Asymptotics of the s-perimeter as $s \searrow 0$

S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci

August 9, 2012

Abstract

We deal with the asymptotic behavior of the s-perimeter of a set E inside a domain Ω as $s \searrow 0$. We prove necessary and sufficient conditions for the existence of such limit, by also providing an explicit formulation in terms of the Lebesgue measure of E and Ω. Moreover, we construct examples of sets for which the limit does not exist.

1 Introduction

Given $s \in (0,1)$ and a bounded open set $\Omega \subset \mathbb{R}^n$ with $C^{1,\gamma}$-boundary, the s-perimeter of a (measurable) set $E \subseteq \mathbb{R}^n$ in Ω is defined as

$$\text{Per}_s(E;\Omega) := L(E \cap \Omega, (\mathcal{C} E) \cap \Omega)$$

$$+ L(E \cap \Omega, (\mathcal{C} E) \cap (\mathcal{C} \Omega)) + L(E \cap (\mathcal{C} \Omega), (\mathcal{C} E) \cap \Omega),$$

where $\mathcal{C} E = \mathbb{R}^n \setminus E$ denotes the complement of E, and $L(A,B)$ denotes the following nonlocal interaction term

$$L(A,B) := \int_A \int_B \frac{1}{|x-y|^{n+s}} \, dx \, dy \quad \forall A,B \subseteq \mathbb{R}^n.$$ (1.2)

Here we are using the standard convention for which $L(A,B) = 0$ if either $A = \emptyset$ or $B = \emptyset$.

This notion of s-perimeter and the corresponding minimization problem were introduced in [3] (see also the pioneering work [14, 15], where some functionals related to the one in (1.1) have been analyzed in connection with fractal dimensions).

Recently, the s-perimeter has inspired a variety of literature in different directions, both in the pure mathematical settings (for instance, as regards the regularity of surfaces with minimal s-perimeter, see [2, 7, 6, 13]) and in view of concrete applications (such as phase transition problems with long range interactions, see [4, 11, 12]). In general, the nonlocal behavior of the functional is the source of major difficulties, conceptual differences, and challenging technical complications. We refer to [9] for an introductory review on this subject.

The limits as $s \searrow 0$ and $s \nearrow 1$ are somehow the critical cases for the s-perimeter, since the functional in (1.1) diverges as it is. Nevertheless, when appropriately rescaled, these limits seem to give meaningful information on the problem. In particular, it was shown in [5, 1] that $(1-s)\text{Per}_s$ approaches the classical perimeter functional as $s \nearrow 1$ (up to normalizing multiplicative constants), and this implies
that surfaces of minimal s-perimeter inherit the regularity properties of the classical minimal surfaces for s sufficiently close to 1 (see [6]).

As far as we know, the asymptotic as $s \searrow 0$ of $s\text{Per}_s$ was not studied yet (see however [10] for some results in this direction), and this is the question that we would like to address in this paper. That is, we are interested in the quantity

$$\mu(E) := \lim_{s \searrow 0} s\text{Per}_s(E; \Omega)$$

whenever the limit exists. Of course, if it exists then

$$\mu(E) = \mu(\mathcal{C}E),$$

since

$$\text{Per}_s(E; \Omega) = \text{Per}_s(\mathcal{C}E; \Omega).$$

We will show that, though μ is subadditive (see Proposition 2.1 below), in general it is not a measure (see Proposition 2.3, and this is a major difference with respect to the setting in [10]). On the other hand, μ is additive on bounded, separated sets, and it agrees with the Lebesgue measure of $E \cap \Omega$ (up to normalization) when E is bounded (see Corollary 2.6). As we will show below, a precise characterization of $\mu(E)$ will be given in terms of the behavior of the set E towards infinity, which is encoded in the quantity

$$\alpha(E) := \lim_{s \searrow 0} s \int_{E \cap (\mathbb{R}^n \setminus B_1)} \frac{1}{|y|^{n+s}} \, dy,$$

whenever it exists (see Theorem 2.5 and Corollary 2.6). In fact, the existence of the limit defining α is in general equivalent to the one defining μ (see Theorem 2.7(ii)).

As a counterpart of these results, we will construct an explicit example of set E for which both the limits $\mu(E)$ and $\alpha(E)$ do not exist (see Example 2.8): this says that the assumptions we take cannot, in general, be removed.

Also, notice that, in order to make sense of the limit in (1.3), it is necessary to assume that

$$\text{Per}_{s_0}(E; \Omega) < \infty, \text{ for some } s_0 \in (0, 1).$$

(1.4)

To stress that (1.4) cannot be dropped, we will construct a simple example in which such a condition is violated (see Example 2.10).

The paper is organized as follows. In the following section, we collect the precise statements of all the results we mentioned above. Section 3 is devoted to the proofs.

2 List of the main results

We define \mathcal{E} to be the family of sets $E \subseteq \mathbb{R}^n$ for which the limit defining $\mu(E)$ in (1.3) exists. We prove the following result:

Proposition 2.1. μ is subadditive on \mathcal{E}, i.e. $\mu(E \cup F) \leq \mu(E) + \mu(F)$ for any $E, F \in \mathcal{E}$.

