e., and we label ~H = H~ν then
~ν d||δV || = − ~H dµV and

δV (X) = −
∫
U
X · ~H dµV

as desired.

Remark 1.8. If we didn’t have the inequality

|δV (X)| ≤ µV (A ∩ U) ||X||C0

for X ∈ C0
c (A;Rn), then we couldn’t conclude that ||δV || is absolutely continuous with respect to

µV . However, if we knew that V had locally bounded first variation given by

|δV (X)| ≤ c||X||C0 ,

we still could still use Riesz and apply a Lebesgue decomposition to ||δV || to write

~ν d||δV || = − ~H dµV + dµsing.

Then, we use a polar decomposition on µsing to write

dµsing = ~νco dσ,

where ~νco is the generalized co-normal and σ is the generalized boundary measure. In this
way, we recover the full tangential divergence theorem

δV (X) =

∫
U

divTxΓX dµV

= −
∫
U
X · ~H dµV +

∫
U
X · ~νco dσ.

See [Sim84] Ch.8 for more details.

Definition 1.9. [Lel12]
V is stationary if δV (X) = 0 for all X ∈ C1

c (U,Rn).

Remark 1.10. If V = (Γ, f) is stationary, then the proposition is telling us that ~H ≡ 0, so V has
zero generalized mean curvature. If we suppose f ≡ 1, we can see that µV = Hk

∣∣
Γ∩U . Then, for all

X ∈ C1
c (U ;Rn), we have

δV (X) = −
∫
Rn
X · ~H dµV = −

∫
Γ
X · ~H dHk = 0.

Hence, Γ has zero mean curvature in U , so Γ is a minimal surface in U .
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2 Compactness

Theorem 2.1. [Sim84]
Suppose {Vj} is a sequence of integral varifolds in U which are of locally bounded first variation

in U ,

sup
j

(
µVj (W ) + ||δVj ||(W )

)
< ∞ ∀W ⊂⊂ U.

Then, there exists a subsequence {Vj′} ⊂ {Vj} and an integral varifold V of locally bounded
first variation in U such that Vj′ → V in the sense of Radon measures on U × G(n, k), and
||δV ||(W ) ≤ lim infj ||δVj′ ||(W ) for all W ⊂⊂ U .

Corollary 2.2. If in addition the {Vj} are stationary, then, by the LSC property of the total
variation measure ||δV ||, the limit varifold V is also stationary.

Remark 2.3. First, we note that convergence in the sense of Radon measures on U × G(n, k) is
called varifold convergence. Second, for fixed X ∈ C1

c (U ;Rn), we note that the first variation
functional is continuous with respect to varifold convergence. By definition, Vj → V as varifolds if
Vj(ϕ)→ V (ϕ) for all ϕ ∈ C0

c (U ×G(n, k);Rn). For X ∈ C1
c (U ;Rn),

δV (X) =

∫
U×G(n,k)

divS X(x) dV (x, S) =

∫
U×G(n,k)

ϕ(x, S) dV (x, S),

for ϕ(x, S) = divS X(x) ∈ C0
c (U ×G(n, k);Rn). Hence,

δVj(X)→ δV (X).

3 Monotonicity formula

For a differentiable function g : U → R and a varifold V = (Γ, f) in U , we denote by ∇⊥g(x) the
orthogonal projection of ∇g onto (TxΓ)⊥, e.g. the normal part of the gradient. For fixed ξ ∈ U ,
define r(x) := |x− ξ|.

Theorem 3.1. [Lel12]
Let V be an integral varifold of dimension k in U with bounded generalized mean curvature ~H.

Fix ξ ∈ U . For every 0 < σ < ρ < dist(ξ, U) we have the Monotonicity Formula

µV (Bρ(ξ))

ρk
− µV (Bσ(ξ))

σk
=

∫
Bρ(ξ)

~H

k
· (x− ξ)

(
1

m(r)k
− 1

ρk

)
dµV +

∫
Bρ(ξ)\Bσ(ξ)

|∇⊥r|2

rk
dµV ,

where m(r) = max{r, σ}. Hence, the map ρ 7→ eρ||H||∞ρ−kµV (Bρ(ξ)) is monotone increasing.

