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GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE

NAVIER-STOKES-VLASOV-BOLTZMANN SYSTEMS FOR SPRAY

DYNAMICS

IRENE M. GAMBA AND CHENG YU

Abstract. This work concerns the global existence of the weak solutions to a system
of partial differential equations modeling the evolution of particles in the fluid. That
system is given by a coupling between the standard isentropic compressible Navier-Stokes
equations for the macroscopic description of a gas fluid flow, and a Vlasov-Boltzmann
type equation governing the evolution of spray droplets modeled as particles with varying
radius. We establish the existence of global weak solutions with finite energy, whose
density of gas satisfies the renormalized mass equation. The proof, is partially motivated
by the work of Feireisl- Novotny-Petzeltov [12] on the weak solutions of the compressible
Navier-Stokes equations coupled to the kinetic problem for the spray droplets extending
the techniques of Legger and Vasseur [18] developed for the incompressible fluid-kinetic
system.

1. Introduction

A large variety models describing sprays dynamics, introduced by Williams [28], are
obtained by coupling a of fluid mechanics equation and a kinetic one describing the spray
as perfect bubbles. In such a system models, the gas surrounding the spray is described
by classical fluid macroscopic quantities: its density ρ(t, x) ≥ 0 and velocity u(t, x). De-
pending on the physical properties of such gas fluid, the evolution of those quantities is
ruled by the Navier-Stokes or Euler Equations compressible flows. Fluid viscosity because
an important physical quantity and it is model in the classical compressible Navier Stokes
framework.

The spray droplet evolution is assumed to be given by independent distributed contin-
uum randon variables described by a distribution function f = f(t, x,v, r) ≥ 0 given the
probability of finding a droplet with center at position x, with radious r, time t, mov-
ing with velocity v. Depending on physical properties of the droplets, the evolution of
f is governed by a kinetic equation given by a Vlasov-linear Boltzmann model, were the
non-local Boltzmann operator models collisions and breakup.

In such a system models, the coupling comes from drag force in the fluid equation and
the acceleration in the Vlasov term of kinetic equation, as the fluid a dense phase and the
droplets in a disperse phase strongly interact on each other.

More specifically we consider an spray model given by the following Navier-Stokes-
Vlasov-Boltzmann system of equations for droplet particles dispersed in a compressible
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viscous fluid
ρt + div(ρu) = 0, (1.1)

(ρu)t + div(ρu⊗ u) +∇p− µ∆u− λ∇divu = Fr(t, x), (1.2)

ft + ξ · ∇xf + divξ(Ff) = Q(f), (1.3)

for (x, ξ, r, t) in Ω × R
3 × [a, b] × [0,∞), where Ω ⊂ R

3, ρ is the density of the fluid, u is
the velocity of the fluid, p = ργ is the pressure for some γ > 1, The viscosity coefficients
µ and λ have a relationship

µ > 0, λ+
µ

3
≥ 0.

The probability density distribution function f(x, ξ, r, t) of gas particles depends on the
physical position x ∈ Ω, the velocity of particle ξ ∈ R

3, the radius of a particle r ∈ [a, b],
and the time t ∈ [0, T ], where a, b > 0 are the constants. The zero moment of the gas
particles density is

n(t, x) =

∫ b

a

∫

R3

rf dξ dr, (1.4)

and the kinetic current (first moment) is

j(t, x) =

∫ b

a

∫

R3

rξf dξ dr. (1.5)

The interaction of the fluid and particles is through the drag force exerted by the fluid
onto the particles. In (1.3), F stands for the acceleration felt by the droplets. It was
typically given by the following formula which is known as Stokes’ law,

F (x, ξ, r, t) =
9µ

2ρl

u− ξ

r2
, (1.6)

where ρl is the constant density of the liquid, µ is the dynamic viscosity. In (1.2), the
right hand side term

Fr(t, x) = −
∫ b

a

∫

R3

4

3
ρlr

3fF dξ dr. (1.7)

The operator Q(f) is taking into account the complex phenomena happening at the level
of the droplet particles, such as collisions and breakup. Assuming that the droplets keep
the same velocities before and after breakup, the operator could be obtained

Q(f)(x, ξ, r, t) = −νf(x, ξ, r, t) + ν

∫

r>r∗
B(r∗, r)f(x, ξ, r∗, t) dr∗, (1.8)

where ν ≥ 0 is the fragmentation rate, and B = B(r∗, r) ≥ 0 is related to the probability
of ending up with droplets particles of radius r out of the breakup of droplets particles of
radius r∗. This is a typical form of the breakage model kernel.