1It is easily seen that if (1.4) holds, then $\text{Per}_s(E; \Omega) < \infty$ for any $s \in (0, s_0)$. Moreover, if ∂E is smooth, then (1.4) is always satisfied.
First, it is convenient to consider the normalized Lebesgue measure \mathcal{M}, that is, the standard Lebesgue measure scaled by the factor $H^{n-1}(S^{n-1})$, namely
\[
\mathcal{M}(E) := H^{n-1}(S^{n-1}) \cdot |E|,
\]
where, as usual, we denote by S^{n-1} the $(n-1)$-dimensional sphere.

Now, we recall the main result in [10]; that is, Theorem 2.2. (see [10, Theorem 3]). Let $s \in (0, 1)$. Then, for all $u \in H^s(\mathbb{R}^n)$,
\[
\lim_{s \downarrow 0} \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n+s}} \, dx \, dy = H^{n-1}(S^{n-1}) \int_{\mathbb{R}^n} |u|^2 \, dx.
\]

An easy consequence of the result above is that when $E \in \mathcal{E}$ and $E \subseteq \Omega$ then $\mu(E)$ agrees with $\mathcal{M}(E)$ (in fact, we will generalize this statement in Theorem 2.5 and Corollary 2.6). Based on this property valid for subsets of Ω, one may be tempted to infer that μ is always related to the Lebesgue measure, up to normalization, or at least to some more general type of measures. The next result points out that this cannot be true:

Proposition 2.3. μ is not necessarily additive on separated sets in \mathcal{E}, i.e. there exist $E, F \in \mathcal{E}$ such that $\text{dist}(E, F) \geq c > 0$, but $\mu(E \cup F) < \mu(E) + \mu(F)$.

Also, μ is not necessarily monotone on \mathcal{E}, i.e. it is not true that $E \subseteq F$ implies $\mu(E) \leq \mu(F)$.

In particular, we deduce from Proposition 2.3 that μ is not a measure. On the other hand, in some circumstances the additivity property holds true:

Proposition 2.4. μ is additive on bounded, separated sets in \mathcal{E}, i.e. if $E, F \in \mathcal{E}$, E and F are bounded, disjoint and $\text{dist}(E, F) \geq c > 0$, then $E \cup F \in \mathcal{E}$ and $\mu(E \cup F) = \mu(E) + \mu(F)$.

There is a natural condition under which $\mu(E)$ does exist, based on the weighted volume of E towards infinity, as next result points out:

Theorem 2.5. Suppose that $\text{Per}_{s_0}(E; \Omega) < \infty$ for some $s_0 \in (0, 1)$, and that the following limit exists
\[
\alpha(E) := \lim_{s \downarrow 0} \frac{1}{s} \int_{E \cap (\epsilon B_1)} \frac{1}{|y|^{n+s}} \, dy.
\]

Then $E \in \mathcal{E}$ and
\[
\mu(E) = (1 - \tilde{\alpha}(E)) \cdot \mathcal{M}(E \cap \Omega) + \tilde{\alpha}(E) \cdot \mathcal{M}(\Omega \setminus E),
\]
where
\[
\tilde{\alpha}(E) := \frac{\alpha(E)}{H^{n-1}(S^{n-1})}.
\]

As a consequence of Theorem 2.5, one obtains the existence and the exact expression of $\mu(E)$ for a bounded set E, as described by the following result:
Corollary 2.6. Let E be a bounded set, and $\text{Per}_{s_0}(E; \Omega) < \infty$ for some $s_0 \in (0, 1)$. Then $E \in \mathcal{E}$ and
$$\mu(E) = \mathcal{H}(E \cap \Omega).$$
In particular, if $E \subseteq \Omega$ and $\text{Per}_{s_0}(E; \Omega) < \infty$ for some $s_0 \in (0, 1)$, then $\mu(E) = \mathcal{H}(E)$.

Condition (2.2) is also in general necessary for the existence of the limit in (1.3). Indeed, next result shows that the existence of the limit in (2.2) is equivalent to the existence of the limit in (1.3), except in the special case in which the set E occupies exactly half of the measure of Ω (in this case the limit in (1.3) always exists, independently on the existence of the limit in (2.2)).

Theorem 2.7. Suppose that $\text{Per}_{s_0}(E; \Omega) < \infty$, for some $s_0 \in (0, 1)$. Then:

(i) If $|\Omega \setminus E| = |E \cap \Omega|$, then $E \in \mathcal{E}$ and $\mu(E) = \mathcal{H}(E \cap \Omega)$.

(ii) If $|\Omega \setminus E| \neq |E \cap \Omega|$ and $E \in \mathcal{E}$, then the limit in (2.2) exists and
$$\alpha(E) = \frac{\mu(E) - \mathcal{H}(E \cap \Omega)}{|\Omega \setminus E| - |E \cap \Omega|}.$$
By taking \(\Omega_1 := \Omega \) and \(\Omega_2 := \mathbb{R}^n \) we obtain
\[
L((E \cup F) \cap \Omega, \mathcal{E}(E \cup F)) \leq L(E \cap \Omega, \mathcal{E}E) + L(F \cap \Omega, \mathcal{E}F),
\]
while, by taking \(\Omega_1 := \mathcal{E} \Omega \) and \(\Omega_2 := \Omega \), we conclude that
\[
L((E \cup F) \cap (\mathcal{E} \Omega), (\mathcal{E}(E \cup F)) \cap \Omega) \leq L(E \cap (\mathcal{E} \Omega), (\mathcal{E}E) \cap \Omega) + L(F \cap (\mathcal{E} \Omega), (\mathcal{E}F) \cap \Omega).
\]
By summing up, we get
\[
\text{Per}_s(E \cup F; \Omega) = L((E \cup F) \cap \Omega, \mathcal{E}(E \cup F)) + L((E \cup F) \cap (\mathcal{E} \Omega), (\mathcal{E}(E \cup F)) \cap \Omega) \\
\leq L(E \cap \Omega, \mathcal{E}E) + L(F \cap \Omega, \mathcal{E}F) \\
+ L(E \cap (\mathcal{E} \Omega), (\mathcal{E}E) \cap \Omega) + L(F \cap (\mathcal{E} \Omega), (\mathcal{E}F) \cap \Omega) \\
= \text{Per}_s(E; \Omega) + \text{Per}_s(F; \Omega).
\]
This establishes (3.1) and then Proposition 2.1 follows by taking the limit as \(s \downarrow 0 \). \(\square \)

