GMT Seminar: Introduction to Integral Varifolds

DANIEL WESER

These notes are from two talks given in a GMT reading seminar at UT Austin on February 27th and March 6th, 2019.

1 Introduction and preliminary results

Definition 1.1. [Sim84]

Let $G(n, k)$ be the set of k-dimensional linear subspaces of \mathbb{R}^{n}. Let M be locally \mathcal{H}^{k}-rectifiable, and let $\theta: \mathbb{R}^{n} \rightarrow \mathbb{N}$ be in $L_{l o c}^{1}$. Then, an integral varifold V of dimension k in U is a Radon measure on $U \times G(n, k)$ acting on functions $\varphi \in C_{c}^{0}(U \times G(n, k)$ by

$$
V(\varphi)=\int_{M} \varphi\left(x, T_{x} M\right) \theta(x) d \mathcal{H}^{k}
$$

By "projecting" $U \times G(n, k)$ onto the first factor, we arrive at the following definition:
Definition 1.2. [Lel12]
Let $U \subset \mathbb{R}^{n}$ be an open set. An integral varifold V of dimension k in U is a pair $V=(\Gamma, f)$, where (1) $\Gamma \subset U$ is a \mathcal{H}^{k}-rectifiable set, and (2) $f: \Gamma \rightarrow \mathbb{N} \backslash\{0\}$ is an $L_{l o c}^{1}$ Borel function (called the multiplicity function of V).

We can naturally associate to V the following Radon measure:

$$
\mu_{V}(A)=\int_{\Gamma \cap A} f d \mathcal{H}^{k} \quad \text { for any Borel set } A \text {. }
$$

We define the mass of V to be $\mathcal{M}(V):=\mu_{V}(U)$.
We define the tangent space $T_{x} V$ to be the approximate tangent space of the measure μ_{V}, whenever this exists. Thus, $T_{x} V=T_{x} \Gamma \mathcal{H}^{k}$-a.e.

Definition 1.3. [Lel12]

If $\Phi: U \rightarrow W$ is a diffeomorphism and $V=(\Gamma, f)$ an integral varifold in U, then the pushforward of V is $\Phi_{\#} V=\left(\Phi(\Gamma), f \circ \Phi^{-1}\right)$, which is itself an integral varifold in W.

Definition 1.4. [Lel12]

If V is a varifold in U and $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right)$, then the first variation of V along X is defined by

$$
\begin{equation*}
\delta V(X)=\left.\frac{d}{d t}\right|_{t=0} \mathcal{M}\left(\left(\Phi_{t}\right)_{\#} V\right), \tag{1.1}
\end{equation*}
$$

where Φ_{t} is the one-parameter family generated by X.

Proposition 1.5. [Lel12]
Let $V=(\Gamma, f)$ be an integral varifold in $U \subset \mathbb{R}^{n}$. Then the right hand side of (1.1) is welldefined and

$$
\begin{equation*}
\delta V(X)=\int_{U} \operatorname{div}_{T_{x} \Gamma} X d \mu_{V} \quad \text { for all } X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right) \tag{1.2}
\end{equation*}
$$

Proof. By the standard simplifying arguments, we may assume $\Gamma=F\left(\mathbb{R}^{k}\right)$ for F Lipschitz. Then,

$$
\begin{aligned}
\mathcal{M}\left(\left(\Phi_{t}\right)_{\#} V\right) & =\int_{\Phi_{t}(\Gamma)} f\left(\Phi_{t}^{-1}(z)\right) d \mathcal{H}^{k}(z) \\
& =\left.\int_{\Gamma} f(z) J \Phi_{t}\right|_{z} d \mathcal{H}^{k}(z) \\
& =\left.\int_{F\left(\mathbb{R}^{k}\right)} f(z) J \Phi_{t}\right|_{z} d \mathcal{H}^{k}(z) \\
& \left.=\int_{\mathbb{R}^{k}} f(F(x))\right)\left.\left.J \Phi_{t}\right|_{F(x)} J F\right|_{x} d \mathcal{H}^{k}(x) .
\end{aligned}
$$

Hence,

$$
\left.\delta V(X)=\left.\frac{d}{d t}\right|_{t=0} \mathcal{M}\left(\left(\Phi_{t}\right)_{\#} V\right)=\int_{\mathbb{R}^{k}} f(F(x))\right)\left.\left(\left.\left.\frac{d}{d t}\right|_{t=0} J \Phi_{t}\right|_{F(x)}\right) J F\right|_{x} d \mathcal{H}^{k}(x) .
$$

From computations before, we know that $\left.\left.\frac{d}{d t}\right|_{t=0} J \Phi_{t}\right|_{y}=\operatorname{div}_{T_{x} \Gamma} X(y)$, which concludes the proof.