Without loss of generality we take ρl =
9µ
2 throughout the paper. The fluid-particle sys-

tem (1.1)-(1.8) arises in many applications such as sprays, aerosols, and more general two
phase flows where one phase (disperse) can be considered as a suspension of particles onto
the other one (dense) regarded as a fluid. System (1.1)-(1.8) or its variants have been used
in sedimentation of solid grain by external forces, for fuel-droplets in combustion theory
(such as in the study of engines), chemical engineering, bio-sprays in medicine, waste water
treatment, and pollutants in the air. We refer the readers to [1, 4, 6, 9, 10, 14, 25, 26, 28]
for more physical backgrounds, applications and discussions of the fluid-particle systems.
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Leger-Vasseur have shown the existence of global weak solutions of the incompressible
version of Vlasov-Boltzmann-Navier-Stokes equations.

The aim of this current paper is to establish the existence of global weak solutions to
the system (1.1)-(1.8), or equivalently to

ρt + div(ρu) = 0, (1.9)

(ρu)t + div(ρu⊗ u) +∇p− µ∆u− λ∇divu = −
∫ b

a

∫

R3

r(u− ξ)f dξ dr, (1.10)

ft + ξ · ∇xf + divξ

(

(u− ξ)f

r2

)

= Q(f), (1.11)

subject to the following initial data:

ρ|t=0 = ρ0(x) ≥ 0, (ρu)|t=0 = m0(x), f |t=0 = f0(x, ξ, r), (1.12)

where Q(f) is given by (1.8). The collision operator Q(f) satisfies the following hypothe-
ses A:
I. B ∈ C1(R+ × R

+), B ≥ 0, and B(r, r∗) = 0 if r ≥ r∗.

for all (r, r∗) ∈ R
+ × R

+.

II.
∫ b

a
B(r, r∗) dr =

∫ R(b)
R(a) B(r, r∗) dr, with

R(r) =
3
√

r∗
3 − r3 and 0 ≤ a ≤ b ≤ r∗

3
√
2
.

III.
∫

r∗
3√
2

0 B(r, r∗) dr =
∫ r∗

r∗
3√
2

B(r, r∗) dr = 1, which without loss of generality, both integrals

to be one by renormalization.

Our strategy to solve the initial value problem for system (1.9)-(1.12) with assumptions
(I-III) given above, consists in combining recent known techniques by the Feireisl-Novotný-
Petzeltová [12] by the use of their regularization method for solving the fluid system using
the compressible Navier-Stokes system, in an iteration that couples such fluid equation to
the initial value problem of the Vlasov-linear Boltzmann for the droplet particle evolution.
For this coupling we adapt a recent approach proposed by Legger and Vasseur [18] where
they solved the same kinetic equation coupled to a fluid given by the incompressible
Navier-Stokes system.

The manuscript is organized as follows. In the next Section 2 we introduce some funda-
mentals and prove, for a fixed droplet particle distribution f(x, ξ, r, t), the basic a priori
momentum and energy identities for the compressible Navier Stokes’ equation.

In section 3, we introduce first the two level ε, δ-regularization technique from [12] to
system (1.9)-(1.12) by adding as ε-viscous term to mass equation and an ε-modification of
the momentum equation that preserves the energy identities for fix f(x, ξ, r, t), derived in
section 2, and a δ-modification that modify the pressure law. In addition, we employ the
techniques from [12], where each ε, δ-regularized Navier Stokes (1.9-1.10) part is solved
uniquely by a k-finite dimensional approximating model, introduced in [12] and [13]. Then

for each u
ε,δ
k
, we finally the Vlasov-linear-Boltzmann equation (1.11) using the approach of

[18], whole solution is an approximating f
ε,δ
k

. This iteration is shown to construct unique
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solutions (ρε,δ
k