3.2 Proof of Proposition 2.3

First we show that \(\mu \) is not additive.

Here and in the sequel, we denote by \(B_R \) the open ball centered at \(0 \in \mathbb{R}^n \) of radius \(R > 0 \). We observe that if \(x \in B_1 \) and \(y \in \mathcal{E} B_2 \) then \(|x-y| \leq |x| + |y| \leq 2|y| \), therefore
\[
sL(B_1, \mathcal{E} B_2) \geq c_1 s \int_{B_1} dx \int_{\mathcal{E} B_2} dy \frac{1}{|y|^{n+s}} \geq c_2 s \int_2^{+\infty} \frac{d\rho}{\rho^{1+s}} \geq c_3 s,
\]
for some positive constants \(c_1, c_2 \) and \(c_3 \). Now we take \(E := \mathcal{E} B_2, F := \Omega := B_1 \).

Then
\[
\text{Per}_s(E; \Omega) = L(B_1, \mathcal{E} B_2), \\
\text{Per}_s(F; \Omega) = L(B_1, \mathcal{E} B_1) = L(B_1, \mathcal{E} B_2) + L(B_1, B_2 \setminus B_1) \\
\text{and} \quad \text{Per}_s(E \cup F; \Omega) = L(B_1, B_2 \setminus B_1).
\]

Therefore
\[
s \text{Per}_s(E; \Omega) + s \text{Per}_s(F; \Omega) = 2sL(B_1, \mathcal{E} B_2) + sL(B_1, B_2 \setminus B_1) \\
\geq 2c_3 + s L(B_1, B_2 \setminus B_1) \\
= 2c_3 + s \text{Per}_s(E \cup F; \Omega).
\]
By sending \(s \downarrow 0 \), we conclude that \(\mu(E) + \mu(F) \geq 2c_3 + \mu(E \cup F) \), so \(\mu \) is not additive.

Now we show that \(\mu \) is not monotone either. For this we take \(E \) such that \(\mu(E) > 0 \) (for instance, one can take \(E \) a small ball inside \(\Omega \); see Corollary 2.6), and \(F := \mathbb{R}^n \): with this choice, \(E \subset F \) and \(\text{Per}_s(F; \Omega) = 0 \), so \(\mu(E) > 0 = \mu(F) \). \(\square \)
3.3 Auxiliary observations

Here we collect some observations, to be exploited in the subsequent proofs.

Observation 1. First of all, we observe that

\[
\lim_{s \searrow 0} s L(A, B) = 0. \tag{3.2}
\]

To check this, suppose that \(A\) and \(B\) lie in \(B_R\). Then

\[
\int_A \int_B \frac{1}{|x - y|^{n+s}} \, dx \, dy \leq \int_{B_R \setminus B_r} \frac{1}{|y|^{n+s}} \, dy \leq \frac{(\mathcal{H}^{n-1}(S^{n-1})^2 R^{2n}}{n^2 e^{n+s}}
\]

and this establishes (3.2).

Observation 2. Now we would like to remark that the quantity

\[
\lim_{s \searrow 0} s \int_{E \cap (B \setminus B_R)} \frac{1}{|y|^{n+s}} \, dy
\]

is independent of \(R\), if the limit exists. More precisely, we show that for any \(R \geq r > 0\)

\[
\lim_{s \searrow 0} \left(\int_{E \cap (B \setminus B_r)} \frac{1}{|y|^{n+s}} \, dy - \int_{E \cap (B \setminus B_r)} \frac{1}{|y|^{n+s}} \, dy \right) = 0. \tag{3.3}
\]

To prove this, we notice that

\[
\int_{E \cap (B \setminus B_r)} \frac{1}{|y|^{n+s}} \, dy \leq s \int_{B_R \setminus B_r} \frac{1}{|y|^{n+s}} \, dy = s \mathcal{H}^{n-1}(S^{n-1}) \int_r^R \frac{1}{\rho^{1+s}} \, d\rho
\]

\[
= \mathcal{H}^{n-1}(S^{n-1}) \left(\frac{1}{r^s} - \frac{1}{R^s} \right) \tag{3.4}
\]

and so, by taking limit in \(s\),

\[
\lim_{s \searrow 0} \int_{E \cap (B \setminus B_r)} \frac{1}{|y|^{n+s}} \, dy = 0,
\]

which establishes (3.3).

