
VISCOSITY TECHNIQUES IN GEOMETRIC VARIATIONAL PROBLEMS

DANIEL WESER

These notes are from a talk given in the Junior Analysis seminar at UT Austin on November
2, 2018. They concern the techniques of the “A Two-Point Function Approach to Connectedness
of Droplets in Convex Potentials” by Guido De Philippis and Michael Goldman, 2018.

1 Introduction

We want to study the energy

P(E) +

∫
E
g dx, (1.1)

where P is the perimeter functional and E ⊂ Rd is a set of finite perimeter. Physically, P is
the isotropic surface tension, and g accounts for external forces. In particular, we consider the
unconstrained variational problem:

inf
E
P(E) +

∫
E
g dx. (P )

Question of Almgren: If E is a minimizer of (P ) for g convex, is E convex?

The goal of this talk is to highlight the techniques used to prove this. First, we use the following
function:

S∂E(x) = sup
y∈∂E
〈ν∂E(x), y − x〉, (1.2)

which measures the “non-convexity” of ∂E. We can see how it measures convexity by expanding

〈ν∂E(x), y − x〉 = |y − x| cos θ,

where θ is the angle between ν∂(E) and y − x. If E is, say, a sphere, then θ ∈ [π/2, 3π/2], so
〈ν∂(E)(x), y − x〉 ≤ 0, in which case S∂E ≡ 0. If E is not convex, then we can find x and y such
that cos θ > 0 and, hence, S∂E(x) > 0.

We will prove that this function is a viscosity subsolution of one equation, which we will use to
then show it’s a viscosity subsolution of a different equation. This second equation combined with
a stability inequality is what allows us to conclude that S∂E ≡ 0.
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2 Preliminaries

2.1 Geometric measure theory

Definition 2.1. Given a Lebesgue measurable set E ⊂ Rn, we define the perimeter of E to be

P(E) = sup

{∫
E

divT (x) dx : T ∈ C1
c (Rn;Rn), sup

Rn
|T (x)| ≤ 1

}
.

In the case that E has C1 boundary, P(E) = Hn−1(∂E).

2.2 Differential geometry

Let M ⊂ Rn+1 be a C2, n-dimensional manifold oriented by its normal νM . Let D denote the
flat connection in Rn+1, e.g. the normal gradient operator. For vector fields X,Y , the covariant
derivative on M is

∇XY = pTxM DXY,

where pTxM is the orthogonal projection onto the tangent space TxM . The second fundamental
form AM is defined on tangent vectors X,Y by

AM (x)[X(x), Y (x)] = −〈DXY (x), νM (x)〉.

For a C1 function f defined on a neighborhood of M , the tangential gradient ∇f(x) ∈ TxM is
defined by

∇f = pTxMDf.

If X is a tangent vector field, then

∇Xf = 〈Df,X〉.

The tangential Hessian ∇2f(x) : TxM×TxM → R is given by its action on tangent vectors X,Y
defined in a neighborhood of x by

∇2f(x)[X(x), Y (x)] = D2f(x)[X(x), Y (x)]−AM [X,Y ](x) 〈Df(x), νM (x)〉.

Note that ∇2f only depends on the values of f on M and of X and Y at x, so it is tensorial. The
Laplace-Beltrami opertator of f is given by

∆Mf = tr∇2f.

The mean curvature HM is given by

HM = divM (νM ) =
(

trAM =
∑
i

AM [τi, τi] in geodesic coordinates τi

)
.
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3 Background results

Theorem 3.1. Assume that g ∈ C1,α(Rd) satisfies

lim
|x|→+∞

g(x) = +∞

Then, there exists a minimizer of (P ) satisfying:

(i) E is equivalent to an open bounded set.

(ii) Let Σ be the singular set of ∂E. Then, Σ is closed, Hd−8+ε(Σ) = 0 for all ε > 0, and for
all x ∈ ∂E \ Σ there exists a neighborhood Ux such that E ∩ Ux can be locally written as the
epi-graph of a C3 function. In particular, ∂E \ Σ is a (relatively open) C3 manifold.

(iii) We have
H∂E + g = 0 for all x ∈ ∂E \ Σ, (3.1)

and ∫
∂E\Σ

|∇ϕ|2 − |A∂E |2ϕ2 + ϕ2Dνg ≥ 0, (3.2)

for all ϕ ∈ C1
c (∂E \ Σ).

Remark 1. (i) and (ii) follow from showing E is a (Λ, r0)-minimizer and using density arguments.
The first part of (iii) follows from the first variation of perimeter and Proposition 17.8 in [Mag12],
and the second part of (iii) follows from the second variation of perimeter.