, u
ε,δ
k
, f

ε,δ
k

) to the ε, δ,k-approximating system to (1.9-1.10-1.11) by means of
a fixed point argument in a Banach space, where initial data is modified by introducing the

parameter ρ > 0 that keep our the ρ
ε,δ
k

estimates bounded below from vacuum uniformly

in ε, δ and k. In addition, we show that the unique solutions (ρε,δ
k

, u
ε,δ
k
, f

ε,δ
k

) for the ε, δ,k-
approximating system, satisfy momentum and energy identities, uniformly in ε, δ and k,

and the approximating density ρ
ε,δ
k

is bounded below by ρ > 0 uniformly in ε and k.
Finally, in Section 4, we study the limiting process to obtain a global weak solution to

(1.9-1.10-1.11), by first performing the limit k → ∞, next the limit ε → 0, and last the
limit δ → 0 obtaining a limiting triple (ρ, u, f) whose initial data has ρ(x, 0) ≥ ρ > 0 for
an arbitrary ρ > 0. So the existence of solution in then proved for any initial data who
density ρ may vanish locally.

2. A Priori Estimates

In this section, we derive some fundamental a priori estimates for each equation on the
system (1.9)-(1.11). They are crucial to show the existence of weak solutions upon passing
to the limits in the regularized approximation scheme.

We first recall the notation of renormalized solutions, [19, 12, 13]. In fact, multiplying
(1.9) by b′(ρ) we deduce

h(ρ)t + div(h(ρ)u) + (h′(ρ)ρ− h(ρ))divu = 0 (2.1)

for any differentiable function h. Thus, we give the following definition.

Definition 2.1. Equation (1.9) is satisfied in the renormalized sense, more specifically,
equation (2.1) holds in the distributional sense, for any h ∈ C1(R) such that

h′(z) = 0 for all |z| ≥ M,

for some constant M > 0.

Here, for the sake of simplicity we will consider the case of bounded domain with periodic
boundary conditions, namely Ω = T

3. In this paper, we assume that






ρ0 ≥ 0 almost everywhere in Ω, m0 ∈ L2(Ω),

m0 = 0 almost everywhere on {ρ0 = 0}, |m0|2

ρ0
∈ L1(Ω),

f0 ∈ L∞ ∩ L1(Ω× R
3 ×R

+), r3|ξ|3f0 ∈ L1(Ω× R
3 × R

+).

(2.2)

Definition 2.2. The triple (ρ,u, f) is a global weak solution to problem (1.9)-(2.2) if, for
any T > 0, the following properties hold,
i. ρ ≥ 0, ρ ∈ C([0, T ];Lγ(Ω)), u ∈ L2(0, T ;H1

0 (Ω)), ρ|u|2 ∈ L∞(0, T ;L1(Ω));
ii. f(t, x, ξ, r) ≥ 0, for any (t, x, ξ, r) ∈ (0, T )× Ω× R

3 × R
+;

iii. f ∈ L∞(0, T ;L∞(Ω× R
3 ×R

+) ∩ L1(Ω× R
3 × R

+));
iv. r3|ξ|3f ∈ L∞(0, T ;L1(Ω× R

3 × R
+));

v. Equation (1.9) is satisfied in the renormalized sense.
vi. For any ϕ ∈ C1([0, T ] × Ω), for almost everywhere t, the following identify holds

−
∫

Ω
m0 · ϕ(0, x) dx+

∫ t

0

∫

Ω

(

− ρu · ∂tϕ− (ρu⊗ u) : ∇ϕ− ργ∇ϕ

+ µ∇u · ∇ϕ+ λdivudivϕ+

∫

R3

rf(u− ξ) · ϕdξ dr

)

dxdt = 0;

(2.3)
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vii. For any φ ∈ C1([0, T ]×Ω×R
3×R

+) with compact support with respect to x, ξ, and
r, such that φ(T, ·, ·, ·) = 0, the following identify holds

−
∫ T

0

∫

Ω

∫

R3

f

(

∂tφ+ ξ · ∇xφ+
(u− ξ)

r2
· ∇ξφ

)

dxdξds

=

∫

Ω

∫

R3

f0φ(0, ·, ·) dxdξ +
∫ T

0

∫

Ω
Q(f)φdx dt;

(2.4)

viii. The energy inequality
∫

Ω
ρ|u|2dx+

∫

Ω

∫

R3

f(1 + |ξ|2) dξdx+ 2µ

∫ T

0

∫

Ω
|∇u|2 dxdt+ 2λ

∫ T

0

∫

Ω
|divu|2 dxdt

≤
∫

Ω

|m0|2
ρ0

dx+

∫

Ω

∫

R3

(1 + |ξ|2)f0 dξdx
(2.5)

holds for almost everywhere t ∈ [0, T ].