Observation 3. As a consequence of (3.3), it follows that if the limit in (2.2) exists then

\[
\alpha(E) = \lim_{s \searrow 0} s \int_{E \cap (B \setminus B_r)} \frac{1}{|y|^{n+s}} \, dy \quad \forall R > 0. \tag{3.5}
\]

Observation 4. For any \(s \in (0, 1)\), we define

\[
\alpha_s(E) := s \int_{E \cap (B \setminus B_r)} \frac{1}{|y|^{n+s}} \, dy \tag{3.6}
\]

and we prove that, for any bounded set \(F \subset \mathbb{R}^n\), and any set \(E \subseteq \mathbb{R}^n\),

\[
\lim_{R \to +\infty} \limsup_{s \searrow 0} \left| \alpha_s(E) |F| - \int_F \int_{E \cap (B \setminus B_r)} \frac{1}{|x - y|^{n+s}} \, dx \, dy \right| = 0. \tag{3.7}
\]
To prove this, we take \(r > 0 \) such that \(F \subset B_r \) and \(R > 1 + 2r \) (later on \(R \) will be taken as large as we wish). We observe that, for any \(z \in B_r \) and \(y \in \mathcal{C}B_R \),

\[
|z - y| \geq |y| - |z| = \left(1 - \frac{r}{R}\right)|y| + \frac{r}{R}|y| - |z| \geq \frac{|y|}{2}.
\]

Therefore, if, for any fixed \(y \in \mathcal{C}B_R \) we consider the map

\[
h(z) := \frac{1}{|z - y|^{n+s}}, \quad z \in B_r,
\]

we have that

\[
|\nabla h(z)| = \frac{n + s}{|z - y|^{n+s+1}} \leq \frac{2^{n+s+1}(n + s)}{|y|^{n+s+1}}.
\]

for any \(z \in B_r \), which implies

\[
\left|\frac{1}{|x - y|^{n+s}} - \frac{1}{|y|^{n+s}}\right| = |h(x) - h(0)| \leq \frac{2^{n+s+1}(n + s)|x|}{|y|^{n+s+1}} \quad \forall x \in B_r, y \in \mathcal{C}B_R.
\]

Therefore

\[
\left| \int_F \left(\int_{E \cap (\mathcal{C}B_R)} \frac{1}{|y|^{n+s}} dy \right) dx - \int_F \left(\int_{E \cap (\mathcal{C}B_R)} \frac{1}{|x - y|^{n+s}} dx \right) dy \right|
\leq \int_F \left(\int_{E \cap (\mathcal{C}B_R)} \left| \frac{1}{|y|^{n+s}} - \frac{1}{|x - y|^{n+s}} \right| dy \right) dx
\leq \int_F \left(\int_{E \cap (\mathcal{C}B_R)} \frac{2^{n+s+1}(n + s)|x|}{|y|^{n+s+1}} dy \right) dx
\leq 2^{n+s+1}(n + s)|F|r \int_{\mathcal{C}B_R} \frac{1}{|y|^{n+s+1}} dy \leq C
\]

for some \(C > 0 \) independent of \(s \). As a consequence

\[
\left| \alpha_s(E) |F| - s \int_F \int_{E \cap (\mathcal{C}B_R)} \frac{1}{|x - y|^{n+s}} dx dy \right|
\leq |F| \left| \alpha_s(E) - s \int_{E \cap (\mathcal{C}B_R)} \frac{1}{|y|^{n+s}} dy \right| + Cs.
\]

This and (3.3) (applied here with \(r := 1 \)) imply (3.7).

Observation 5. If the limit in (2.2) exists, then (3.7) boils down to

\[
\lim_{R \to +\infty} \limsup_{s \searrow 0} \left| \alpha(E) |F| - s \int_F \int_{E \cap (\mathcal{C}B_R)} \frac{1}{|x - y|^{n+s}} dx dy \right| = 0. \tag{3.8}
\]

Observation 6. Now we point out that, if \(F \subseteq \Omega \subset B_R \) for some \(R > 0 \), and \(F \) has finite \(s_0 \)-perimeter in \(\Omega \) for some \(s_0 \in (0, 1) \), then

\[
\lim_{s \searrow 0} s \int_F \int_{B_R \setminus F} \frac{1}{|x - y|^{n+s}} dx dy = 0. \tag{3.9}
\]
Indeed, for any $s \in (0, s_0)$,
\[
\int_F \int_{B_R \setminus F} \frac{1}{|x-y|^{n+s}} \, dx \, dy \\
\leq \int_F \int_{(B_R \setminus F) \cap \{|x-y| \leq 1\}} \frac{1}{|x-y|^{n+s_0}} \, dx \, dy + \int_F \int_{(B_R \setminus F) \cap \{|x-y| > 1\}} \frac{1}{|x-y|^{n+s_0}} \, dx \, dy \\
\leq \text{Per}_s(F; \Omega) + |B_R|^2,
\]
which implies (3.9). In particular, thanks to [1, Proposition 16], the argument above also shows that if $F \in \Omega \subset B_R$ and $\chi_F \in BV(\Omega)$, then F has finite s-perimeter in Ω for any $s \in (0, 1)$.

Observation 7. Let $E_1 := E \cap \Omega$ and $E_2 := E \setminus \Omega$. Then
\[
\text{Per}_s(E; \Omega) = \text{Per}_s(E_1 \cup E_2; \Omega) \\
= L(E_1, \Omega \setminus E_1) + L(E_1, (\mathcal{C}\Omega) \setminus E_2) + L(E_2, \Omega \setminus E_1) \\
= L(E_1, \mathcal{C}E_1) - L(E_1, E_2) + L(E_2, \Omega \setminus E_1) \\
= \text{Per}_s(E_1; \Omega) - L(E_1, E_2) + L(E_2, \Omega \setminus E_1). \tag{3.10}
\]

With these observations in hand, we are ready to continue the proofs of the main results.

