M361 Assignment 2

Due in class Thursday, September 11.

1. Recall that for $z=x+i y$ we make the definition

$$
e^{z}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)
$$

Prove that $e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$ for all $z_{1}, z_{2} \in \mathbb{C}$ (you may use anything proven in lecture).
2. Prove that $e^{z_{1}}=e^{z_{2}}$ if and only if $\operatorname{Re} z_{1}=\operatorname{Re} z_{2}$ and $\operatorname{Im} z_{1}=\operatorname{Im} z_{2}+2 \pi k$ for some $k \in \mathbb{Z}$.
3. Define the following functions from $\mathbb{C} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& C(z)=\frac{e^{i z}+e^{-i z}}{2} \\
& S(z)=\frac{e^{i z}-e^{-i z}}{2 i}
\end{aligned}
$$

(a) Show that $e^{i z}=C(z)+i S(z)$.
(b) Show that $C(z)^{2}+S(z)^{2}=1$.
(c) Show that $C(z)=C(z+2 \pi k)$ and $S(z)=S(z+2 \pi k)$ for $k \in \mathbb{Z}$.
(d) Show that if $z=x$ is real then $C(x)=\cos x$ and $S(x)=\sin x$.
(e) Show that $C(z)$ and $S(z)$ are each unbounded. That is, show that for any $R \in$ $\mathbb{R}, R>0$ there exists some z such that $|C(z)| \geq R$ (similarly for $S(z)$).

Remark: We will see that C and S are the natural extensions of the functions cos and \sin to the complex plane. Note the familiarity of properties $(a)-(d)$ but the unfamiliarity of property (e).

Exercises from the textbook:
p. 23: \#9.
p. 29-30: \#1(a)(b), \#3(a) (ignore "identify the principal part"), \#7.