4 Proof of theorem

Let E ⊂ Rn+1 be a bounded open set such that its boundary can be split as

∂E = R∂E ∪ Σ∂E ,

where R∂E is a C3 manifold oriented by ν∂E and Σ∂E is a closed singular set with empty relative
interior. Given x ∈ R∂E and y ∈ ∂E, define

S∂E(x, y) = 〈ν∂E(x), y − x〉

and
S∂E(x) = max

y∈∂E
S∂E(x, y) ≥ 0, (4.1)

where the maximum is attained since ∂E is compact.

For ϕ ∈ C2(R∂E), define the Jacobi operator

Lϕ = ∆∂Eϕ+ |A∂E |2ϕ, (4.2)

Notice that by integration by parts, if ϕ ∈ C2
c (∂E), then∫

R∂E

ϕ (−Lϕ) + ϕ2Dνg =

∫
R∂E

|∇ϕ|2 − |A∂E |2ϕ2 +Dνgϕ
2, (4.3)
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which is the stability inequality from (3.2).

Roadmap.

1. We show S∂E is a viscosity solution of

LS∂E(x) ≥ H∂E(x)−H∂E(y) + 〈∇H∂E(x), y − x〉

using the doubling of variables trick.

2. We use this to show that S∂E is a viscosity solution of

LS∂E −Dνg S∂E ≥ ω(S∂E),

where ω is a modulus of convexity (to be defined below). Note that the left-hand-side is
exactly the operator in the stability inequality.

3. We show that S∂E ∈ H1(∂E). This tells us that it can be approximated by test functions,
so, by a limit argument, we can plug it into the stability inequality.

4. We use the stability inequality combined with the second PDE to derive a contradiction unless
S∂E ≡ 0, e.g. E is convex.

Remark 2. Why do we focus on viscosity solutions? A priori, we have no reason to expect S to be
C2 or even C1. Viscosity solutions only need to be continuous, so it’s a sufficiently weak framework
in which to put this function, because we only care to show that it must be identically 0. This allows
us to use only basic differential geometry to prove that its a solution – no analysis is needed. Then,
we can chain together these two equations to get exactly the operator in the stability inequality
without ever touching regularity, and the only regularity work we have to do to directly plug S
into the stability inequality as our test function is show it’s in H1. So, by using viscosity solutions,
we don’t have to worry about regularity except in the final step when we need to show H1, which
turns out to be simple.

Remark 3. The use of viscosity solutions in geometric problems was introduced by Ben Andrews
to show the preservation of the interior ball condition along the mean curvature flow. There’s a
nice survey paper relating to these techniques:

“Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations”
Andrews 2014.

Lemma 4.1. Let E be as above and x ∈ R∂E. Assume that

S∂E(x) = S∂E(x, y),

with y ∈ R∂E. Then,

LS∂E(x) ≥ H∂E(x)−H∂E(y) + 〈∇H∂E(x), y − x〉
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in the viscosity sense, meaning that for all ϕ ∈ C2(R∂E) such that

ϕ(x)− S∂E(x) ≥ ϕ(x)− S∂E(x) = 0

then
Lϕ(x) ≥ H∂E(x)−H∂E(y) + 〈∇H∂E(x), y − x〉.

Proof. Since the set E is fixed, we drop the dependence on E in the various quantities for notational
simplicity. We exploit the doubling of variables trick from the theory of viscosity solutions. To
do so, let ϕ be as in the statement of the theorem, and define

G(x, y) := ϕ(x)− S(x, y),

which achieves its local minimum at (x, y). Moreover, by assumption, it is C2 in a neighborhood
of (x, y). In order to prove the theorem, we will exploit the first and second order critical point
conditions of G at the point (x, y).

We omit the tedious computations of the identites below, but they follow from nothing
more than simplifications coming from choosing a geodesic frame {τi}.

Since G achieves a minimum at (x, y), we have

0 = ∇xiG(x, y) = ∇xi ϕ(x)−∇xi S(x, y), (4.4)

0 = ∇yiG(x, y) = −∇yi S(x, y). (4.5)

We now compute the Hessian of G:

∇xi∇xjG(x, y) = ∇xi∇xjϕ(x)−∇xiAjk(x)〈τxk (x), y − x〉+Ajk(x)Aki(x)ϕ(x) +Aij(x),

∇xi∇
y
jG(x, y) = −Aij(x),

∇yi∇
y
jG(x, y) = Aij(y).

(4.6)

We note that if a symmetric block matrix is positive semi-definite,[
A B
B −C

]
≥
[
0 0
0 0

]
,

then tr(A) ≥ tr(C)− 2tr(B). We see this by taking {ei} any standard basis for Rn and computing:

0 ≤
[
A B
B −C

]


e1
...
en
e1
...
en


·



e1
...
en
e1
...
en


=
∑

ei ·Aei + 2
∑

ei ·Bei −
∑

ei · Cei = trA+ 2trB − trC,

Since G has a minimum at (x, y),

0 ≤
[
∇x∇xG(x, y) ∇x∇yG(x, y)
∇x∇yG(x, y) ∇y∇yG(x, y)

]
=

[
∇x∇xG(x, y) −A(x)
−A(x) A(y).

