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1 Introduction

Why varifolds? A varifold is a measure-theoretic generalization of a differentiable submanifold of
Euclidean space, where differentiability has been replaced by rectifiability. Varifolds can model
almost any surface, including those with singularities, and they’ve been used in the following
applications:

1. for Plateau’s problem (finding area-minimizing soap bubble-like surfaces with boundary values
given along a curve), varifolds can be used to show the existence of a minimal surface with
the given boundary,

2. varifolds were used to show the existence of a generalized minimal surface in given compact
smooth Riemannian manifolds,

3. varifolds were the starting point of mean curvature flow, after they were used to create a
mathematical model of the motion of grain boundaries in annealing pure metals.

2 Preliminaries

We begin by covering the needed background from geometric measure theory.

Definition 2.1. [Mag12]

Given k ∈ N, δ > 0, and E ⊂ Rn, the k-dimensional Hausdorff measure of step δ is

Hkδ = inf
F

∑
F∈F

ωk

(
diam(F )

2

)k
,

where F is a covering of E by sets F ⊂ Rn such that diam(F ) < δ.

Definition 2.2. [Mag12]

The k-dimensional Hausdorff measure of E is

lim
δ→0+

Hkδ (E).
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Definition 2.3. [Mag12]

Given a set M ⊂ Rn, we say that M is k-rectifiable if (1) M is Hk measurable and Hk(M) <
+∞, and (2) there exists countably many Lipschitz maps fj : Rk → Rn such that

Hk
(
M \

⋃
j∈N

fj(Rk)
)

= 0.

Remark. We’re saying that a set is k-rectifiable if piecewise it is a k-dimensional Lipschitz graph,
except for sets of measure 0. Hence, recitifiable sets can have singularities. Also, recitifiable sets
have tangent spaces a.e.

3 Introduction to varifolds

We begin with the definition of a varifold and a lengthy discussion of it.

Definition 3.1. [Lel12]

Let U ⊂ Rn be an open set. An integral varifold V of dimension k in U is a pair V = (Γ, f),
where (1) Γ ⊂ U is a k-rectifiable set, and (2) f : Γ→ N\{0} is a Borel map (called the multiplicity
function of V ).

We can naturally associate to V the following Radon measure:

µV (A) =

∫
Γ∩A

f dHk for any Borel set A.

We define the area of V to be A(V ) := µV (U).

Remark 1. Why the multiplicity function? Consider the sequence of spheres of radius one with
center 1/n, which we will label B1/n ⊂ R3. Let B0 be the ball of radius one centered at the origin.
For each n, we have a 2-rectifiable set B0 ∪B1/n, whose surface area H2(B0 ∪B1/n) = 8π. Clearly,
the sequence B0 ∪ B1/n converges to B0. The sequence of surface areas H2(B0 ∪ B1/n) ≡ 8π, yet
the surface area of the limit of the sets is H2(B0) = 4π. For the area functional to be continuous,
we need to count B0 as having multiplicity 2.

Another way of looking at the multiplicity function is by considering fibers. If you map one space
to another (π : X → Y ), the fiber of a point y ∈ Y is π−1(y). Since varifolds are measure theoretic,
we really only care about the number of points in the fiber. So, if say π : (B(0, 1) ∪ B(2, 1)) →
B(0, 1), then for x ∈ B0 we could set f(x) = |π−1(x)| (= 2 if we use the simplest map). Notation:
B(x, r) = {y ∈ Rn : |y − x| < r}.

Remark 2. So multiplicity allows an notion of sheets – why rectifiability? As noted above, rectifia-
bility does not prevent singluarities. This is in contrast to the manifold setting, where singularities
require surgery or some other handling. Hence, when you work with mean-curvature flow or Ricci
flow, singularities developing on manifolds can break the flow since you leave the class of objects on
which the flow was defined. However, with varifolds, singularities don’t pose an issue – you don’t
leave the class of varifolds by a singularity forming. Is this desirable? It depends on the problem,
of course. See the following figures for examples:
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Images taken from [Alm66]

In the first surface, we see the triple intersection of bubbles producing singular sets, which is an
example of physically relevant singularities. However, in the disk, we have a close approximation
of what we know to be the minimal surface spanning a flat curve, except this approximation has
singularities arising as spines. In both cases, manifolds would lose differentiability. However, by
modeling as varifolds, we still have tangent spaces almost everywhere – plus there is ample theory
for characterizing and handling these types of singularities – so we can work with these objects
within the same general theory as, say, a smooth manifold considered as a varifold.