Our main result on existence of global weak solutions reads as follows.

Theorem 2.1. Under the assumption (2.2), for any γ > 3
2 , there exists a global weak

solution (ρ,u, f) to the initial value problem (1.9)-(1.12) for any T > 0.

We start now to gather estimates for the momentum equation. Multiplying (1.10) by
u, integrating over Ω, and using (1.9), we deduce that

d

dt

∫

Ω

1

2

(

ρ|u|2 + ργ

γ − 1

)

dx+ µ

∫

Ω
|∇u|2 dx+ λ

∫

Ω
|divu|2 dx

= −
∫ b

a

∫

Ω

∫

R3

rf(u− ξ) · u dξ dx dr.

(2.6)

Meanwhile, multiplying the Vlasov-Boltzmann equation (1.11) by r3
|ξ|2

2 , taking integration
with respects to r, ξ, x, and using integration by parts, one obtains

d

dt

∫ b

a

∫

Ω

∫

R3

1

2
r3|ξ|2f dξ dx dr −

∫ b

a

∫

Ω

∫

R3

r(u− ξ)ξf dξ dx dr

=

∫ b

a

∫

Ω

∫

R3

r3|ξ|2Q(f) dξ dx dr.

(2.7)

Thus, from (2.6) and (2.7), the following energy equality holds

d

dt

∫

Ω

(

ρ|u|2 + ργ

γ − 1

)

dx+
d

dt

∫ b

a

∫

Ω

∫

R3

r3|ξ|2f dξ dx dr

+ 2µ

∫

Ω
|∇u|2 dx+ 2λ

∫

Ω
|divu|2 dx+ 2

∫ b

a

∫

Ω

∫

R3

rf(u− ξ)2 dξ dx dr = 0,

(2.8)

where we used the following equality
∫ b

a

∫

Ω

∫

R3

r3|ξ|2Q(f) dξ dx dr = 0.
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In fact, the last identity is obtained from the following Lemma 2.1(setting p = 2), that
uses the properties II-V on Q(f) from hypotheses A.

Lemma 2.1. Under the properties II-V on Q(f) from hypotheses A, then for any p ≥ 1,
we have

∫ b

a

∫

Ω

∫

R3

r3|ξ|pQ(f) dξ dx dr = 0. (2.9)

Proof.
∫ b

a

∫

Ω

∫

R3

r3|ξ|pQ(f) dξ dx dr = −ν

∫ b

a

∫

Ω

∫

R3

r3|ξ|pf(x, ξ, r, t) dξ dx dr

+ ν

∫ b

a

∫

Ω

∫

R3

∫

r∗>r

r3|ξ|pB(r∗, r)f(x, ξ, r∗, t) dr∗ dξ dx dr

= −ν

∫ b

a

∫

Ω

∫

R3

r3|ξ|pf(x, ξ, r, t) dξ dx dr

+ ν

∫ b

a

∫

Ω

∫

R3

|ξ|p
(∫

r∗>r

r3B(r∗, r) dr

)

f(x, ξ, r∗, t) dr∗ dξ dx.

From Leger-Vasseur[18], one can see that the properties II-V on Q(f) yield
∫

r∗>r

r3B(r∗, r) dr = (r∗)3,

so replacing in the second term one obtains a symmetrization property yielding the zero
integral, hence yield (2.9) holds. �

Next we estimate the transport Vlasov-Boltzmann equation (1.11) multiplying by r3

and integrating with respects to r, ξ, x, and using integration by parts, one obtains that

d

dt

∫ b

a

∫

Ω

∫

R3

r3f(x, ξ, r, t) dξ dx dr = 0. (2.10)

In fact, this was proved in [18]. Using (2.8) and (2.10), one obtains the following energy
identity

d

dt

∫

Ω

(

ρ|u|2 + ργ

γ − 1

)

dx+
d

dt

∫ b

a

∫

Ω

∫

R3

r3(|ξ|2 + 1)f dξ dx dr

+ 2µ

∫

Ω
|∇u|2 dx+ 2λ

∫

Ω
|divu|2 dx+ 2

∫ b

a

∫

Ω

∫

R3

rf(u− ξ)2 dξ dx dr = 0.

