Review problems - not due: Check if you can handle them -First days discussions
From the textbook Elementary Applied Partial Differential Equations, by Richard Haberman :
Chapter 2:
2.2.1 to 2.2.5; 3.3.1; 2.3.2 (a--d); 2.4.4; 2.4.7;
2.5.4, 2.5.5, 2.5.14;
Chapter 3:
3.2.1-d,f; 3.3.1-e; 3.3.17; 3.4.6; 3.4.9; 3.4.12; 3.5.1.
Chapter 4:
4.4.3; 4.4.4; 4.4.7-8; 4.4.9; 4.4.12.
Chapter 5:
5.3.5; 5.3.7; 5.4.2; 5.4.3; 5.4.5; 5.5.2; 5.5.4;
5.5.11; 5.6.2;
Chapter 7:
7.4.2; 7.4.3; 7.5.2-3; 7.5.4; 7.5.6; 7.5.7; 7.6.1; 7.6.3.
Homework 2: (due February 28)
Chapter 9: 9.3.13; 9.5.10; 9.5.23;
Homework 3: (due March 8)
Chapter 10: 10.2.1, 10.2.2 ; 10.3.1; 10.3.2; 10.3.5;
10.3.6; 10.3.7; 10.3.8; 10.3.11;
Homework 4: (due March 21)
Chapter 10: 10.4.1; 10.4.3; 10.4.7; 10.4.8; 10.4.10;
Homework 5: (due March 28)
Chapter 9: 9.5.14; 9.5.19, 9.5.21;
Homework 6: (due April 13)
Chapter 10:
page 499: 10.6.2 a) b) c) and d) (see section 10.6.2 for guidance)
After you find the solution to the solvable problems, can you state what
the Green's function is and what PDE problem will the Green's function satisfy?
from page 521:
11.2.6; 11.2.7 (use the representation 11.2.4);
Problem 4: Develop the corresponding equivalent to the D'Alambert formula for
radial solutions to the
3-dimensional wave equation (see section 11.2.8).
Write the Green's Functions, and the corresponding PDE problem that it solves.
Why does the same approach does not work in two dimensions?
Homework 7: (due April 28)
Chapter 12:
12.2.5; 12.2.7; 12.2.8; 12.3.1; 12.3.6; 12.4.1; 12.4.2; 12.4.4; 12.5.1
Homework 7: (not due)
Chapter 12:
12.6.2; 12.6.7 a), b), c) ; 12.6.8 d); 12.6.9 c); 12.6.19 a), b) c);
12.6.22.