Proof. Without loss of generality, we assume ξ = 0. We fix a function γ ∈ C1
c ([0, 1]) such that γ ≡ 1

in some neighborhood of 0. For s ∈ [0,dist(0, ∂U)], we define the vector field Xs(x) := γ
(
|x|
s

)
x.

Then, Xs ∈ C1
c (U), so we can combine (1.2) and (1.4) to conclude∫

divTxΓXs dµV = −
∫
Xs · ~H dµV . (3.1)
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Our goal now is compute both sides of (3.1), rearrange it in a smart way, use a dominated conver-
gence argument to replace γ by the indicator function 1[0,1], and conclude the identity.

We fix a point x, and let π = TxΓ. Let e1, . . . , ek be an orthonormal basis for π, and complete
it to an orthonormal basis for Rn. Now, recalling that r := |x− ξ| = |x|, we compute

divπXs = k γ
(r
s

)
+

k∑
j=1

ej · x γ′
(r
s

) x · ej
|x| s

= k γ
(r
s

)
+
r

s
γ′
(r
s

) k∑
j=1

(
x · ej
|x|

)2

= k γ
(r
s

)
+
r

s
γ′
(r
s

) 1−
n∑

j=k+1

(
x · ej
|x|

)2


= k γ
(r
s

)
+
r

s
γ′
(r
s

) (
1− |∇⊥r|2

)
. (3.2)

Now, we insert (3.2) into (3.1), divide both sides by sk+1, and integrate s between σ and ρ:∫ ρ

σ

∫
Rn

k

sk+1
γ

(
|x|
s

)
dµV (x) ds+

∫ ρ

σ

∫
Rn

r

sk+2
γ′
(
|x|
s

) (
1− |∇⊥r|2

)
dµV (x) ds

= −
∫ ρ

σ

∫
Rn

~H · x
sk+1

γ

(
|x|
s

)
dµV (x) ds.

Then, we use Fubini’s theorem to change the order of integration, we distribute the integrand in
the term (1− |∇⊥r|2), and we move the |∇⊥r|2 term to the right hand side to find:∫

Rn

∫ ρ

σ

[
k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

)]
ds dµV (x) (3.3)

=

∫
Rn
|∇⊥r|2

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
ds dµV (x)−

∫
Rn

~H · x
∫ ρ

σ

1

sk+1
γ

(
|x|
s

)
dµV (x) ds. (3.4)

Looking at (3.3), we note that

d

ds

[
1

sk
γ

(
|x|
s

)]
= − k

sk+1
γ

(
|x|
s

)
+

1

sk
γ′
(
|x|
s

)
−|x|
s2

,

so that

−
∫ ρ

σ

[
k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

)]
ds

=

∫ ρ

σ

d

ds

[
1

sk
γ

(
|x|
s

)]
ds

=
1

ρk
γ

(
|x|
ρ

)
− 1

σk
γ

(
|x|
σ

)
.

Now, we subsititute this indentity and the resulting identities

−
∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
ds =

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
ds +

1

ρk
γ

(
|x|
ρ

)
− 1

σk
γ

(
|x|
σ

)
−
∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
ds =

∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
ds +

1

ρk
γ

(
|x|
ρ

)
− 1

σk
γ

(
|x|
σ

)
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into (3.3) to find

ρ−k
∫
Rn
γ

(
|x|
ρ

)
dµV (x)− σ−k

∫
Rn
γ

(
|x|
σ

)
dµV (x)−

∫
Rn

~H · x
∫ ρ

σ

1

sk+1
γ

(
|x|
s

)
ds dµV (x)

=

∫
Rn
|∇⊥r|2

[
ρ−kγ

(
|x|
ρ

)
− σ−kγ

(
|x|
σ

)
+

∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
ds

]
dµV (x). (3.5)

Our initial choice of γ ∈ C1
c ([0, 1]) was arbitrary, and we arrived at (3.6). This expression doesn’t

involve any derivatives of γ, and, since 0 < σ < ρ < dist(ξ, ∂U), the integrands are products of nice
bounded functions. Hence, we can use a dominated convergence theorem argument to pass from a
sequence of nonnegative C1

c ([0, 1]) functions γn converging from below to 1[0,1] and directly insert
1[0,1] into (3.6) to find:

ρ−kµV (Bρ(0))− σ−kµV (Bσ(0))−
∫
Rn

~H · x
∫ ρ

σ

1

sk+1
1[0,1]

(
|x|
s

)
ds dµV (x)