Definition 1.6. [Lel12]
We say that V has bounded generalized mean curvature if there exists a $C \geq 0$ such that

$$
\begin{equation*}
|\delta V(X)| \leq C \int_{U}|X| d \mu_{V} \quad \text { for all } X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right) \tag{1.3}
\end{equation*}
$$

Proposition 1.7. [Lel12]
If V is a varifold in U with bounded generalized mean curvature, then there is a bounded Borel map $H: U \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\delta V(X)=-\int_{U} X \cdot \vec{H} d \mu_{V} \quad \text { for all } X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right) \tag{1.4}
\end{equation*}
$$

\vec{H} is called the generalized mean curvature of V and is defined μ_{V}-a.e.
Proof. First, (1.2) tells us that δV is continuous in $C_{c}^{1}\left(U ; \mathbb{R}^{n}\right)$. Since inequality (1.3) holds for all $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right)$ and doesn't involve derivatives, by density it extends to all $X \in C_{c}^{0}$. For $X \in C_{c}^{0}\left(U ; \mathbb{R}^{n}\right)$, let $\operatorname{spt} X \subset B_{R}$. Thus, δV is a bounded linear functional on $C_{c}^{0}\left(U ; \mathbb{R}^{n}\right)$, so by Riesz we can find a Radon measure $\|\delta V\|$, which is the total variation measure of δV, and a $\| \delta V| |$-measurable function $\vec{\nu}$ with $|\vec{\nu}|=1\|\delta V\|$-a.e. such that

$$
\delta V(X)=\int_{U} X \cdot \vec{\nu} d\|\delta V\| .
$$

Furthermore, for A open,

$$
\begin{equation*}
\|\delta V\|(A)=\sup \left\{\delta V(X): X \in C_{c}^{0}\left(A ; \mathbb{R}^{n}\right),\|X\|_{C^{0}} \leq 1\right\} \tag{1.5}
\end{equation*}
$$

Looking back at (1.3), for each $X \in C_{c}^{0}\left(A ; \mathbb{R}^{n}\right)$, we know

$$
\begin{equation*}
|\delta V(X)| \leq C \int_{U}|X| d \mu_{V} \leq \mu_{V}(A \cap U)\|X\|_{C^{0}} \tag{1.6}
\end{equation*}
$$

Hence, we combine (1.5) and (1.6) to get

$$
\|\delta V\|(A)=\sup \{\delta V(X): \ldots\} \leq \sup \left\{C \mu_{V}(U \cap A)\|X\|_{C^{0}}: \ldots\right\} \leq C \mu_{V}(U \cap A)
$$

so $\|\delta V\|$ is absolutely continuous with respect to μ_{V}. Hence, if we label the Radon-Nikodym derivative of $\|\delta V\|$ with resepct to μ_{V} as $-H$, which exists μ_{V}-a.e., and we label $\vec{H}=H \vec{\nu}$ then $\vec{\nu} d\|\delta V\|=-\vec{H} d \mu_{V}$ and

$$
\delta V(X)=-\int_{U} X \cdot \vec{H} d \mu_{V}
$$

as desired.

Remark 1.8. If we didn't have the inequality

$$
|\delta V(X)| \leq \mu_{V}(A \cap U)\|X\|_{C^{0}}
$$

for $X \in C_{c}^{0}\left(A ; \mathbb{R}^{n}\right)$, then we couldn't conclude that $\|\delta V\|$ is absolutely continuous with respect to μ_{V}. However, if we knew that V had locally bounded first variation given by

$$
|\delta V(X)| \leq c\|X\|_{C^{0}},
$$

we still could still use Riesz and apply a Lebesgue decomposition to $\|\delta V\|$ to write

$$
\vec{\nu} d\|\delta V\|=-\vec{H} d \mu_{V}+d \mu_{\text {sing }} .
$$

Then, we use a polar decomposition on $\mu_{\text {sing }}$ to write

$$
d \mu_{\text {sing }}=\vec{\nu}_{c o} d \sigma
$$

where $\vec{\nu}_{c o}$ is the generalized co-normal and σ is the generalized boundary measure. In this way, we recover the full tangential divergence theorem

$$
\begin{aligned}
\delta V(X) & =\int_{U} \operatorname{div}_{T_{x} \Gamma} X d \mu_{V} \\
& =-\int_{U} X \cdot \vec{H} d \mu_{V}+\int_{U} X \cdot \vec{\nu}_{c o} d \sigma .
\end{aligned}
$$

