GMT Seminar: Introduction to Integral Varifolds

DANIEL WESER

These notes are from two talks given in a GMT reading seminar at UT Austin on February
27th and March 6th, 2019.

1 Introduction and preliminary results

Definition 1.1. [Sim84]
Let G(n, k) be the set of k-dimensional linear subspaces of R™. Let M be locally H"-rectifiable,
and let § : R® — N be in Llloc. Then, an integral varifold V' of dimension k£ in U is a Radon

measure on U x G(n, k) acting on functions ¢ € CO(U x G(n, k) by
V(o) = [ ola T 0(a) aH
M

By “projecting” U x G(n, k) onto the first factor, we arrive at the following definition:

Definition 1.2. [Lell2]

Let U C R™ be an open set. An integral varifold V' of dimension & in U is a pair V = (T, f),
where (1) I C U is a HF-rectifiable set, and (2) f : T' — N\ {0} is an L} . Borel function (called
the multiplicity function of V).

We can naturally associate to V' the following Radon measure:

py(A) = fdnk for any Borel set A.
I'nA

We define the mass of V' to be M(V) := uy (U).

We define the tangent space 71,V to be the approximate tangent space of the measure uy,
whenever this exists. Thus, T,V = T,I’ HE-a.e.

Definition 1.3. [Lell2]
If ®:U — W is a diffeomorphism and V' = (I, f) an integral varifold in U, then the pushfor-
ward of V is @4V = (®(I'), f o @), which is itself an integral varifold in W.

Definition 1.4. [Lell2]
If V is a varifold in U and X € C}(U;R"), then the first variation of V along X is defined
by
d

VX) = G| M((@04V), (L)

where @, is the one-parameter family generated by X.



Proposition 1.5. [Lell2]
Let V = (T, f) be an integral varifold in U C R™. Then the right hand side of (1.1) is well-
defined and

SV(X) = / divp,r X duy  for all X € CHU;R™). (1.2)
U
Proof. By the standard simplifying arguments, we may assume I' = F(R*) for F' Lipschitz. Then,
M((@)4V) = [ @) k)
P4 (T)
= / f(2) J®y|, dHE (2)
T
= / F(2) J®y|, dHF (2)
F(RF)
= [ JEE@)) J2re) . dH* (z).

Hence,

d

6V(X) — % =0

M@y = [ ) (G svdee ) Il @),

From computations before, we know that J®4|, = divy,r X (y), which concludes the proof. [

d
E‘t:()

Definition 1.6. [Lell2]
We say that V has bounded generalized mean curvature if there exists a C' > 0 such that

|6V (X)| < C/ |X|duy  for all X € CHU;R™). (1.3)
U

Proposition 1.7. [Lell2]
If V is a varifold in U with bounded generalized mean curvature, then there is a bounded Borel
map H : U — R" such that

W(X) = —/ X - Hdpy for all X € CHU;R™). (1.4)
U

H is called the generalized mean curvature of V and is defined py-a.e.

Proof. First, (1.2) tells us that §V is continuous in C}(U;R"). Since inequality (1.3) holds for
all X € CHU;R") and doesn’t involve derivatives, by density it extends to all X € C?. For
X € CYUU;R™), let sptX C Bg. Thus, 6V is a bounded linear functional on CO(U;R"), so by
Riesz we can find a Radon measure |[6V||, which is the total variation measure of ¢V, and a
||0V||-measurable function © with |7] =1 [|§V]|-a.e. such that

SV (X) = /X-z?dH(SVH.
U

Furthermore, for A open,

16VII(4) = sup{dV(X): X € C2(AR"), [|X|lco < 1. (1.5)



Looking back at (1.3), for each X € CY(A4;R"), we know

SV(X)| < C /U X|dpy < pv(ANT) || X]|co. (1.6)

Hence, we combine (1.5) and (1.6) to get
[10V||(A) = sup{dV(X):...} < sup{Cuy(UNA)||X||co:...} < Cuy(UNA),

so ||6V]| is absolutely continuous with respect to uy. Hence, if we label the Radon-Nikodym
derivative of ||§V|| with resepct to py as —H, which exists py-a.e., and we label H = H7 then
vd||6V]| = —H dpy and

