
GEOMETRIC ANALYSIS SUMMER COURSE

DANIEL WESER

These are lecture notes from a week-long summer course given at UT Austin in 2018. They’re
currently missing the material from chapters 1, 2, and 4 of [Li12], and I may update them sometime
later to include this content. So all of the information below is from [Lee97].

1 Background

Note: all manifolds are presumed to be smooth (C∞), Hausdorff, and second countable.

Definition 1.1. Let V be a finite-dimensional vector space. V ∗ is called the space of covectors
on V (a.k.a. the dual), and we denote the pairing V ∗ × V → R by

(ω,X) 7→ 〈ω,X〉 or (ω,X) 7→ ω(X).

A covariant k-tensor on V is a multilinear map

F : V × · · · × V︸ ︷︷ ︸
k copies

→ R.

A contravariant l-tensor on V is a multilinear map

F : V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

→ R.

A tensor of type
(
k
l

)
is a multilinear map

F : V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

×V × · · · × V︸ ︷︷ ︸
k copies

→ R.

The space of all covariant k-tensors is denoted by T k(V ), and the space of all contravari-
ant l-tensors is denoted by Tl(V ). The space of all mixed

(
k
l

)
-tensors is denoted by T k

l (V ).
The rank of a tensor is the number of arguments (vectors and/or covectors) it takes.

Definition 1.2. We define the tensor product as follows: if F ∈ T k
l (V ) and G ∈ T p

q (V ), then

the tensor F ⊗G ∈ T k+p
l+q (V ) is defined by

F ⊗G(ω1, . . . , ωl+q, X1, . . . , Xk+p)

= F (ω1, . . . , ωl, X1, . . . , Xk)G(ωl+1, . . . , ωl+q, Xk+1, . . . , Xk+p).
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Definition 1.3. If (E1, . . . , En) is a basis for a vector space V , then (ϕ1, . . . , ϕn) denotes the dual
basis for V ∗, defined by ϕi(Ej) = δij .

A basis for T k
l (V ) is given by the set of all tensors of the form

Ej1 ⊗ . . .⊗ Ejl ⊗ ϕ
i1 ⊗ . . .⊗ ϕik ,

where the indices ip, jq range from 1 to n. These tensors act on basis elements by

Ej1 ⊗ . . .⊗ Ejl ⊗ ϕ
i1 ⊗ . . .⊗ ϕik(ϕs1 , . . . , ϕsl , Er1 , . . . , Erk) = δs1j1 . . . δ

sl
jl
δi1r1 . . . δ

ik
rk
.

Any tensor F ∈ T k
l (V ) can be written as

F = F j1...jl
i1...ik

Ej1 ⊗ . . .⊗ Ejl ⊗ ϕ
i1 ⊗ . . .⊗ ϕik ,

where
F j1...jl
i1...ik

= F (ϕj1 , . . . , ϕjl , Ei1 , . . . , Eik).

Definition 1.4. A k-form is a covariant k-tensor on V that changes sign whenever two arguments
are interchanged. The space of all such k-froms is denoted by Λk(V ).

There is a natural bilinear, associative product on forms called the wedge product, defined
on 1-forms ω1, . . . , ωk by setting

ω1 ∧ . . . ∧ ωk(X1, . . . , Xk) = det
(
〈ωi, Xj〉

)
and extending by linearity.

Definition 1.5. Given a smooth manifold M , local coordinates for a point p ∈M are functions
xi : U ⊂M → R for open U containing p.

Definition 1.6. For any point p in a smooth manifold M , we define the tangent space TpM
as follows: pick a coordinate chart φ : U → Rn, where U is an open subset of M containing p.
Suppose that two curves γ1, γ2 : (−1, 1)→M are such that γ1(0) = p = γ2(0) and φ ◦ γ1, φ ◦ γ2 :
(−1, 1)→ Rn are differentiable. γ1 and γ2 are equivalent at 0 iff the derivatives of φ ◦ γ1 and φ ◦ γ2
at 0 agree. This defines an equivalence relation on the set of all differentiable curves initialized
at 0, and the equivalence classes of all such curves are call the tangent vectors of M at p. The
tangent space of M at p, denoted TpM , is defined as the set of all tangent vectors at p.

Definition 1.7. We can find a basis of the tangent space at a point p as follows: given a
chart ϕ = (x1, . . . , xn) : U → Rn with p ∈ U , we can define an ordered basis((

∂

∂xi

)
p

)n

i=1

of TpM by

∀f ∈ C∞(M) :

(
∂

∂xi

)
p

(f) :=
(
∂i(f ◦ ϕ−1)

)
(ϕ(p)).