See [Sim84] Ch. 8 for more details.
Definition 1.9. [Lel12]
V is stationary if $\delta V(X)=0$ for all $X \in C_{c}^{1}\left(U, \mathbb{R}^{n}\right)$.
Remark 1.10. If $V=(\Gamma, f)$ is stationary, then the proposition is telling us that $\vec{H} \equiv 0$, so V has zero generalized mean curvature. If we suppose $f \equiv 1$, we can see that $\mu_{V}=\left.\mathcal{H}^{k}\right|_{\Gamma \cap U}$. Then, for all $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right)$, we have

$$
\delta V(X)=-\int_{\mathbb{R}^{n}} X \cdot \vec{H} d \mu_{V}=-\int_{\Gamma} X \cdot \vec{H} d \mathcal{H}^{k}=0 .
$$

Hence, Γ has zero mean curvature in U, so Γ is a minimal surface in U.

2 Compactness

Theorem 2.1. [Sim84]
Suppose $\left\{V_{j}\right\}$ is a sequence of integral varifolds in U which are of locally bounded first variation in U,

$$
\sup _{j}\left(\mu_{V_{j}}(W)+\left\|\delta V_{j}\right\|(W)\right)<\infty \quad \forall W \subset \subset U
$$

Then, there exists a subsequence $\left\{V_{j^{\prime}}\right\} \subset\left\{V_{j}\right\}$ and an integral varifold V of locally bounded first variation in U such that $V_{j^{\prime}} \rightarrow V$ in the sense of Radon measures on $U \times G(n, k)$, and $\|\delta V\|(W) \leq \liminf _{j}\left\|\delta V_{j^{\prime}}\right\|(W)$ for all $W \subset \subset U$.

Corollary 2.2. If in addition the $\left\{V_{j}\right\}$ are stationary, then, by the LSC property of the total variation measure $\|\delta V\|$, the limit varifold V is also stationary.

Remark 2.3. First, we note that convergence in the sense of Radon measures on $U \times G(n, k)$ is called varifold convergence. Second, for fixed $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right)$, we note that the first variation functional is continuous with respect to varifold convergence. By definition, $V_{j} \rightarrow V$ as varifolds if $V_{j}(\varphi) \rightarrow V(\varphi)$ for all $\varphi \in C_{c}^{0}\left(U \times G(n, k) ; \mathbb{R}^{n}\right)$. For $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n}\right)$,

$$
\delta V(X)=\int_{U \times G(n, k)} \operatorname{div}_{S} X(x) d V(x, S)=\int_{U \times G(n, k)} \varphi(x, S) d V(x, S)
$$

for $\varphi(x, S)=\operatorname{div}_{S} X(x) \in C_{c}^{0}\left(U \times G(n, k) ; \mathbb{R}^{n}\right)$. Hence,

$$
\delta V_{j}(X) \rightarrow \delta V(X)
$$

3 Monotonicity formula

For a differentiable function $g: U \rightarrow \mathbb{R}$ and a varifold $V=(\Gamma, f)$ in U, we denote by $\nabla^{\perp} g(x)$ the orthogonal projection of ∇g onto $\left(T_{x} \Gamma\right)^{\perp}$, e.g. the normal part of the gradient. For fixed $\xi \in U$, define $r(x):=|x-\xi|$.

Theorem 3.1. [Lel12]
Let V be an integral varifold of dimension k in U with bounded generalized mean curvature \vec{H}. Fix $\xi \in U$. For every $0<\sigma<\rho<\operatorname{dist}(\xi, U)$ we have the Monotonicity Formula

$$
\frac{\mu_{V}\left(B_{\rho}(\xi)\right)}{\rho^{k}}-\frac{\mu_{V}\left(B_{\sigma}(\xi)\right)}{\sigma^{k}}=\int_{B_{\rho}(\xi)} \frac{\vec{H}}{k} \cdot(x-\xi)\left(\frac{1}{m(r)^{k}}-\frac{1}{\rho^{k}}\right) d \mu_{V}+\int_{B_{\rho}(\xi) \backslash B_{\sigma}(\xi)} \frac{\left|\nabla^{\perp} r\right|^{2}}{r^{k}} d \mu_{V}
$$