Remark 3. Finally, I want to mention that the definition given here will differ from some texts.
In [Alm66], Almgren defines a varifold to be a positive real-valued function defined on the set of
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continuous differential k-forms satisfying some given axioms. In other contexts, authors will define
a varifold as a measure over Rn × G(k, n), where G(k, n) is the Grassmannian manifold of all
unoriented k-dimensional vector subspaces of Rn. However, with certain assumptions, we can use
differentiation theorems of measures to reduce to our case.

Now, we discuss some of the geometry of varifolds.

Definition 3.2. [Lel12]
If Φ : U →W is a diffeomorphism and V = (Γ, f) an integral varifold in U , then the pushfor-

ward of V is Φ#V = (Φ(Γ), f ◦ Φ−1), which is itself an integral varifold in W .

Definition 3.3. [Lel12]
Given a vector field X ∈ C1

c (U,Rn), the one parameter family of diffeomorphisms gen-
erated by X is Φt(x) := Φ(x, t), where Φ : U × R→ U is the unique solution to{

∂Φ
∂t = X(Φ)

Φ(x, 0) = x.

Definition 3.4. [Lel12]
If V is a varifold in U and X ∈ C1

c (U,Rn), then the first variation of V along X is defined
by

δV (X) =
d

dt

∣∣∣∣
t=0

A
(
(Φt)#V

)
,

where Φt is the one-parameter family generated by X (and A is the area).

Discussion. The first variation is telling us how the area of our varifold initially changes as we move
(smoothly) to nearby varifolds. Anytime we have a function with a critical point, as we initially
move away from the critical point our function value doesn’t change, so the variation of the function
is zero.

Definition 3.5. [Lel12]
V is stationary if δV (X) = 0 for all X ∈ C1

c (U,Rn).

Discussion. If V = (Γ, f) is stationary, then it’s a critical point of the varifold area functional.
However, is Γ a classical minimal surface? Here’s an example: suppose U = Rn and the multiplicity
function f ≡ 1. Then,

A(V ) =

∫
Γ
f dHk =

∫
Γ
dHk = Hk(Γ).

If Φt is a one-parameter family of diffeomorphisms generated by X ∈ C1
c (Rn,Rn), then

A
(
(Φt)#V

)
=

∫
Φt(Γ)

f ◦ Φ−1
t dHk =

∫
Φt(Γ)

dHk = Hk
(
Φt(Γ)

)
.

Since V is stationary,
d

dt

∣∣∣∣
t=0

A
(
(Φt)#V

)
=

d

dt

∣∣∣∣
t=0

Hk
(
Φt(Γ)

)
= 0,

so Γ is also a critical point of the Hausdorff area functional. Hence, Γ is a minimal surface. In this
way, we can see how varifolds generalize this basic setting by including multiplicity.
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Definition 3.6. [Lel12]

We say that V has bounded generalized mean curvature if there exists a C ≥ 0 such that

|δV (X)| ≤ C

∫
U
|X| dµV for all X ∈ C1

c (U,Rn).

Proposition 3.7. [Lel12]

If V is a varifold in U with bounded generalized mean curvature, then there is a bounded Borel
map H : U → Rn such that

δV (X) = −
∫
U
X ·H dµV for all X ∈ C1

c (U,Rn).

H is called the generalized mean curvature of V and is defined µV -a.e.

Discussion. If V = (Γ, f) is stationary, then the proposition is telling us that H ≡ 0, so V has zero
generalized mean curvature. Going back to our example with U = Rn and f ≡ 1, we can see that
µV = Hk

∣∣
Γ
. Then, for all X ∈ C1

c (U,Rn), we have

δV (X) = −
∫
Rn

X ·H dµV = −
∫

Γ
X ·H dHk = 0.

Hence, Γ has zero mean curvature, so we see from a different perspective that Γ is a minimal
surface.