Then, for every tangent vector v ∈ TpM , we have

v =
n∑

i=1

v(xi) ·
(
∂

∂xi

)
p

.
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Definition 1.8. A vector bundle consists of:

1. a pair of smooth manifolds E (the total space) and M (the base)

2. a continuous surjective map π : E →M (the projection)

3. a vector space structure on each set Ep := π−1(p) (the fiber of E over p)

such that for every p ∈ M , there exists an open neighborhood U of p, an integer k, and a diffeo-
morphism ϕ : U × Rk → π−1(U) such that for all q ∈ U

• (π ◦ ϕ)(q, v) = q for all vectors v ∈ Rk

• the map v 7→ ϕ(q, v) is a linear isomorphism between Rk and π−1(x).

Definition 1.9. The tangent bundle is given by TM =
⋃̇

p∈M TpM , and the cotangent bundle

is given by T ∗M =
⋃̇

p∈M (TpM)∗.

Definition 1.10. The bundle of
(
k
l

)
-tensors on M is defined as

T k
l M :=

⋃̇
p∈M

T k
l (TpM),

and the bundle of k-forms is

ΛkM :=
⋃̇
p∈M

Λk(TpM).

Definition 1.11. If π : E → M is a vector bundle over M , a section of E is a map F : M → E
such that F (p) ∈ Ep = π−1(p) for all p ∈M . It is said to be a smooth section if it is smooth as
a map between manifolds.

Definition 1.12. A tensor field on M is a smooth section of some tensor bundle T k
l M , and a

differentiable k-form is a smooth section of some ΛkM . The space of all
(
k
l

)
-tensor fields is

denoted by T k
l (M), and the space of all covariant k-tensor fields (smooth sections of T kM) is

denoted by T k(M).

Definition 1.13. A vector field X is a section of the tangent bundle, denoted X ∈ Γ(TM). In
coordinates,

X = Xi∂i, Xi ∈ C∞(M),

where ∂i = ∂
∂xi is the coordinate basis as defined above.

Definition 1.14. A 1-form ω is a section of the cotangent bundle, denoted ω ∈ Γ(T ∗M). In
coordinates,

ω = ωidx
i, wi ∈ C∞(M).
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2 Some Riemannian geometry

2.1 Riemannian metric

Definition 2.1. A Riemannian metric on a smooth manifold M is a family of positive definite
inner products

gp : TpM × TpM → R, p ∈M

such that for all vector fields X,Y on M

p 7→ gp(X(p), Y (p))

defines a smooth function M → R.

Equivalently, a Riemannian metric is a 2-tensor field g ∈ T 2(M) that is symmetric, e.g.
g(X,Y ) = g(Y,X), and positive definite, e.g. g(X,X) > 0 if X 6= 0.

In coordinates (xi), the components of g at a point p are given by

gij(p) := gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
,

so that

g = gij dx
i ⊗ dxj ,

where {dx1, . . . , dxn} is the dual basis of the tangent bundle.

Definition 2.2. A Riemannian metric thus determines an inner product on each tangent space
TpM , which is typically written 〈X,Y 〉 := g(X,Y ) for X,Y ∈ TpM .

We define the length of any tangent vector X ∈ TpM to be |X| := 〈X,X〉1/2. We define
the angle between any two nonzero vectors X,Y ∈ TpM to be the unique θ ∈ [0, π] such that
cos θ = 〈X,Y 〉/(|X| |Y |). Finally, X and Y are orthogonal if 〈X,Y 〉 = 0. E1, . . . , En are
orthonormal if 〈Ei, Ej〉 = δij .

Definition 2.3. Finally, a Riemannian manifold is a smooth manifold M together with a
Riemannian metric g, written (M, g).

2.2 The musical isomorphisms

Definition 2.4. The metric g gives an isomorphism between TM and T ∗M called the flat oper-
ator,

[ : TM → T ∗M

defined by

[(X)(Y ) = g(X,Y ).

The inverse map is denoted by ] : T ∗M → TM . The cotangent bundle is then endowed with the
metric

〈ω1, ω2〉 = g(]ω1, ]ω2).
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If X ∈ Γ(TM), then
[(X) = Xidx

i,

where Xi = gijX
j . Hence the flat operator “lowers” an index, or equivalently converts a vector

into a covector.
If ω ∈ Γ(T ∗M), then

](ω) = ωi∂i,

where ωi = gijωj (and gij are the elements of the inverse matrix (gij)
−1). Hence the sharp operator

“raises” an index, or equivalent converts a covector into a vector.

2.3 Connections on vector bundles

Definition 2.5. Let π : E → M be a vector bundle, and let Γ(E) denote the space of all smooth
sections of E. A connection is a map

∇ : Γ(TM)× Γ(E)→ Γ(E), (X,Y ) 7→ ∇XY

with the properties

1. ∇XY is linear over C∞(M) in X:

∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M)

2. ∇XY is linear over R in Y :

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for a, b ∈ R

3. ∇ satisfies the following product rule:

∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M).

for all f ∈ C∞(M), X ∈ Γ(TM), and Y ∈ Γ(E).