Proof. Without loss of generality, we assume $\xi=0$. We fix a function $\gamma \in C_{c}^{1}([0,1])$ such that $\gamma \equiv 1$ in some neighborhood of 0 . For $s \in[0, \operatorname{dist}(0, \partial U)]$, we define the vector field $X_{s}(x):=\gamma\left(\frac{|x|}{s}\right) x$. Then, $X_{s} \in C_{c}^{1}(U)$, so we can combine (1.2) and (1.4) to conclude

$$
\begin{equation*}
\int \operatorname{div}_{T_{x} \Gamma} X_{s} d \mu_{V}=-\int X_{s} \cdot \vec{H} d \mu_{V} \tag{3.1}
\end{equation*}
$$

Our goal now is compute both sides of (3.1), rearrange it in a smart way, use a dominated convergence argument to replace γ by the indicator function $\mathbb{1}_{[0,1]}$, and conclude the identity.

We fix a point x, and let $\pi=T_{x} \Gamma$. Let e_{1}, \ldots, e_{k} be an orthonormal basis for π, and complete it to an orthonormal basis for \mathbb{R}^{n}. Now, recalling that $r:=|x-\xi|=|x|$, we compute

$$
\begin{align*}
\operatorname{div}_{\pi} X_{s} & =k \gamma\left(\frac{r}{s}\right)+\sum_{j=1}^{k} e_{j} \cdot x \gamma^{\prime}\left(\frac{r}{s}\right) \frac{x \cdot e_{j}}{|x| s} \\
& =k \gamma\left(\frac{r}{s}\right)+\frac{r}{s} \gamma^{\prime}\left(\frac{r}{s}\right) \sum_{j=1}^{k}\left(\frac{x \cdot e_{j}}{|x|}\right)^{2} \\
& =k \gamma\left(\frac{r}{s}\right)+\frac{r}{s} \gamma^{\prime}\left(\frac{r}{s}\right)\left[1-\sum_{j=k+1}^{n}\left(\frac{x \cdot e_{j}}{|x|}\right)^{2}\right] \\
& =k \gamma\left(\frac{r}{s}\right)+\frac{r}{s} \gamma^{\prime}\left(\frac{r}{s}\right)\left(1-\left|\nabla^{\perp} r\right|^{2}\right) . \tag{3.2}
\end{align*}
$$

Now, we insert (3.2) into (3.1), divide both sides by s^{k+1}, and integrate s between σ and ρ :

$$
\begin{aligned}
& \int_{\sigma}^{\rho} \int_{\mathbb{R}^{n}} \frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d \mu_{V}(x) d s+\int_{\sigma}^{\rho} \int_{\mathbb{R}^{n}} \frac{r}{s^{k+2}} \gamma^{\prime}\left(\frac{|x|}{s}\right)\left(1-\left|\nabla^{\perp} r\right|^{2}\right) d \mu_{V}(x) d s \\
& =-\int_{\sigma}^{\rho} \int_{\mathbb{R}^{n}} \frac{\vec{H} \cdot x}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d \mu_{V}(x) d s
\end{aligned}
$$

Then, we use Fubini's theorem to change the order of integration, we distribute the integrand in the term $\left(1-\left|\nabla^{\perp} r\right|^{2}\right)$, and we move the $\left|\nabla^{\perp} r\right|^{2}$ term to the right hand side to find:

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\sigma}^{\rho}\left[\frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right)+\frac{|x|}{s^{k+2}} \gamma^{\prime}\left(\frac{|x|}{s}\right)\right] d s d \mu_{V}(x) \tag{3.3}\\
& =\int_{\mathbb{R}^{n}}\left|\nabla^{\perp} r\right|^{2} \int_{\sigma}^{\rho} \frac{|x|}{s^{k+2}} \gamma^{\prime}\left(\frac{|x|}{s}\right) d s d \mu_{V}(x)-\int_{\mathbb{R}^{n}} \vec{H} \cdot x \int_{\sigma}^{\rho} \frac{1}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d \mu_{V}(x) d s . \tag{3.4}
\end{align*}
$$

Looking at (3.3), we note that

$$
\frac{d}{d s}\left[\frac{1}{s^{k}} \gamma\left(\frac{|x|}{s}\right)\right]=-\frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right)+\frac{1}{s^{k}} \gamma^{\prime}\left(\frac{|x|}{s}\right) \frac{-|x|}{s^{2}},
$$

so that

$$
\begin{aligned}
& -\int_{\sigma}^{\rho}\left[\frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right)+\frac{|x|}{s^{k+2}} \gamma^{\prime}\left(\frac{|x|}{s}\right)\right] d s \\
& =\int_{\sigma}^{\rho} \frac{d}{d s}\left[\frac{1}{s^{k}} \gamma\left(\frac{|x|}{s}\right)\right] d s \\
& =\frac{1}{\rho^{k}} \gamma\left(\frac{|x|}{\rho}\right)-\frac{1}{\sigma^{k}} \gamma\left(\frac{|x|}{\sigma}\right) .
\end{aligned}
$$