]
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Hence,

tr(∇x∇xG(x, y)) ≥ −trA(y) + 2 trA(x).

Therefore, using the fact that Aii = W i
i in our choice of frame and the Codazzi equations∑

i

∇xiAik =
∑
i

∇xkAii = ∇xkH,

we find

∆∂Eϕ(x)−∇xkH(x)〈τxk (x), y − x〉+ |A|2ϕ(x) +H(x) ≥ −H(y) + 2H(x)

=⇒ ∆∂Eϕ(x) + |A|2ϕ(x) ≥ H(x)−H(y) + 〈∇H(x), y − x〉

Remark 4. If we hadn’t used the doubling of variables trick, then we would have had

0 ≤ tr∇xi∇xjG(x) = ∆∂Eϕ(x) + |A|2ϕ(x) +H(x)− 〈∇H(x), y − x〉.

By doubling the variables, we could change the sign of H(x) and introduce a +H(y). In the next
Lemma, this will allow us to upgrade S to be a viscosity solution of the operator in the stability
inequality with a modulus of convexity right hand side.

Also notice that we were able to prove this lemma using only basic differential geometry – no
PDE theory was required.

Definition 4.2. For g ∈ C1(Rd), we say that an increasing function ω is a modulus of convexity
for g if

g(y)− g(x)− 〈Dg(x), y − x〉 ≥ ω(|y − x|) ∀x, y ∈ Rd.

We note that every convex function has zero as a modulus of convexity and that every strictly
convex function has a strictly positive modulus of convexity.

Lemma 4.3. Let g ∈ C1,α be convex and coercive with modulus of convexity ω and let E be a
minimizer of either (P ). Let S∂E be the corresponding function defined in (3.1). Then,

(i) For every x ∈ ∂E \ Σ the y achieving the maximum in the definition of S∂E is in ∂E \ Σ.

(ii) S∂E ∈ H1(∂E \ Σ).

(iii) S∂E solves

LS∂E −Dνg S∂E ≥ ω(S∂E) on ∂E \ Σ (4.7)

both in the viscosity and distributional sense.
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Proof. Since the set E is fixed, we drop the dependence on E in the various quantities.

Proof of (i): Easy hyperplane argument that uses some lemmas I don’t want to bother with.

Proof of (ii): Bound |∇S(x)| ≤ diam(E) |A|(x), so the proof boils down to showing A ∈ L2(∂E \Σ).

Proof of (iii): That viscosity solutions are distributional solutions was proved by Ishii in 1995.
Hence, we just show S is a viscosity solution of (4.7). Thanks to (i), we know that for every
x ∈ ∂E \ Σ the point y achieving the maximum in S is in ∂E \ Σ. Therefore, Lemma 3.2 implies
that

LS(x) ≥ H(x)−H(y) + 〈∇H(x), y − x〉
in the viscosity sense. Differentiating the first variation equation,

H + g = 0,

we see ∇H = −∇g. We subtract from both sides of the above inequality the identity

Dνg(x)S(x) = Dνg(x)〈ν(x), y − x〉

to obtain

LS(x)−Dν(x)S(x)

≥ H(x)−H(y)− 〈∇g(x), y − x〉 −Dνg(x)〈ν(x), y − x〉
= g(y)− g(x)− 〈Dg(x), (y − x)〉
≥ ω(|x− y|)

where the second to last inequality follows from (3.1) and the last inequality follows from the
definition of the modulus of convexity for g. Since by definition S(x) ≤ |x − y| and since ω is
increasing, this concludes the proof.

Theorem 1.4. Let E be a minimizer of (P ) and assume that g ∈ C1,α is convex and coercive.
Then E is convex.

Proof. Our goal is to prove S ≡ 0, which will imply the convexity of E. As usual, we use S as a
test function, and we use the equivalence of (3.2) and (4.3) to see∫

∂E\Σ
(−LS)S +Dνg S

2 ≥ 0. (4.8)

Multiplying (4.7) by −S we obtain the inequality

(−LS)S +Dνg S
2 ≤ −ω(S)S,

which after integration gives

−
∫
∂E\Σ

ω(S)S ≥
∫
∂E\Σ

(−LS)S +Dνg S
2. (4.9)

If g is strictly convex, then we can take ω > 0, which gives a contradiction with (4.8) unless
S ≡ 0. If not, then we compute the Euler-Lagrange equation of a certain functional and use a
different contradiction to conclude.
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5 Conclusion

By using viscosity solutions, we were able to do a lot of work with only basic differential geometry,
and the doubling of variables trick changed the sign of a term and introduced a new term that
allowed us to show our function was a solution of exactly the operator in the stability inequality.
The only regularity work we needed to do was show it was in H1, which was so simple we omitted
the proof.
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