M361 Assignment 5

Due in class Thursday, October 2.

1. Suppose $f=u+i v: S \rightarrow \mathbb{C}$ is analytic (that is, f is analytic at every point in S). Show that u and v are harmonic functions on S, i.e.

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

Hint: you may assume the fact that if f is analytic then u and v have continuous partial derivatives, in which case the order of taking partial derivatives does not matter.
2. Recall from homework 2 the functions $S: \mathbb{C} \rightarrow \mathbb{C}, C: \mathbb{C} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& S(z)=\frac{e^{i z}-e^{-i z}}{2 i} \\
& C(z)=\frac{e^{i z}+e^{-i z}}{2}
\end{aligned}
$$

(a) Why are S and C entire?
(b) Show that $S^{\prime}(z)=C(z)$ and $C^{\prime}(z)=-S(z)$.

Remark: From now on we will define $\sin z$ for a complex number z to be $S(z)$. Similarly, we define $\cos z$ to be $C(z)$.

Exercises from the textbook:
p. 71: \#1(a)(b)(c)(d), \#2(a)(b)(c), \#3
p. 77: $\# 1(\mathrm{a})(\mathrm{c})(\mathrm{d}), \# 2(\mathrm{a})(\mathrm{b})(\mathrm{c}), \# 4(\mathrm{a})(\mathrm{b})(\mathrm{c}), \# 7$.