Now, we subsititute this indentity and the resulting identities

$$
\begin{aligned}
& -\int_{\sigma}^{\rho} \frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d s=\int_{\sigma}^{\rho} \frac{|x|}{s^{k+2}} \gamma^{\prime}\left(\frac{|x|}{s}\right) d s+\frac{1}{\rho^{k}} \gamma\left(\frac{|x|}{\rho}\right)-\frac{1}{\sigma^{k}} \gamma\left(\frac{|x|}{\sigma}\right) \\
& -\int_{\sigma}^{\rho} \frac{|x|}{s^{k+2}} \gamma^{\prime}\left(\frac{|x|}{s}\right) d s=\int_{\sigma}^{\rho} \frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d s+\frac{1}{\rho^{k}} \gamma\left(\frac{|x|}{\rho}\right)-\frac{1}{\sigma^{k}} \gamma\left(\frac{|x|}{\sigma}\right)
\end{aligned}
$$

into (3.3) to find

$$
\begin{align*}
& \rho^{-k} \int_{\mathbb{R}^{n}} \gamma\left(\frac{|x|}{\rho}\right) d \mu_{V}(x)-\sigma^{-k} \int_{\mathbb{R}^{n}} \gamma\left(\frac{|x|}{\sigma}\right) d \mu_{V}(x)-\int_{\mathbb{R}^{n}} \vec{H} \cdot x \int_{\sigma}^{\rho} \frac{1}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d s d \mu_{V}(x) \\
& =\int_{\mathbb{R}^{n}}\left|\nabla^{\perp} r\right|^{2}\left[\rho^{-k} \gamma\left(\frac{|x|}{\rho}\right)-\sigma^{-k} \gamma\left(\frac{|x|}{\sigma}\right)+\int_{\sigma}^{\rho} \frac{k}{s^{k+1}} \gamma\left(\frac{|x|}{s}\right) d s\right] d \mu_{V}(x) . \tag{3.5}
\end{align*}
$$

Our initial choice of $\gamma \in C_{c}^{1}([0,1])$ was arbitrary, and we arrived at (3.6). This expression doesn't involve any derivatives of γ, and, since $0<\sigma<\rho<\operatorname{dist}(\xi, \partial U)$, the integrands are products of nice bounded functions. Hence, we can use a dominated convergence theorem argument to pass from a sequence of nonnegative $C_{c}^{1}([0,1])$ functions γ_{n} converging from below to $\mathbb{1}_{[0,1]}$ and directly insert $\mathbb{1}_{[0,1]}$ into (3.6) to find:

$$
\begin{align*}
& \rho^{-k} \mu_{V}\left(B_{\rho}(0)\right)-\sigma^{-k} \mu_{V}\left(B_{\sigma}(0)\right)-\int_{\mathbb{R}^{n}} \vec{H} \cdot x \int_{\sigma}^{\rho} \frac{1}{s^{k+1}} \mathbb{1}_{[0,1]}\left(\frac{|x|}{s}\right) d s d \mu_{V}(x) \\
& =\int_{\mathbb{R}^{n}}\left|\nabla^{\perp} r\right|^{2}\left[\rho^{-k} \mathbb{1}_{B_{\rho}(0)}(x)-\sigma^{-k_{1}} \mathbb{1}_{B_{\sigma}(0)}(x)+\int_{\sigma}^{\rho} \frac{k}{s^{k+1}} \mathbb{1}_{[0,1]}\left(\frac{|x|}{s}\right) d s\right] d \mu_{V}(x) . \tag{3.6}
\end{align*}
$$

Finally, we compute the integral

$$
\begin{equation*}
\int_{\sigma}^{\rho} \frac{k}{s^{k+1}} \mathbb{1}_{[0,1]}\left(\frac{|x|}{s}\right) d s \tag{3.7}
\end{equation*}
$$