3.4 Proof of Proposition 2.4

We prove Proposition 2.4 by suitably modifying the proof of Proposition 2.1. Given two open sets Ω_1 and Ω_2, and two disjoint sets E and F, we have that
\[
L((E \cup F) \cap \Omega_1, (\mathcal{C}(E \cup F)) \cap \Omega_2) \\
= L(E \cap \Omega_1 \cup (F \cap \Omega_1), (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega_2) \\
= L(E \cap \Omega_1, (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega_2) + L(F \cap \Omega_1, (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega_2).
\]

By taking $\Omega_1 := \Omega$ and $\Omega_2 := \mathbb{R}^n$ we obtain
\[
L((E \cup F) \cap \Omega, (\mathcal{C}(E \cup F))) = L(E \cap \Omega, (\mathcal{C}E) \cap (\mathcal{C}F)) + L(F \cap \Omega, (\mathcal{C}E) \cap (\mathcal{C}F))
\]
while, by taking $\Omega_1 := \mathcal{C}\Omega$ and $\Omega_2 := \Omega$, we conclude that
\[
L((E \cup F) \cap (\mathcal{C}\Omega), (\mathcal{C}(E \cup F)) \cap \Omega) \\
= L(E \cap (\mathcal{C}\Omega), (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega) + L(F \cap (\mathcal{C}\Omega), (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega).
\]

As a consequence,
\[
\text{Per}_s(E \cup F; \Omega) \\
= L((E \cup F) \cap \Omega, (\mathcal{C}(E \cup F))) + L((E \cup F) \cap (\mathcal{C}\Omega), (\mathcal{C}(E \cup F)) \cap \Omega) \\
= L(E \cap \Omega, (\mathcal{C}E) \cap (\mathcal{C}F)) + L(F \cap \Omega, (\mathcal{C}E) \cap (\mathcal{C}F)) \\
+ L(E \cap (\mathcal{C}\Omega), (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega) + L(F \cap (\mathcal{C}\Omega), (\mathcal{C}E) \cap (\mathcal{C}F) \cap \Omega) \\
= \text{Per}_s(E; \Omega) + \text{Per}_s(F; \Omega) \\
- L(E \cap \Omega, (\mathcal{C}E) \cap F) - L(F \cap \Omega, E \cap (\mathcal{C}F)) \\
- L(E \cap (\mathcal{C}\Omega), (\mathcal{C}E) \cap F \cap \Omega) - L(F \cap (\mathcal{C}\Omega), E \cap (\mathcal{C}F) \cap \Omega).
\]
We remark that the last interactions involve only bounded, separated sets, since so are \(E\) and \(F\), therefore, by (3.2),
\[
\lim_{s \downarrow 0} s \operatorname{Per}_s(E \cup F; \Omega) = \lim_{s \downarrow 0} \left(s \operatorname{Per}_s(E; \Omega) + s \operatorname{Per}_s(F; \Omega) \right),
\]
which completes the proof of Proposition 2.4. \(\square\)

3.5 Proof of Theorem 2.5

We suppose that \(\Omega \subset B_r\), for some \(r > 0\), and we take \(R > 1 + 2r\). Let \(E_1 := E \cap \Omega\) and \(E_2 := E \setminus \Omega\). Notice that, for any \(F \subseteq \Omega\), which has finite \(s_0\)-perimeter in \(\Omega\) for some \(s_0 \in (0,1)\),
\[
E_2 \cap B_R \subseteq B_R \setminus \Omega \subseteq B_R \setminus F
\]
and so (3.9) gives that
\[
\lim_{s \downarrow 0} s \int_F \int_{E_2 \cap B_R} \frac{1}{|x - y|^{n+s}} \, dx \, dy = 0,
\]
(3.11)
provided that \(F\) has finite \(s_0\)-perimeter in \(\Omega\). Using this and (3.8), we conclude that, for any \(F \subseteq \Omega\) of finite \(s_0\)-perimeter in \(\Omega\),
\[
\lim_{s \downarrow 0} \int_F \int_{E_2} \frac{1}{|x - y|^{n+s}} \, dx \, dy
= \lim_{R \to +\infty} \lim_{s \downarrow 0} \int_F \int_{E_2} \frac{1}{|x - y|^{n+s}} \, dx \, dy
= \lim_{R \to +\infty} \lim_{s \downarrow 0} \int_F \int_{E_2 \cap (\emptyset B_R)} \frac{1}{|x - y|^{n+s}} \, dx \, dy
= \alpha(E) |F|.
\]
In particular\(^2\), by taking \(F := E_1\) and \(F := \Omega \setminus E_1\), and recalling (2.1) and (2.3),
\[
\lim_{s \downarrow 0} \int_{E_1} \int_{E_2} \frac{1}{|x - y|^{n+s}} \, dx \, dy = \alpha(E) |E_1| = \tilde{\alpha}(E) \mathcal{M}(E_1)
\]
and
\[
\lim_{s \downarrow 0} \int_{(\Omega \setminus E_1)} \int_{E_2} \frac{1}{|x - y|^{n+s}} \, dx \, dy = \alpha(E) |\Omega \setminus E_1| = \tilde{\alpha}(E) \mathcal{M}(\Omega \setminus E_1).
\]
(3.12)