Definition 2.6. A connection on the tangent bundle is called a linear connection:

∇ : Γ(TM)× Γ(TM)→ Γ(TM).

We note that∇XY is called the covariant derivative of Y in the direction of X. In coordinates
(xi), we can expand ∇∂i∂j in terms of the coordinates:

∇∂i∂j = Γk
ij∂k

These functions Γk
ij are called the Christoffel symbols of ∇ with respect these coordinates.

Proposition 2.7. Let ∇ be a linear connection, and let X,Y ∈ Γ(TU) (a smooth section of the
tangent space in an open set U). Write X = Xi∂i and Y = Y j∂j. Then,

∇XY = (XY k +XiY jΓk
ij)∂k.

Hence, the action of a linear connection on U is completely determined by its Christoffel symbols.
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2.4 Riemannian connection

Definition 2.8. Let g be a Riemannian metric on a manifold M . A linear connection ∇ is said to
be compatible with g if it satisfies the following product rule for all vector fields X,Y, Z :

∇X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

Definition 2.9. The torsion tensor of a linear connection is

τ : Γ(TM)× Γ(TM)→ Γ(TM)

defined by
τ(X,Y ) = ∇XY −∇YX − [X,Y ],

where [X,Y ] is the smooth vector field given by

[X,Y ](f) = X(Y (f))− Y (X(f))

for all f ∈ C∞(M).

Definition 2.10. A linear connection ∇ is said to be torsion free (or symmetric) if its torsion
vanishes identically, e.g.

∇XY −∇YX ≡ [X,Y ].

Theorem 2.11. [Fundamental theorem of Riemannian geometry] Let (M, g) be a Rieman-
nian manifold. There exists a unique linear connection ∇ on M that is compatible with g and
torsion free.

Proof. We only do a sketch of the proof:
By a computation, the connection is determined by

〈∇XY, Z〉 =
1

2

(
X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉

)
.

Using coordinates (xi) and letting X = ∂i, Y = ∂j , and Z = ∂k, we can reduce the above to

〈∇∂i∂j , ∂k〉 =
1

2
(∂i〈∂j , ∂k〉+ ∂j〈∂k, ∂i〉 − ∂k〈∂i, ∂j〉),

where we used the fact that the Lie brackets of coordinate vector fields are zero. Now, recalling
the definitions of the metric coefficients and Christoffel symbols:

gij = 〈∂i, ∂j〉, ∇∂i∂j = Γm
ij∂m,

we can insert these above to find

Γk
ik =

1

2
gkl
(
∂igjl + ∂jgil − ∂lgij

)
.

This is the formula for the Riemannian Christoffel symbols.
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2.5 Curvature in the tangent bundle

Definition 2.12. The curvature endomorphsim is a map

R : Γ(TM)× Γ(TM)× Γ(TM)→ Γ(TM)

defined by
R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

If X = ∂/∂xi and Y = ∂/∂xj are coordinate vector fields, then [X,Y ] = 0, so

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ,

i.e. the curvature endomorphism measures the noncommutativity of the covariant derivative.

We can write the curvature endomorphism in coordinates (xi) by

R = Rl
ijkdx

i ⊗ dxj ⊗ dxk ⊗ ∂l,

where the coefficients Rl
ijk are determined by

R(∂i, ∂j)∂k = Rl
ijk∂l.

Definition 2.13. The curvature tensor is then given by

Rm(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉

for vector fields X,Y, Z,W .
We can write it in local coordinates by

Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl,

where Rijkl = glmR
m
ijk.

Proposition 2.14. We have the following symmetries:

R(X,Y )Z = −R(Y,X)Z

0 = R(X,Y )Z −+R(Y, Z)X −R(Z,X)Y

Rm(X,Y, Z,W ) = −Rm(X,Y,W,Z)

Rm(X,Y, Z,W ) = Rm(W,Z,X, Y ).

Definition 2.15. The Ricci tensor as follows: given an orthonormal basis ∂i for TpM with respect
to g(p), we define the Ricci curvature by

Ricp(X,Y ) =
∑
i

〈R(∂i, X)Y, ∂i〉.

The components of Ric are denoted by Rij , so that

Ric = Rijdx
i ⊗ dxj ,

where Rij := Rk
kij is from the above definition of the curvature endomorphism (we’re taking the

trace of the curvature endomorphism on its first and last components – hence the k in both the
sub- and super-scripts).
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Definition 2.16. Finally, the scalar curvature is the function S defined as the trace of the Ricci
tensor:

S := gijRij .