=

∫
Rn
|∇⊥r|2

[
ρ−k1Bρ(0)(x)− σ−k1Bσ(0)(x) +

∫ ρ

σ

k

sk+1
1[0,1]

(
|x|
s

)
ds

]
dµV (x). (3.6)

Finally, we compute the integral ∫ ρ

σ

k

sk+1
1[0,1]

(
|x|
s

)
ds. (3.7)

Observe that (3.7) is equal to 0 if |x| > ρ, since then |x|
s > 1 for all σ < s < ρ. If |x| ≤ ρ, then

|x|
s ≤ 1 for s ∈ [|x|, ρ]. In this case, we can change our limits of integration to [max{σ, |x|}, ρ], where

we have to take the max of σ, |x| in case |x| < σ. Thus, (3.7) becomes∫ ρ

σ

k

sk+1
1[0,1]

(
|x|
s

)
ds = 1Bρ(0)(x)

∫ ρ

max{|x|,σ}

k

sk+1
ds =

(
1

max{|x|, σ}k
− 1

ρk

)
1Bρ(0)(x).

(3.8)
We can insert this identity directly into the right-hand-side of (3.6) and 1

k times this identity into
the left-hand-side of (3.6) to find

ρ−kµV (Bρ(0))− σ−kµV (Bσ(0))−
∫
Bρ(0)

~H · x
k

(
1

max{|x|, σ}k
− 1

ρk

)
dµV (x)

=

∫
Rn
|∇⊥r|2

[
ρ−k1Bρ(0)(x)− σ−k1Bσ(0)(x) +

(
1

max{|x|, σ}k
− 1

ρk

)
1Bρ(0)(x)

]
dµV (x)

=

∫
Rn
|∇⊥r|2

[
1

max{|x|, σ}k
1Bρ(0)(x)− 1

σk
1Bσ(0)(x)

]
dµV (x) (3.9)

Finally, we note that

1

max{|x|, σ}k
1Bρ(0)(x)− 1

σk
1Bσ(0)(x) =


0 |x| ≤ σ

1
|x|k σ < |x| < ρ

0 ρ ≤ |x|

so that (3.9) becomes∫
Rn
|∇⊥r|2

[
1

max{|x|, σ}k
1Bρ(0)(x)− 1

σk
1Bσ(0)(x)

]
dµV (x) =

∫
Bρ(0)\Bσ(0)

|∇⊥|2

rk
dµV ,
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which conludes the Monotonicity Formula.

We conclude by showing the second statement of the theorem. Define f(ρ) := ρ−kµV (Bρ). We
use the Monotonicity Formula to bound

f(ρ)− f(σ)

ρ− σ
≥ −||H||L

∞

k

∫
Bρ

|x|max{|x|, σ}−k − ρ−k

ρ− σ
dµV (x) ≥ −||H||L

∞

k
ρ
σ−k − ρ−k

ρ− σ
µV (Bρ).

Since the map ρ 7→ ρ−k is convex, setting ρ = σ + ε we conclude

f(σ + ε)− f(σ)

ε
≥ −µV (Bρ)||H||L∞(σ + ε)σ−k−1 = −||H||L∞f(σ + ε)

(σ + ε)k+1

σk+1
. (3.10)

If ψδ is a standard smooth nonnegative mollifier, we take the convolution of both sides of (3.10)
as functions of σ, and then let ε ↓ 0 to conclude (f ? ψδ)

′ + ||H||L∞(f ? ψδ) ≥ 0. Hence the
function ρ 7→ eρ ||H||L∞ (f ? ψδ)(ρ) is monotone increasing. Letting δ ↓ 0, we conclude that ρ 7→
eρ ||H||L∞ρ−kµV (Bρ) is also monotone increasing.

Remark 3.2. Looking at the proof above, we never fully needed the strong assumption ~H ∈ L∞
until we proved the specific map ρ 7→ eρ ||H||L∞ρ−kµV (Bρ) is monotone increasing. Up until that

point, we only needed ~H ∈ Lploc for some p and the generalized boundary measure σ ≡ 0 for the
divergence theorem ∫

U
divTxΓX dµV = −

∫
U
X · ~H dµV

to hold.
It turns out that the right condition to assume is ~H ∈ Lploc for some p > n, as in this case we

have the monotonicity formula

(σ−nµV (Bσ(ξ)))1/p ≤ (ρ−nµV (Bρ(ξ)))
1/p +

|| ~H||Lp(BR(ξ))

p− n
(ρ1−n/p − σ1−n/p),

for BR(ξ) ⊂⊂ U and 0 < σ < ρ ≤ R, and Corollary 3.3 below holds in this case. These two results
are Theorem 17.7 and Corollary 17.8 in [Sim84].