We now claim
\[
\lim_{s \downarrow 0} s \operatorname{Per}_s(E_1; \Omega) = \mathcal{M}(E_1).
\]
(3.13)

\(\uparrow\)We stress that both \(E_1\) and \(\Omega \setminus E_1\) have finite \(s_0\)-perimeter in \(\Omega\) if so has \(E\), thanks to our smoothness assumption on \(\partial \Omega\). We check this claim for \(E_1\), the other being analogous. First of all, fixed \(B_R \subset B_r \supset \Omega\), we have that
\[
L(E_1, (E \setminus \Omega) \cap (\emptyset B_R)) \subseteq L(B_r, \emptyset B_R) < +\infty.
\]
Also \(L(\Omega \cap B_R, (\emptyset \Omega) \cap B_R) < +\infty\) (see, e.g., Lemma 11 in [5]), therefore
\[
\operatorname{Per}_{s_0}(E_1; \Omega) = L(E_1, (E \setminus \Omega)) + L(E_1, \emptyset E) + L(E_1, (E \setminus \Omega) \cap B_R)
\]
\[
\leq \operatorname{Per}_{s_0}(E_1; \Omega) + L(E_1, (E \setminus \Omega) \cap B_R) + L(E_1, (E \setminus \Omega) \cap (\emptyset B_R))
\]
that is finite.
Indeed, since $E_1 \subseteq \Omega$, this is a plain consequence of Theorem 2.2 (see also Remark 4.3 in [8] for another elementary proof) by simply choosing $u = \chi_{E_1}$ there:

$$
\lim_{s \downarrow 0} s \text{Per}_s(E_1; \Omega) = \lim_{s \downarrow 0} s L(E_1, \mathcal{H} E_1) = \lim_{s \downarrow 0} \frac{s}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|\chi_{E_1}(x) - \chi_{E_1}(y)|^2}{|x-y|^{n+s}} \, dx \, dy = H^{n-1}(S^{n-1}) \|\chi_{E_1}\|_{L^2(\mathbb{R}^n)} = H^{n-1}(S^{n-1})|E_1|,
$$
as desired. Thus, using (3.10), (3.12), and (3.13), we obtain

$$
\lim_{s \downarrow 0} s \text{Per}_s(E_1; \Omega) = \mathcal{H}(E_1) - \tilde{\alpha}(E) \mathcal{H}(E_1) + \tilde{\alpha}(E) \mathcal{H}(\Omega \setminus E_1),
$$

which is the desired result.

\section{Proof of Corollary 2.6}

We fix R large enough so that $E \subset B_R$, hence $E \cap (\mathcal{H} B_R) = \emptyset$. By the expression of $\alpha(E)$ in (3.5), we have that the limit in (2.2) exists and $\alpha(E) = 0$. Then the result follows by Theorem 2.5.

\section{Proof of Theorem 2.7}

We suppose that $\Omega \subset B_r$, for some $r > 0$, and we take $R > 1 + 2r$. Let $E_1 := E \cap \Omega$ and $E_2 := E \setminus \Omega$. By (3.10),

$$
s \text{Per}_s(E; \Omega) - s \text{Per}_s(E_1; \Omega) = s L(E_2, \Omega \setminus E_1) - s L(E_1, E_2)
$$

$$
= s \int_{\Omega \setminus E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy + s \int_{\Omega \setminus E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy
$$

$$
- s \int_{E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy - s \int_{E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy.
$$

By rearranging the terms, we obtain

$$
I(s, R) := s \int_{\Omega \setminus E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy - s \int_{E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy
$$

$$
+ s \int_{E_1} \int_{E_2 \cap (\mathcal{H} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy.
$$

(3.14)

By using (3.9) with $F := \Omega \setminus E_1$ and $F := E_1$ (which have finite s_0-perimeter in Ω, recall the footnote on page 9), we have that the last two terms in (3.14) converge to zero as $s \downarrow 0$, thus

$$
\lim_{s \downarrow 0} I(s, R) = \lim_{s \downarrow 0} \left(s \text{Per}_s(E; \Omega) - s \text{Per}_s(E_1; \Omega) \right).
$$

(3.15)
We now recall the notation in (3.6) and we write
\[
\alpha_s(\mathcal{E}) |\Omega \setminus E_1| = s \int_{\Omega \setminus E_1} \int_{E_2 \cap (\mathcal{E} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy
\]
\[+ \alpha_s(\mathcal{E}) |\Omega \setminus E_1| - s \int_{\Omega \setminus E_1} \int_{E_2 \cap (\mathcal{E} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy,
\]
and
\[
\alpha_s(\mathcal{E}) |E_1| = s \int_{E_1} \int_{E_2 \cap (\mathcal{E} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy
\]
\[+ \alpha_s(\mathcal{E}) |E_1| - s \int_{E_1} \int_{E_2 \cap (\mathcal{E} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy.
\]

By subtracting term by term, we obtain that
\[
\alpha_s(\mathcal{E}) \left(|\Omega \setminus E_1| - |E_1| \right)
= I(s, R) + \left(\alpha_s(\mathcal{E}) |\Omega \setminus E_1| - s \int_{\Omega \setminus E_1} \int_{E_2 \cap (\mathcal{E} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy \right)
- \left(\alpha_s(\mathcal{E}) |E_1| - s \int_{E_1} \int_{E_2 \cap (\mathcal{E} B_R)} \frac{1}{|x-y|^{n+s}} \, dx \, dy \right).
\]