SV (X) = —/X.ﬁdw
U
as desired. O

Remark 1.8. If we didn’t have the inequality
0V(X)| < py(ANU)[|X]|co

for X € C2(A;R™), then we couldn’t conclude that ||[§V|| is absolutely continuous with respect to
wy. However, if we knew that V' had locally bounded first variation given by

V()] < €l|X]|oo.
we still could still use Riesz and apply a Lebesgue decomposition to ||[6V]| to write
vd|[6V]] = —H dpy + dptsing.
Then, we use a polar decomposition on figng to write
dptsing = Veo do,

where I/, is the generalized co-normal and o is the generalized boundary measure. In this
way, we recover the full tangential divergence theorem

5V(X) = /diVTIFXd,uV
U

_ _/X.ﬁdp,v+/X-z7€oda.
U U

See [Sim84] Ch.8 for more details.

Definition 1.9. [Lell2]
V is stationary if §V(X) = 0 for all X € C}(U,R").

Remark 1.10. If V = (T, f) is stationary, then the proposition is telling us that H=0,soV has
zero generalized mean curvature. If we suppose f = 1, we can see that uy = %k‘rmU' Then, for all
X € CHU;R"), we have

SV(X) = — | X -Hduy = —/X-ﬁd?—[k = 0.
Rn r

Hence, I' has zero mean curvature in U, so I' is a minimal surface in U.



2 Compactness

Theorem 2.1. [Sim84]
Suppose {V;} is a sequence of integral varifolds in U which are of locally bounded first variation
mn U,
sup (Wj<w> + H(svju(W)) < VYWccU
J

Then, there exists a subsequence {Vy} C {V;} and an integral varifold V of locally bounded
first variation in U such that Vi — V in the sense of Radon measures on U x G(n,k), and
[|6V]|(W) < liminf; |[6V}||(W) for all W CC U.

Corollary 2.2. If in addition the {V}} are stationary, then, by the LSC property of the total
variation measure ||6V]|, the limit varifold V' is also stationary.

Remark 2.3. First, we note that convergence in the sense of Radon measures on U x G(n, k) is
called varifold convergence. Second, for fixed X € C}(U;R"), we note that the first variation
functional is continuous with respect to varifold convergence. By definition, V; — V' as varifolds if

Vi(p) = V(p) for all ¢ € CO(U x G(n,k); R"). For X € CL(U;R"),

IV (X) :/ divg X (x) dV (z,5) :/ o(z,S)dV(z,S),
UxG(n,k) UxG(n,k)

for p(x,S) = divg X(x) € CO(U x G(n, k); R™). Hence,
Vi(X) = oV (X).

3 Monotonicity formula

For a differentiable function g : U — R and a varifold V = (T, f) in U, we denote by V+g(z) the
orthogonal projection of Vg onto (T,T)*, e.g. the normal part of the gradient. For fixed ¢ € U,
define r(z) := |z — &|.

Theorem 3.1. [Lell2]
Let V' be an integral varifold of dimension k in U with bounded generalized mean curvature H.
Fiz £ € U. For every 0 < o < p < dist(§,U) we have the Monotonicity Formula

v (Bp(€) v (Bo(9)) q€ ( 1 _1>d v
P ok /Bp@ P m(rF o) VT /Bp@)\Ba(e) e

where m(r) = max{r,o}. Hence, the map p — ePlfll p=F 11y, (B,(€)) is monotone increasing.

Proof. Without loss of generality, we assume & = 0. We fix a function v € CL([0, 1]) such that v = 1
in some neighborhood of 0. For s € [0,dist(0, 0U)], we define the vector field X (x) := v (@) x.
Then, X, € CL(U), so we can combine (1.2) and (1.4) to conclude

/diVTers dpy = —/Xs-ﬁd/w. (3.1)



Our goal now is compute both sides of (3.1), rearrange it in a smart way, use a dominated conver-
gence argument to replace v by the indicator function 1jg 1}, and conclude the identity.

We fix a point z, and let m = T,I'. Let eq,...,er be an orthonormal basis for 7, and complete
it to an orthonormal basis for R”. Now, recalling that r := |z — &| = |z|, we compute
r i T X - e;
dive X, — k (7) - ’(7) !
g X Y 5 —i-;e] Ty s) Tals
r r " o (e \2
=k (5)+57 () :
7\s + s \s Z ||
7=1
r r r - z-e;\?
“n (O - 5 (5
s + s \s Z ||
j=k+1
= k(D) +27(5) (1 — [V (3.2)
s s s
Now, we insert (3.2) into (3.1), divide both sides by s**!, and integrate s between o and p:

[ (S i [ 55 (2) 150) i
Z—/: . ng’v(m) dpy () ds.