We end this section by a basic compactness theorem:

Theorem 3.8. [All72]

Whenever κ is a real-valued function on the bounded open sets of Rn, the set of m-dimensional
varifolds in Rn satisfying µV (Z) ≤ κ(Z) for all bounded open Z ⊂ Rn is compact.

4 Three geometric theorems

We discuss three famous geometric theorems that are of interest, but we first state a definition for
completeness.

Definition 4.1. [Sim84]

M is an n-dimensional Cr submanifold of Rn+k if for all y ∈M there are

(1) open sets U, V ⊂ Rn+k such that y ∈ U and 0 ∈ V
(2) a Cr diffeomorphism Φ : U → V such that Φ(y) = 0 and Φ(M ∩ U) = V ∩ Rn.

Theorem 4.2. [Alm65]

Let M be a smooth compact n-dimensional Riemannian manifold. For each 0 < k < n, there
exists a stationary integral k-varifold in M .
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Theorem 4.3. [All72]
If V = (Γ, f) is a stationary integral k-varifold in a smooth compact n-dimensional Riemannian

manifold M , 0 < k < n, then there is an open dense subset of the support of V which is a smooth
k-dimensional minimal submanifold of M (e.g. a critical point of the volume functional defined on
M).

Discussion. These two theorems together give us the existence of minimal submanifolds of a given
dimension within smooth compact Riemannian manifolds, and we know that the minimal subman-
ifold is dense in the support of the varifold.

Theorem 4.4. Allard’s regularity theorem [All72]
If V = (Γ, f) is a k-dimensional integral varifold with bounded mean curvature in U ⊂ Rn, then

there exists an open set W ⊂ U such that Γ∩W is a C1,α submanifold of W without boundary and
Γ ∩W is dense in Γ. If in addition f ≡ const, µV a.e., then µV (Γ \W ) = 0 (so Hk(Γ \W ) = 0).

Discussion. This theorem gives us a handle on the singular set of a varifold. If the varifold has
bounded mean curvature, then the theorem says that its singular set isn’t too big so as to prevent
the smooth part from being dense. And then, if the multiplicity function is constant, we know the
k-dimensional Hausdorff measure of the singular set is 0.

5 General existence for Plateau’s problem

Plateau’s problem is stated as follows: given a closed curve and a function defined on the curve,
find a minimal surface spanning the curve with the given boundary data. The idea is to model a
soap film on a bent wire. We provide one theorem included in Almgren’s book that was one of the
preliminary results in providing a solution to the problem. We need two definitions first.

Definition 5.1. [Alm66]
Let V be an integral varifold of dimension k. We define the support of V , denoted by spt(V ),

to be the smallest closed set F such that ∫
Rk

φdµV = 0

for all φ ∈ C1(Rk) such that φ(x) = 0 if x ∈ F .

Definition 5.2. [Alm66]
Let V be an integral varifold and C a closed curve in R3. We say that V touches all of C if

C ⊂ spt(V ) \ C

Theorem 5.3. [Alm66]
Let m be a positive integer, and for each i = 1, 2, ...,m let Ci be a simple closed curve in R3

such that: (1) Ci is a C3 curve, and (2) Ci∩Cj = ∅ if i 6= j. Then, there exists an integral varifold
V of dimension 2 such that:

(a) (V, ||C||) is stationary,

(b) V touches all of C,

(c) and, if V ′ is any other 2-dimensional integral varifold such that (V ′, ||C||) is stationary and
V ′ touches all of C, then W(V ) ≤ W(V ′), where W is the continuous weight function defined on
the space of all integral varifolds of dimension k.
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Remark 4. Almgren defines ||C|| as a varifold over the space of continuous differential k-forms
through

||C||(ϕ) =

∫
C
||ϕ||.

So, in the case above, we are saying that (V, ||C||) is an element of a product space of varifolds.
What the theorem says, then, is that we can find an integral varifold V of dimension 2 that

covers the curve C, such that V considered with the curve C is a critical point of an area functional
and V ’s weight, defined by an objective weight function, is less than the weight of any other 2-d
varifold covering C. Note that since Plateau’s problem aims to model a film of soap, we require the
dimension of our solution to be 2 in this case. So we find a solution that isn’t necessarily smooth,
as a soap film is, but it meets seemingly all other relevant physical criteria for a solution.
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