2.6 Riemannian submanifolds and the second fundamental form

Definition 2.17. Let (M̃, g̃) be a Riemannian manifold of dimension m, let M be a manifold of
dimension n, and let ι : M → M̃ be an embedding. If M is given the induced Riemannian metric
g := ι∗g̃, then f is said to be an isometric embedding, and M is said to be a Riemannian
submanifold of M̃ . M̃ is called the ambient manifold.

We henceforth assume that M is an embedded Riemannian submanifold of M̃ . We will use the
standard symbols, e.g. ∇, for operations in M , and we will use add tildes, e.g. ∇̃, to write these
operations in M̃ . However, we can unambiguously use the inner-product notation 〈X,Y 〉 to refer
to either g or g̃, since g is just the restriction of g̃ to TM .

Definition 2.18. We can see that the set

TM̃
∣∣
M

:=
⋃̇

p∈M
TpM̃

is a smooth vector bundle over M . We call it the ambient tangent bundle over M .

At each p ∈ M , the ambient tangent space TpM̃ splits as orthogonal direct sum TpM̃ =
TpM

⊕
NpM , where NpM := (TpM)⊥ is the normal space at p with respect to the inner product

g̃ on TpM̃ .

The set

NM :=
⋃̇

p∈M
NpM

is called the normal bundle of M. This is a smooth vector bundle over M . Given a point p ∈M ,
there is an open set Ũ of p in M̃ and a smooth orthonormal frame (E1, . . . , Em) on Ũ called an
adapted orthonormal frame satisfying the following: the restrictions of (E1, . . . , En) to M form
a local orthonormal frame for TM and the last m− n vectors (En+1|p, . . . , Em|p) form a basis for
NpM at each p ∈M .

Definition 2.19. Projecting orthogonally at each point p ∈M onto the subspaces TpM and NpM
gives maps called the tangential and normal projections

π> : TM̃ |M → TM

π⊥ : TM̃ |M → NM.

In terms of adapted orthonormals frames, these are the usual projections onto span(E1, . . . , En)
and span(En+1, . . . , Em). If X is a section of TM̃ |M , we use the shorthand notation X> := π>X
and X⊥ := π⊥X for its tangential and normal projections.
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Definition 2.20. If X,Y are vector fields in Γ(TM), we can extend them to be vector fields on
M̃ , apply the ambient covariant derivative ∇̃, and decompose them at points of M to get

∇̃XY =
(
∇̃XY

)>
+
(
∇̃XY

)⊥
.

We define the second fundamental form of M to be the map II (read “two”)

II : Γ(TM)× Γ(TM)→ Γ(NM)

given by

II(X,Y ) :=
(
∇̃XY

)⊥
,

where X and Y have been extended arbitrarily to M̃ . Since π⊥ maps smooth sections to smooth
sections, II(X,Y ) is a smooth section of NM .

Proposition 2.21. The second fundamental form is

1. independent of the extensions X and Y

2. bilinear over C∞(M)

3. symmetric in X and Y .

Theorem 2.22. [Gauss formula] If X,Y ∈ Γ(TM) are extended arbitrarily to vector fields on
M̃ , the following holds along M :

∇̃XY = ∇XY + II(X,Y ).

Definition 2.23. Give a unit normal vector field N , we can define the scalar second funda-
mental form h to be the symmetric 2-tensor on M defined by

h(X,Y ) := 〈II(X,Y ), N〉.

Definition 2.24. Raising one index of h, we get a tensor field s ∈ T 1
1 (M) called the shape

operator of M . It is characterized by

〈X, sY 〉 = h(X,Y ) ∀X,Y ∈ Γ(TM).

Because h is symmetric, s is self-adjoint:

〈sX, Y 〉 = 〈X, sY 〉.

At any point p ∈M , the shape operator s is a self-adjoint linear transformation on the tangent
space TpM . Hence, it has real eigenvalues κ1, . . . , κn and an orthonormal basis (E1, . . . , En) for
TpM such that sEi = κiEi (no summation). In this basis, both h and s are diagonal, and h has
the expression

h(X,Y ) = κ1X
1Y 1 + . . .+ κnX

nY n.

The eigenvalues of s are called the principal curvatures of M at p, and the corresponding
eigenspaces are called the principal directions.
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Definition 2.25. There are two combinations of the principal curvatures that are of particular
importance: the Gaussian curvature is given by

K = κ1κ2 · · · κn,

and the mean curvature is given by

H =
1

n
(κ1 + κ2 + . . .+ κn).

3 Quick reference of dietary restrictions

Object Eats Gives

Vector fields Functions Functions

∂/∂xi Functions Functions

k-forms k-many vectors Scalars

k-many vector fields Functions

dxi Single vector fields Functions

Riemannian metric Pairs of vectors Scalars

Pairs of vector fields Functions

Covectors Single vectors Scalars

Single vector fields Functions

Covariant tensors Many vectors Scalars

Many vector fields Functions

Contravariant tensors Many covectors Scalars

Many covector fields Functions
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