Then, we use Fubini’s theorem to change the order of integration, we distribute the integrand in
the term (1 — |V+r|?), and we move the |V-r|? term to the right hand side to find:

//{;m <|§|> ﬁz (’?)] ds dpy (z) (3.3)
= Lot [ () asamer - [ e [ () s

Looking at (3.3), we note that

ds | sk S sk+1 S sk S s2 7

Pl k([ |, (=l
_/U [Sk+17<8) T\ ds
Pdl1l |z
= —|=vl— )| d
[ [ (5)] =
I A A el
o\ ) T\ e )
Now, we subsititute this indentity and the resulting identities
Pk (=l Pl (2] 1 (=] 1 (=l
—/a Sk+1’7<3> ds:/g g\ )t F ) T w0
Pzl (2] k(] L (=l (A
—/gsk+ﬂ<8 dsz/gsmﬂs ds+ 27\, ) ~ x5

so that




into (3.3) to find

“ Lo <|p|)d“v” . <| |>d“V - & /Skm( )dsduv()
/ VT [ h (‘i') — (% i / 17 <|x|> dS} dpay (). (35)

Our initial choice of v € C}([0,1]) was arbitrary, and we arrived at (3.6). This expression doesn’t
involve any derivatives of vy, and, since 0 < o < p < dist(&, dU), the integrands are products of nice
bounded functions. Hence, we can use a dominated convergence theorem argument to pass from a
sequence of nonnegative C([0,1]) functions v, converging from below to Ljp,1) and directly insert
1,1 into (3.6) to find:

p~ v (B,(0)) — o F v (B /n / Ljo,1j <|iz|> ds duy (z)

_ _ k x
= /I;n ’VJ—r‘Q |:p k]]_BP(O)(x) — 0 k:ﬂ_Bg( )($) +/ 3 11[0’1} <|5’> d8:| duv(l’) (36)

Finally, we compute the integral
Pk !w\
g

Observe that (3.7) is equal to 0 if |x| > p, since then % > 1forall o <s < p. If || < p, then

% <1 for s € [|z|, p]. In this case, we can change our limits of integration to [max{o, ||}, p], where
we have to take the max of o, |z| in case |z| < 0. Thus, (3.7) becomes

Pk || P k 1 1
/U 8k+1]l[0,1} <S) ds = ]pr(O)(x) /max{mw} SkT1 ds = <max{’x|’g}k _pk> ]pr(O)(x)'
(3.8)

We can insert this identity directly into the right-hand-side of (3.6) and % times this identity into
the left-hand-side of (3.6) to find

P B0) = ot (Bo0) - [ B (- ) du(a)

B,(0) max{|z[,c}*F  p

_ _ 1 1
= /Rn V) [P "1p,0)(x) — 0 Flp, (o) (2) + < - k) ]pr(O)(J?)} dpy ()

max{|z|, o} p

= [V | a0 @) - L@ (3.9

max{|z|, o }*

Finally, we note that

1 1 0 lz| <o
_ 1
WHBP(O)(QJ) - gﬂBg(O)(x) = W o< ’1“ <p
0  p<lzl

so that (3.9) becomes

1 1
1.2 71[ — 7]1 = /
/n|V 7| [maxﬂac],a}k B,(0) (%) e B[,(D)(m)] dpy () OB TF dpy,
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which conludes the Monotonicity Formula.

We conclude by showing the second statement of the theorem. Define f(p) := p~*uy (B,). We
use the Monotonicity Formula to bound

_ Hll7oo -k _ —k Hll7oo -k _ —k
)= f0)y Wl [ mediebo oo™y Wl oot
p—0 k B, p—0 k p—0
Since the map p — p~* is convex, setting p = o + € we conclude
flo+e) = flo) ke (o + e)Ft!
- > —pv (By)||H|| (0 + €)o 1 = —lHllLflo+ &) — 57— (3.10)