As a consequence, by using (3.7) (applied here both with \(F := \Omega \setminus E_1\) and \(F := E_1\)),
\[
\lim_{R \to +\infty} \lim_{s \downarrow 0} \left[\alpha_s(\mathcal{E}) \left(|\Omega \setminus E_1| - |E_1| \right) - I(s, R) \right] = 0. \quad (3.16)
\]

Now, if \(|\Omega \setminus E| = |E \cap \Omega|\) then \(|\Omega \setminus E_1| - |E_1| = 0\), and from (3.15), (3.16), and Corollary 2.6 we get
\[
0 = \lim_{R \to +\infty} \lim_{s \downarrow 0} I(s, R) = \lim_{s \downarrow 0} s \text{Per}_s(\mathcal{E}; \Omega) - \mathcal{M}(\mathcal{E} \cap \Omega),
\]
which proves that \(E \in \mathcal{E}\) and \(\mu(E) = \mathcal{M}(\mathcal{E} \cap \Omega)\). This establishes Theorem 2.7(i).

On the other hand, if \(|\Omega \setminus E| \neq |E \cap \Omega|\), then by (3.15), (3.16), and Corollary 2.6 we obtain the existence of the limit
\[
\left(|\Omega \setminus E_1| - |E_1| \right) \lim_{s \downarrow 0} \alpha_s(\mathcal{E})
= \lim_{R \to +\infty} \lim_{s \downarrow 0} \alpha_s(\mathcal{E}) \left(|\Omega \setminus E_1| - |E_1| \right)
= \lim_{R \to +\infty} \lim_{s \downarrow 0} \left\{ \left[\alpha_s(\mathcal{E}) \left(|\Omega \setminus E_1| - |E_1| \right) - I(s, R) \right] + I(s, R) \right\}
= \mu(E) - \mu(E_1) = \mu(E) - \mathcal{M}(\mathcal{E} \cap \Omega),
\]
which completes the proof of Theorem 2.7(ii). \(\square\)
3.8 Construction of Example 2.8

We start with some preliminary computations. Let \(a_k := 10^k \), for any \(k \in \mathbb{N} \), and let
\[
I_j := \bigcup_{k \in \mathbb{N}} [a_{4k+j}, a_{4k+j+1}], \quad \text{for } j = 0, 1, 2, 3.
\]

Notice that \([1, +\infty)\) may be written as the disjoint union of the \(I_j \)'s. Let \(\varphi \in C^\infty([0, +\infty), [0, 1]) \) be such that \(\varphi = 0 \) in \([0, 1] \cup I_0\), \(\varphi = 1 \) in \(I_2 \), and then \(\varphi \) smoothly interpolates between 0 and 1 in \(I_1 \cup I_3 \).

We claim that there exist two sequences \(\nu_{0,k} \to +\infty \) and \(\nu_{1,k} \to +\infty \) such that
\[
\lim_{k \to +\infty} \int_0^{+\infty} \varphi(\nu_{0,k} x) e^{-x} \, dx = 0 \quad \text{and} \quad \lim_{k \to +\infty} \int_0^{+\infty} \varphi(\nu_{1,k} x) e^{-x} \, dx = 1. \quad (3.17)
\]

To check (3.17), we take \(\nu_{0,k} := a_{4k+1}/k \) and \(\nu_{1,k} := a_{4k+3}/k \). We observe that, by construction, \(\varphi = 0 \) in \([a_{4k}, a_{4k+1})\) and \(\varphi = 1 \) in \([a_{4k+2}, a_{4k+3})\), so \(\varphi(\nu_{0,k} x) = 0 \) for any \(x \in [kb_0, k) \) and \(\varphi(\nu_{1,k} x) = 1 \) in \([kb_1, k)\), where
\[
b_{0,k} := \frac{a_{4k}}{a_{4k+1}} = 10^{-(8k+1)} \quad \text{and} \quad b_{1,k} := \frac{a_{4k+2}}{a_{4k+3}} = 10^{-(8k+5)}.
\]

We deduce that
\[
\int_0^{+\infty} \varphi(\nu_{0,k} x) e^{-x} \, dx \leq \int_0^{kb_{0,k}} e^{-x} \, dx + \int_k^{+\infty} e^{-x} \, dx = 1 - e^{-kb_{0,k}} + e^{-k}
\]
and
\[
\int_0^{+\infty} \varphi(\nu_{1,k} x) e^{-x} \, dx \geq \int_{kb_{1,k}}^{+\infty} e^{-x} \, dx = e^{-kb_{1,k}} - e^{-k}.
\]

This implies (3.17) by noticing that
\[
\lim_{k \to +\infty} kb_{0,k} = 0 = \lim_{k \to +\infty} kb_{1,k}.
\]

Now we construct our example by using the above function \(\varphi \) and (3.17). We take \(\Omega := B_{1/2} \) and \(E := \{ \rho \cos \gamma, \rho \sin \gamma \}, \rho > 1, \gamma \in [0, \theta(\rho)] \} \subset \mathbb{R}^2 \), where \(\theta(\rho) := \varphi(\log \rho) \).

