Directions: Indicate all answers on the answer sheet provided. Please enter your name and student # where requested. An assertion is to be interpreted as a true-false question and answered “A” if true, “E” if false. Each question has only one correct answer.
Turn in legible scratchwork for possible partial credit. (Even for a True-False question, you can give a reason or counterexample.)

1. Suppose y is a function of x satisfying $y^3 - y - x = 6$, and that $y(0) = 2$. What is $y'(0)$?
 (Hint: Differentiate implicitly and solve for y'.)
 (A) 1/2 (B) 1/13 (C) 1/11 (D) 7/11 (E) None of these

2. If $f(x)$ is differentiable everywhere, and $f(1) = 3$, $f(2) = 1$, then by the Mean Value Theorem, there is a c with $1 < c < 2$ and $f'(c) =
 (A) 2 (B) -2 (C) 1/2 (D) -1/2 (E) None of these

3. Suppose $f(x)$ is a function defined whenever $x \neq 0$. Suppose that $f'(x) < 0$ for all x where f is defined. Then we can conclude that $f(1) < f(-1)$.

4. Suppose $f(x) = 3\sqrt{x} - \frac{x}{2}$, for $x > 0$. Then at $x = 1$, f
 (Note: $f'(x) = \frac{3}{2\sqrt{x}} - \frac{1}{2}$.)
 (A) is decreasing (B) is increasing (C) has local max (D) has local min
 (E) None of these

5. For the same $f(x)$ as in 4, on what interval is f decreasing?
 (A) $(9, \infty)$ (B) $(0, 9)$ (C) $(\sqrt{3}, \infty)$ (D) $(0, \sqrt{3})$ (E) None of these

6. For the same $f(x)$ as in 4, at $x = 9$, f
 (A) is decreasing (B) is increasing (C) has local max (D) has local min
 (E) None of these
7. Consider the function \(f(x) = x^3 - 3x - 1 \) defined for all real \(x \). \(f(x) \) has a **local maximum** at some point \(x = c \). What is \(f(c) \)? *(Note*** We are asking for \(f(c) \), not \(c \)!)*

(A) -1 (B) 0 (C) -3 (D) 1 (E) None of these

8. Now consider the function \(f(x) = x^3 - 3x - 1 \) defined on \([-10, 10]\). What is the **absolute maximum** of this function?

(A) 1 (B) 10 (C) 969 (D) Doesn’t exist (E) None of these

9. Suppose now that \(g(x) = x^4 - x^3 \) defined for all real \(x \). Which of the following is true for this function?

(A) \(g(3/4) \) is a local max (B) \(g(3/4) \) is a local min (C) \(g(0) \) is a local max

(D) \(g(0) \) is a local min (E) None of these

10. Suppose \(h(x) \) is a function defined for all real \(x \), and \(h'(0) = 0, h''(0) = 0, h'(x) > 0 \) for \(x < 0 \), \(h'(x) < 0 \) for \(x > 0 \). Which of the following is true for this function?

(A) \(h(0) \) is a local max (B) \(h(0) \) is a local min (C) \((0, h(0)) \) is an inflection point

(D) \(h(0) \) is not a local extreme (E) None of these

11. Suppose \(f(x) \) is defined for all real \(x \). Which of the following implies that \(f(0) \) is a local maximum?

(A) \(\{f'(0) = 0, f''(0) = 0\} \) (B) \(\{f'(0) = 0, f(0) = 1\} \) (C) \(\{f'(0) = 0, f''(0) > 0\} \)

(D) \(\{f'(0) = 0, f''(0) < 0\} \) (E) None of these

12. Suppose \(g(x) \) is defined and differentiable for all real \(x \), and \(g'(x) = 0 \) only for \(x = 0 \). Suppose also that \(g(0) = 1 \), and \(\lim_{x\to\pm\infty} g(x) = 0 \). Which of the following is a correct conclusion?

(A) The absolute min of \(g \) is 1. (B) The absolute max of \(g \) is 1.

(C) \(g \) has a local max at \(x = 0 \), but it may not be the absolute max.

(D) \(g \) has an absolute max, and an absolute min. (E) None of these
13. What is the absolute maximum of \(f(x) = \frac{x}{1+x^2} \) (defined for all \(x \))?
(Note***: We want the value of \(f \), not the \(x \) where the max occurs.)
(A) 0 (B) 1 (C) \(\frac{1}{2} \) (D) 2 (E) None of these

14. What is the maximum possible area of a rectangle whose total perimeter is \(L \)?
(Note*** We are asking for the area, not some length of a side.)
(A) \(\frac{L^2}{16} \) (B) \(\frac{L^2}{4} \) (C) \(\frac{L^2}{8} \) (D) \(L^2 \) (E) None of these

15. Consider the function \(g(x) = x^3 - x^2 \) defined for all \(x \). On which of the following intervals is \(g(x) \) concave down?
(A) \((-\infty, \frac{2}{3}) \) (B) \(\left(\frac{2}{3}, \infty \right) \) (C) \((0, \infty) \) (D) \((-\infty, \frac{1}{3}) \) (E) None of these

16. Which of the following functions \(h(x) \) has an inflection point at \((0,0) \)?
(A) \(h(x) = x^2 \) (B) \(h(x) = x^3 - x^2 \) (C) \(h(x) = x^5 \) (D) \(h(x) = x^5 + x^4 \) (E) None of these

17. Consider the function \(f(x) = x \) on \([0,1] \), and the partition \(P = \{0, \frac{1}{2}, 1\} \) of \([0,1] \).
What is the lower sum \(L_f(P) \) corresponding to this data?
(Recall that this is a sum of the form \(\sum_{i=1}^{2} m_i(\Delta x)_i \) where \(m_i \) denotes a minimum value.)
(A) \(\frac{1}{2} \) (B) \(\frac{1}{4} \) (C) \(\frac{3}{4} \) (D) 1 (E) None of these

18. With the same function and partition as in the previous problem, what is the Riemann Sum obtained if we use the midpoint of each of the 2 subintervals of the partition as the points \(x_i^* \) \((i = 1, 2) \) where \(f \) is evaluated?
(Recall that this is a sum of the form \(\sum_{i=1}^{2} f(x_i^*)(\Delta x)_i \) where \(x_i^* \) are points in the sub-intervals; here we assume these are midpoints.)
(A) \(\frac{1}{2} \) (B) \(\frac{1}{4} \) (C) \(\frac{3}{4} \) (D) 1 (E) None of these

19. What is \(\int_1^4 \sqrt{x} \, dx \)?
(A) 1 (B) \(\frac{14}{3} \) (C) -\(\frac{1}{4} \) (D) \(\frac{16}{3} \) (E) None of these
20. What is \(\int_{0}^{\pi/4} \sec^2(x) \, dx \)?
(A) 1/3 (B) 0 (C) \(\frac{\sec^3(x)}{3} \bigg|_{0}^{\pi/4} \) (D) 1 (E) None of these

21. Suppose \(f(x) = f_{1}^{x} \frac{dt}{1+t^4} \). What is \(f'(2) \)?
(A) \(\pi/5 \) (B) -16/17 (C) 1/17 (D) 1 (E) None of these

22. Suppose \(f(x) = f_{1}^{x^2} \frac{dt}{1+t^4} \). What is \(f'(x) \)?
(A) \(\frac{2x}{1+x^8} \) (B) \(\frac{2x}{1+x^4} \) (C) \(\frac{1}{1+x^8} \) (D) \(\frac{1}{1+x^6} \) (E) None of these

Answers:
C B E B A C D C B A
D B C A D C B A B D
C A