If 95 is a standard smooth nonnegative mollifier, we take the convolution of both sides of (3.10)
as functions of o, and then let € | 0 to conclude (f % ¢5)" + ||H||r(f *x ¥s) > 0. Hence the
function p — e?lIllL> (f 4 4)5)(p) is monotone increasing. Letting § | 0, we conclude that p
eP Il =k i1, (B,) is also monotone increasing. O

Remark 3.2. Looking at the proof above, we never fully needed the strong assumption HeL>®
until we proved the specific map p — e [HllLe =k pv (Bp) is monotone increasing. Up until that
point, we only needed H e Ly oc for some p and the generalized boundary measure o = 0 for the
divergence theorem

/diszdeuV = —/X~ﬁduv
U U

to hold.
It turns out that the right condition to assume is H e Lf o for some p > n, as in this case we
have the monotonicity formula

s
(0" Bo(€N)P < (5~ (B 4 1 2P (honip _ honi),

for Br(¢) CC U and 0 < 0 < p < R, and Corollary 3.3 below holds in this case. These two results
are Theorem 17.7 and Corollary 17.8 in [Sim84].

Corollary 3.3. [Lell2]
Let V = (T, f) be an integral varifold of dimension k£ in U with bounded generalized mean
curvature. Then,

(i) the limit
v (Bp(z))
Oy (x) := lim ——~——*~
vie)=lim = %

exists for all x € U and coincides with f(x) uy-a.e.,
(ii) Oy (x) is upper semicontinuous.

Proof. The existence of the limit is guaranteed by the montonicity of p + e?llHllLe =k (B ).
Moreover, 0y = f uy-a.e. by the standard density theorems. For upper semicontinuity, fix x € U
and € > 0. Let 0 < 2p < dist(x,0U) be such that

ol AV (Br(2))

€
< — 2p. A1
o < by (z) + 5 Vr<2p (3.11)



Then, if 6 < p and |z — y| < §, we then conclude

ol 1V (Bp ()
wrpk
< SordllHI o LV (Bprs(x))
wrpk
(p+6)||H|| oo 1V (Bps(x)) (p 4 6)*
wi(p+ o)k pF

pro)l|H||zoe 1V (Bpts(®)) < 5)’“
wi(p + 0)F

(3%1) <9v($)+%) <1+2)k'

If ¢ is sufficiently small, then we conclude 0y (y) < 0y (x) + €, which proves (ii). O

Ov(y) <

= €

Corollary 3.4. [Sim8&4]

Let V be a k-dimensional integral varifold in U C R", and let { € U. Let n¢y : © mng
Suppose for some sequence of \; — 0 that Vj := (¢ x,)#V converges to W in the sense of Radon
measures, where W is a k-dimensional integral varifold which is stationary in all of R". Then, W
is a cone, in the sense that W = (C, 1), where

(i) C is HF-rectifiable and is invariant under all homotheties x — A~'x for A > 0,

(ii) ¢ is an H¥ locally integrable, integer-valued function such that ¢(z) = ¢(A\~'x) for all z € C
and A > 0.

Proof. (Sketch) The theorem is proved by showing that taking
C = {z:0w(z) >0}

Y = Ow(z)
satisfy the conclusions.
First, we note that
B (Bs(0
:UW( 0(0) — lim MV]( ( ))
ok j—ro0 ok
i pv (By;o(€))
Jj—o0 ()\jd)k
= wibv (§)
independent of o. Therefore, since W is stationary, the monotonicity formula reduces to

“n “n [V-+r[?
o "uw (B (0)) = p "uw (B,(0)) — — dpw,
By(0\B-(0) T

which implies from above that V7|2 = 0 up-a.e. Since & = 0, we have r(z) = |z|, which has
gradient Vr(z) = ‘% Since the normal part of Vr is 0 everywhere, we conclude x € T, W upy-
a.e. Then, by a care%ul argument, we conclude that if A is homogeneous degree zero function, e.g.
h(z) = h(%), then

||
1
— hdpw = const. independent of p.

P" JB,(0)



This is enough to deduce that A™"uw (AA) = puw (A) for any Borel set A. This gives the invariance

of the function fy under homotheties, which in turn implies the invariance of C' under homotheties.
O

Corollary 3.5. Let V be a stationary integral varifold. Then, for every sequence A\; — 0 there
exists a subsequence Aj such that (¢ ,\j,)#V converges in the sense of varifolds to a cone.

Proof. Follows by the Compactness Theorem 2.1 and Corollary 3.4. O
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