Observe that (3.7) is equal to 0 if $|x|>\rho$, since then $\frac{|x|}{s}>1$ for all $\sigma<s<\rho$. If $|x| \leq \rho$, then $\frac{|x|}{s} \leq 1$ for $s \in[|x|, \rho]$. In this case, we can change our limits of integration to $[\max \{\sigma,|x|\}, \rho]$, where we have to take the max of $\sigma,|x|$ in case $|x|<\sigma$. Thus, (3.7) becomes

$$
\begin{equation*}
\int_{\sigma}^{\rho} \frac{k}{s^{k+1}} \mathbb{1}_{[0,1]}\left(\frac{|x|}{s}\right) d s=\mathbb{1}_{B \rho(0)}(x) \int_{\max \{|x|, \sigma\}}^{\rho} \frac{k}{s^{k+1}} d s=\left(\frac{1}{\max \{|x|, \sigma\}^{k}}-\frac{1}{\rho^{k}}\right) \mathbb{1}_{B_{\rho}(0)}(x) . \tag{3.8}
\end{equation*}
$$

We can insert this identity directly into the right-hand-side of (3.6) and $\frac{1}{k}$ times this identity into the left-hand-side of (3.6) to find

$$
\begin{align*}
& \rho^{-k} \mu_{V}\left(B_{\rho}(0)\right)-\sigma^{-k} \mu_{V}\left(B_{\sigma}(0)\right)-\int_{B_{\rho}(0)} \frac{\vec{H} \cdot x}{k}\left(\frac{1}{\max \{|x|, \sigma\}^{k}}-\frac{1}{\rho^{k}}\right) d \mu_{V}(x) \\
& =\int_{\mathbb{R}^{n}}\left|\nabla^{\perp} r\right|^{2}\left[\rho^{-k} \mathbb{1}_{B_{\rho}(0)}(x)-\sigma^{-k} \mathbb{1}_{B_{\sigma}(0)}(x)+\left(\frac{1}{\max \{|x|, \sigma\}^{k}}-\frac{1}{\rho^{k}}\right) \mathbb{1}_{B_{\rho}(0)}(x)\right] d \mu_{V}(x) \\
& =\int_{\mathbb{R}^{n}}\left|\nabla^{\perp} r\right|^{2}\left[\frac{1}{\max \{|x|, \sigma\}^{k}} \mathbb{1}_{B_{\rho}(0)}(x)-\frac{1}{\sigma^{k}} \mathbb{1}_{B_{\sigma}(0)}(x)\right] d \mu_{V}(x) \tag{3.9}
\end{align*}
$$

Finally, we note that

$$
\frac{1}{\max \{|x|, \sigma\}^{k}} \mathbb{1}_{B_{\rho}(0)}(x)-\frac{1}{\sigma^{k}} \mathbb{1}_{B_{\sigma}(0)}(x)= \begin{cases}0 & |x| \leq \sigma \\ \frac{1}{|x|^{k}} & \sigma<|x|<\rho \\ 0 & \rho \leq|x|\end{cases}
$$

so that (3.9) becomes

$$
\int_{\mathbb{R}^{n}}\left|\nabla^{\perp} r\right|^{2}\left[\frac{1}{\max \{|x|, \sigma\}^{k}} \mathbb{1}_{B_{\rho}(0)}(x)-\frac{1}{\sigma^{k}} \mathbb{1}_{B_{\sigma}(0)}(x)\right] d \mu_{V}(x)=\int_{B \rho(0) \backslash B_{\sigma}(0)} \frac{\left|\nabla^{\perp}\right|^{2}}{r^{k}} d \mu_{V},
$$

which conludes the Monotonicity Formula.
We conclude by showing the second statement of the theorem. Define $f(\rho):=\rho^{-k} \mu_{V}\left(B_{\rho}\right)$. We use the Monotonicity Formula to bound

$$
\frac{f(\rho)-f(\sigma)}{\rho-\sigma} \geq-\frac{\|H\|_{L^{\infty}}}{k} \int_{B_{\rho}}|x| \frac{\max \{|x|, \sigma\}^{-k}-\rho^{-k}}{\rho-\sigma} d \mu_{V}(x) \geq-\frac{\|H\|_{L^{\infty}}}{k} \rho \frac{\sigma^{-k}-\rho^{-k}}{\rho-\sigma} \mu_{V}\left(B_{\rho}\right) .
$$

Since the map $\rho \mapsto \rho^{-k}$ is convex, setting $\rho=\sigma+\epsilon$ we conclude

$$
\begin{equation*}
\frac{f(\sigma+\epsilon)-f(\sigma)}{\epsilon} \geq-\mu_{V}\left(B_{\rho}\right)\|H\|_{L^{\infty}}(\sigma+\epsilon) \sigma^{-k-1}=-\|H\|_{L^{\infty}} f(\sigma+\epsilon) \frac{(\sigma+\epsilon)^{k+1}}{\sigma^{k+1}} \tag{3.10}
\end{equation*}
$$