First of all, since \(\Omega = B_{1/2} \) and \(E \subset \mathbb{R}^n \setminus B_1 \), it is easy to see that
\[
\text{Per}_s(E; \Omega) = \int_{\Omega} \int_E \frac{1}{|x - y|^{n+s}} \, dx \, dy \leq |\Omega| \int_{\mathbb{R}^n \setminus B_1} \frac{2^{n+s}}{|z|^{n+s}} \, dz < \infty
\]
for any \(s \in (0, 1) \). Then, recalling (3.6) we have
\[
\alpha_s(E) = s \int_1^{+\infty} \int_0^{\theta(\rho)} \rho^{n-1} \, d\theta \, d\rho = s \int_1^{+\infty} \theta(\rho) \frac{1}{\rho^{1+s}} \, d\rho.
\]
Therefore, by the change of variable \(\log \rho = r \), we have
\[
\alpha_s(E) = s \int_0^{+\infty} \varphi(r) \, e^{-rs} \, dr,
\]
and, by the further change \(rs = x \), we have
\[
\alpha_s(E) = \int_0^{+\infty} \varphi\left(\frac{x}{s}\right) \, e^{-x} \, dx.
\]
If we set \(\nu = 1/s \), the limit in (2.2) becomes the following:

\[
\alpha(E) = \lim_{\nu \to \infty} \int_0^{+\infty} \varphi(\nu x) e^{-x} \, dx,
\]

and, by (3.17), we get that such a limit does not exist. This shows that the limit in (2.2) does not exist. Since \(|\Omega \setminus E| = |B_{1/2}| > 0 = |E \cap \Omega| \), by Theorem 2.7(ii), the limit in (1.3) does not exist either. \(\square \)

3.9 Construction of Example 2.9

It is sufficient to modify Example 2.8 inside \(\Omega = B_{1/2} \) in such a way that \(|\Omega \setminus E| = |E \cap \Omega| \). Notice that, since the set \(E \) has smooth boundary, then it has finite \(s \)-perimeter for any \(s \in (0, 1) \) (see Lemma 11 in [5]). Then (2.2) is not affected by this modification and so the limit in (2.2) does not exist in this case too. On the other hand, the limit in (1.3) exists, thanks to Theorem 2.7(i). \(\square \)

3.10 Construction of Example 2.10

We take a decreasing sequence \(\beta_k \) such that \(\beta_k > 0 \) for any \(k \geq 1 \),

\[
M := \sum_{k=1}^{+\infty} \beta_k < +\infty
\]

but

\[
\sum_{k=1}^{+\infty} \beta_k^{1-s} = +\infty \quad \forall s \in (0, 1).
\]

For instance, one can take \(\beta_1 := \frac{1}{\log^2 2} \) and \(\beta_k := \frac{1}{k \log^2 k} \) for any \(k \geq 2 \).

Now, we define

\[
\Omega := (0, M) \subset \mathbb{R},
\]

\[
\sigma_m := \sum_{k=1}^{m} \beta_k,
\]

\[
I_m := (\sigma_m, \sigma_{m+1}),
\]

and \(E := \bigcup_{j=1}^{+\infty} I_{2j} \).

Notice that \(E \subset \Omega \) and

\[
\text{Per}_s(E; \Omega) = L(E, \mathcal{C} E) \geq \sum_{j=1}^{+\infty} L(I_{2j}, I_{2j+1}) = \sum_{j=1}^{+\infty} \int_{\sigma_{2j}}^{\sigma_{2j+1}} \int_{\sigma_{2j+1}}^{\sigma_{2j+2}} \frac{1}{|x - y|^{1+s}} \, dx \, dy.
\]

An integral computation shows that if \(a < b < c \) then

\[
\int_b^c \int_a^b \frac{1}{|x - y|^{1+s}} \, dx \, dy = \frac{1}{s(1-s)} \left[(c-b)^{1-s} + (b-a)^{1-s} - (c-a)^{1-s} \right].
\]
By plugging this into (3.19), we obtain
\[
 s(1-s)\text{Per}_s(E; \Omega) \geq \sum_{j=1}^{+\infty} \left[(\sigma_{2j+2} - \sigma_{2j+1})^{1-s} + (\sigma_{2j+1} - \sigma_{2j})^{1-s} - (\sigma_{2j+2} - \sigma_{2j})^{1-s} \right]
\]
\[
= \sum_{j=1}^{+\infty} \beta_{2j+2}^{1-s} + \beta_{2j+1}^{1-s} - (\beta_{2j+2} + \beta_{2j+1})^{1-s}.
\]

(3.20)

Now we observe that the map \([0,1) \ni t \mapsto (1+t)^{1-s}\) is concave, therefore
\[
(1+t)^{1-s} \leq 1 + (1-s)t \leq 1 + (1-s)t^{1-s}
\]
for any \(t \in [0,1]\), that is
\[
1 + t^{1-s} - (1+t)^{1-s} \geq st^{1-s}.
\]
By taking \(t := \beta_{2j+2}/\beta_{2j+1}\) and then multiplying by \(\beta_{2j+1}^{1-s}\), we obtain
\[
\beta_{2j+1}^{1-s} + \beta_{2j+2}^{1-s} - (\beta_{2j+1} + \beta_{2j+2})^{1-s} \geq s^{1-s}.
\]
By plugging this into (3.20) and using (3.18), we conclude that
\[
\text{Per}_s(E; \Omega) \geq \frac{1}{1-s} \sum_{j=1}^{+\infty} \beta_{2j+2}^{1-s} = +\infty \quad \forall s \in (0,1),
\]
as desired. \(\Box\)

References