Corollary 3.3. [Lel12]
Let V = (Γ, f) be an integral varifold of dimension k in U with bounded generalized mean

curvature. Then,

(i) the limit

θV (x) := lim
ρ↓0

µV (Bρ(x))

ωkρk

exists for all x ∈ U and coincides with f(x) µV -a.e.,

(ii) θV (x) is upper semicontinuous.

Proof. The existence of the limit is guaranteed by the montonicity of ρ 7→ eρ ||H||L∞ρ−kµV (Bρ).
Moreover, θV = f µV -a.e. by the standard density theorems. For upper semicontinuity, fix x ∈ U
and ε > 0. Let 0 < 2ρ < dist(x, ∂U) be such that

er||H||L∞ µV (Br(x))

ωkrk
≤ θV (x) +

ε

2
∀ r < 2ρ. (3.11)
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Then, if δ < ρ and |x− y| < δ, we then conclude

θV (y) ≤ eρ||H||L∞ µV (Bρ(y))

ωkρk

≤ e(ρ+δ)||H||L∞ µV (Bρ+δ(x))

ωkρk

= e(ρ+δ)||H||L∞ µV (Bρ+δ(x))

ωk(ρ+ δ)k
(ρ+ δ)k

ρk

= e(ρ+δ)||H||L∞ µV (Bρ+δ(x))

ωk(ρ+ δ)k

(
1 +

δ

ρ

)k
(3.11)

≤
(
θV (x) +

ε

2

)(
1 +

δ

ρ

)k
.

If δ is sufficiently small, then we conclude θV (y) ≤ θV (x) + ε, which proves (ii).

Corollary 3.4. [Sim84]
Let V be a k-dimensional integral varifold in U ⊂ Rn, and let ξ ∈ U . Let ηξ,λ : x 7→ x−ξ

λ .
Suppose for some sequence of λj → 0 that Vj := (ηξ,λj )#V converges to W in the sense of Radon
measures, where W is a k-dimensional integral varifold which is stationary in all of Rn. Then, W
is a cone, in the sense that W = (C,ψ), where

(i) C is Hk-rectifiable and is invariant under all homotheties x 7→ λ−1x for λ > 0,

(ii) ψ is an Hk locally integrable, integer-valued function such that ψ(x) = ψ(λ−1x) for all x ∈ C
and λ > 0.

Proof. (Sketch) The theorem is proved by showing that taking

C = {x : θW (x) > 0}
ψ = θW (x)

satisfy the conclusions.
First, we note that

µW (Bσ(0)

σk
= lim

j→∞

µVj (Bσ(0))

σk

= lim
j→∞

µV (Bλjσ(ξ))

(λjσ)k

= ωkθV (ξ)

independent of σ. Therefore, since W is stationary, the monotonicity formula reduces to

σ−nµW (Bσ(0)) = ρ−nµW (Bρ(0))−
∫
Bρ(0)\Bσ(0)

|∇⊥r|2

rn
dµW ,

which implies from above that |∇⊥r|2 = 0 µW -a.e. Since ξ = 0, we have r(x) = |x|, which has
gradient ∇r(x) = x

|x| . Since the normal part of ∇r is 0 everywhere, we conclude x ∈ TxW µW -
a.e. Then, by a careful argument, we conclude that if h is homogeneous degree zero function, e.g.
h(x) = h

(
x
|x|
)
, then

1

ρn

∫
Bρ(0)

h dµW = const. independent of ρ.
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This is enough to deduce that λ−nµW (λA) = µW (A) for any Borel set A. This gives the invariance
of the function θW under homotheties, which in turn implies the invariance of C under homotheties.

Corollary 3.5. Let V be a stationary integral varifold. Then, for every sequence λj → 0 there
exists a subsequence λj′ such that (ηξ,λj′ )#V converges in the sense of varifolds to a cone.

Proof. Follows by the Compactness Theorem 2.1 and Corollary 3.4.
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