If ψ_{δ} is a standard smooth nonnegative mollifier, we take the convolution of both sides of (3.10) as functions of σ, and then let $\epsilon \downarrow 0$ to conclude $\left(f \star \psi_{\delta}\right)^{\prime}+\|H\|_{L^{\infty}}\left(f \star \psi_{\delta}\right) \geq 0$. Hence the function $\rho \mapsto e^{\rho\|H\|_{L^{\infty}}}\left(f \star \psi_{\delta}\right)(\rho)$ is monotone increasing. Letting $\delta \downarrow 0$, we conclude that $\rho \mapsto$ $e^{\rho\|H\|_{L} \infty} \rho^{-k} \mu_{V}\left(B_{\rho}\right)$ is also monotone increasing.

Remark 3.2. Looking at the proof above, we never fully needed the strong assumption $\vec{H} \in L^{\infty}$ until we proved the specific map $\rho \mapsto e^{\rho\|H\|_{L} \infty} \rho^{-k} \mu_{V}\left(B_{\rho}\right)$ is monotone increasing. Up until that point, we only needed $\vec{H} \in L_{l o c}^{p}$ for some p and the generalized boundary measure $\sigma \equiv 0$ for the divergence theorem

$$
\int_{U} \operatorname{div}_{T_{x} \Gamma} X d \mu_{V}=-\int_{U} X \cdot \vec{H} d \mu_{V}
$$

to hold.
It turns out that the right condition to assume is $\vec{H} \in L_{l o c}^{p}$ for some $p>n$, as in this case we have the monotonicity formula

$$
\left(\sigma^{-n} \mu_{V}\left(B_{\sigma}(\xi)\right)\right)^{1 / p} \leq\left(\rho^{-n} \mu_{V}\left(B_{\rho}(\xi)\right)\right)^{1 / p}+\frac{\|\vec{H}\|_{L^{p}\left(B_{R}(\xi)\right)}}{p-n}\left(\rho^{1-n / p}-\sigma^{1-n / p}\right)
$$

for $B_{R}(\xi) \subset \subset U$ and $0<\sigma<\rho \leq R$, and Corollary 3.3 below holds in this case. These two results are Theorem 17.7 and Corollary 17.8 in [Sim84].

Corollary 3.3. [Lel12]
Let $V=(\Gamma, f)$ be an integral varifold of dimension k in U with bounded generalized mean curvature. Then,
(i) the limit

$$
\theta_{V}(x):=\lim _{\rho \downarrow 0} \frac{\mu_{V}\left(B_{\rho}(x)\right)}{\omega_{k} \rho^{k}}
$$

exists for all $x \in U$ and coincides with $f(x) \mu_{V}$-a.e.,
(ii) $\theta_{V}(x)$ is upper semicontinuous.

Proof. The existence of the limit is guaranteed by the montonicity of $\rho \mapsto e^{\rho\|H\|_{L^{\infty}}} \rho^{-k} \mu_{V}\left(B_{\rho}\right)$. Moreover, $\theta_{V}=f \mu_{V}$-a.e. by the standard density theorems. For upper semicontinuity, fix $x \in U$ and $\epsilon>0$. Let $0<2 \rho<\operatorname{dist}(x, \partial U)$ be such that

$$
\begin{equation*}
e^{r\|H\|_{L^{\infty}}} \frac{\mu_{V}\left(B_{r}(x)\right)}{\omega_{k} r^{k}} \leq \theta_{V}(x)+\frac{\epsilon}{2} \quad \forall r<2 \rho . \tag{3.11}
\end{equation*}
$$

Then, if $\delta<\rho$ and $|x-y|<\delta$, we then conclude

$$
\begin{aligned}
\theta_{V}(y) & \leq e^{\rho\|H\|_{L} \infty} \frac{\mu_{V}\left(B_{\rho}(y)\right)}{\omega_{k} \rho^{k}} \\
& \leq e^{(\rho+\delta)\|H\|_{L} \infty} \frac{\mu_{V}\left(B_{\rho+\delta}(x)\right)}{\omega_{k} \rho^{k}} \\
& =e^{(\rho+\delta)\|H\|_{L} \infty} \frac{\mu_{V}\left(B_{\rho+\delta}(x)\right)}{\omega_{k}(\rho+\delta)^{k}} \frac{(\rho+\delta)^{k}}{\rho^{k}} \\
& =e^{(\rho+\delta)\|H\|_{L} \infty} \frac{\mu_{V}\left(B_{\rho+\delta}(x)\right)}{\omega_{k}(\rho+\delta)^{k}}\left(1+\frac{\delta}{\rho}\right)^{k} \\
& \stackrel{(3.11)}{\leq}\left(\theta_{V}(x)+\frac{\epsilon}{2}\right)\left(1+\frac{\delta}{\rho}\right)^{k} .
\end{aligned}
$$

If δ is sufficiently small, then we conclude $\theta_{V}(y) \leq \theta_{V}(x)+\epsilon$, which proves (ii).

Corollary 3.4. [Sim84]

Let V be a k-dimensional integral varifold in $U \subset \mathbb{R}^{n}$, and let $\xi \in U$. Let $\eta_{\xi, \lambda}: x \mapsto \frac{x-\xi}{\lambda}$. Suppose for some sequence of $\lambda_{j} \rightarrow 0$ that $V_{j}:=\left(\eta_{\xi, \lambda_{j}}\right) \not{ }_{\#} V$ converges to W in the sense of Radon measures, where W is a k-dimensional integral varifold which is stationary in all of \mathbb{R}^{n}. Then, W is a cone, in the sense that $W=(C, \psi)$, where
(i) C is \mathcal{H}^{k}-rectifiable and is invariant under all homotheties $x \mapsto \lambda^{-1} x$ for $\lambda>0$,
(ii) ψ is an \mathcal{H}^{k} locally integrable, integer-valued function such that $\psi(x)=\psi\left(\lambda^{-1} x\right)$ for all $x \in C$ and $\lambda>0$.

Proof. (Sketch) The theorem is proved by showing that taking

$$
\begin{aligned}
C & =\left\{x: \theta_{W}(x)>0\right\} \\
\psi & =\theta_{W}(x)
\end{aligned}
$$

satisfy the conclusions.
First, we note that

$$
\begin{aligned}
\frac{\mu_{W}\left(B_{\sigma}(0)\right.}{\sigma^{k}} & =\lim _{j \rightarrow \infty} \frac{\mu_{V_{j}}\left(B_{\sigma}(0)\right)}{\sigma^{k}} \\
& =\lim _{j \rightarrow \infty} \frac{\mu_{V}\left(B_{\lambda_{j} \sigma}(\xi)\right)}{\left(\lambda_{j} \sigma\right)^{k}} \\
& =\omega_{k} \theta_{V}(\xi)
\end{aligned}
$$

independent of σ. Therefore, since W is stationary, the monotonicity formula reduces to

$$
\sigma^{-n} \mu_{W}\left(B_{\sigma}(0)\right)=\rho^{-n} \mu_{W}\left(B_{\rho}(0)\right)-\int_{B_{\rho}(0) \backslash B_{\sigma}(0)} \frac{\left|\nabla^{\perp} r\right|^{2}}{r^{n}} d \mu_{W}
$$

which implies from above that $\left|\nabla^{\perp} r\right|^{2}=0 \mu_{W}$-a.e. Since $\xi=0$, we have $r(x)=|x|$, which has gradient $\nabla r(x)=\frac{x}{|x|}$. Since the normal part of ∇r is 0 everywhere, we conclude $x \in T_{x} W \mu_{W^{-}}$ a.e. Then, by a careful argument, we conclude that if h is homogeneous degree zero function, e.g. $h(x)=h\left(\frac{x}{|x|}\right)$, then

$$
\frac{1}{\rho^{n}} \int_{B_{\rho}(0)} h d \mu_{W}=\text { const. } \quad \text { independent of } \rho \text {. }
$$

This is enough to deduce that $\lambda^{-n} \mu_{W}(\lambda A)=\mu_{W}(A)$ for any Borel set A. This gives the invariance of the function θ_{W} under homotheties, which in turn implies the invariance of C under homotheties.

Corollary 3.5. Let V be a stationary integral varifold. Then, for every sequence $\lambda_{j} \rightarrow 0$ there exists a subsequence $\lambda_{j^{\prime}}$ such that $\left(\eta_{\xi, \lambda_{j^{\prime}}}\right)_{\#} V$ converges in the sense of varifolds to a cone.

Proof. Follows by the Compactness Theorem 2.1 and Corollary 3.4.

References

[Lel12] Camillo De Lellis. Allard's interior regularity theorem: an invitation to stationary varifolds, 2012.
[Sim84] L. M. Simon. Lectures on geometric measure theory, 1984.