(2.11)

3. Regularization

In order to prove Theorem 2.1, motivated by the techniques developed by Feireisl-
Novotný-Petzeltová [12] and the work of Feireisl [13], we first regularize the system (1.8)-
(1.11) by perturbing both the mass and momentum equations, (1.9) and (1.10) respectively,
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by adding ε-viscous terms and the δ-modified pressure as follows (for simplicity we will
not denote the solutions (ρ,u, f) dependance on the parameters ε and δ in this section)

ρt + div(ρu) = ε∆ρ,

(ρu)t + div(ρu⊗ u) +∇ργ + δ∇ρβ − µ∆u− λ∇divu− ε∇u · ∇ρ+ nu = j,

ft + ξ · ∇xf + divξ

(

(u− ξ)f

r2

)

= Q(f),

(3.1)

where

n(t, x) =

∫ b

a

∫

R3

rf dξ dr, j =

∫ b

a

∫

R3

rξf dξ dr,

and Q(f) is given by (1.8).
Assume initial data (ρ0,u0, f0) satisfying

ρ(0) = ρ0(x) ∈ C2+ν(Ω̄), 0 < ρ ≤ ρ0 ≤ ρ̄,

(ρu)(0) = m0, m0 = (m1
0,m

2
0,m

3
0), where mi

0 ∈ C2(Ω̄),

f(0) = f0(x, ξ, r), f0 ≥ 0, f0 ∈ L∞(Ω× R
3 ×R+) ∩ L1(Ω× R

3 ×R+)

and it is compactly supported with respects to r, ξ.

(3.2)

In order to solve ε, δ-regularized Navier-Stokes part of system (1.8)-(1.11), we need to
show that first moment j(x, t) is bounded in Lp(0, T ;Lq(Ω)), for some p, q > 1, where of the
j(x, t), the solution for Vlasov-Boltzmann transport equation kinetic equation (1.11), is a
source term in the ε, δ-regularized momentum equation of Navier-Stokes part of system.

In addition, the compressible ε, δ-regularized Navier-Stokes part can be solved by using
the approximate by finete dimensional spaces arguments as in Feireisl-Novotný-Petzeltová
[12] and Feireisl [13] for fluid systems models as follows.

We define the following finite dimensional Banach space Xk = span{e1, e2, ...., ek}, for
n ∈ N, and each ei is an orthogonal basis of L2(Ω), which is also an orthogonal basis of
H2(Ω).

In particular, ei could be chosen by −∆ei = λiei., that is eigenfuctions of the Laplace
operator acting over the domain Ω.

Thus, without loss of generality, we consider an infinite sequence of finite dimensional
spaces

Xk = span{ei}ki=1, k = 1, 2, 3..., , (3.3)

and will construct a sequences of triples (ρk,uk, fk) solutions of the following k, ε-approximate
problem:

Step 1: Starting from uk−1 given in C([0, T ];Xk−1), whereXk−1 = span{e1, e2, ...., ek−1}
solve the following initial value problem for the Vlasov-Boltzmann transport equation
(1.11).

For any f0 ∈ L∞(Ω×R
3 ×R

+) ∩L1(Ω×R
3 ×R

+) with f0 ≥ 0, and suppf0 ⊂ Ω×R
3,

solve the Vlasov-Boltzmann transport equation

∂tfk + ξ · ∇xfk + divξ

(

uk−1 − ξ

r2
fk

)

= Q(fk)(x, ξ, r, t), ∀ t > 0 ,

fk(x, ξ, r, 0) = f0(x, ξ, r) for all (x, ξ, r) ∈ Ω× R
3 × R

+ .

(3.4)
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and show the the first moment jk(x, t) =
∫

(ξ, r)fk(x, ξ, r, t)dξdr associated to is bounded
in L∞(0, T ;L2(Ω)).

Step 2: For any initial data density-velocity pair (ρk,uk)(x, 0) satisfying ρk ∈ Lγ(Xk)),
uk ∈ L2(Xk) and ∇uk ∈ L2(Xk), there is a unique weak k, ε- approximate solution triple
ρk ∈ L∞([0, T ];Lγ(Xk)), uk ∈ L∞([0, T ];L2(Xk)) and ∇uk ∈ L2([0, T ];L2(Xk)) satisfying
the integral equation

∫

Ω
ρuk(t) · ϕdx−

∫

Ω
m0 · ϕdx =

∫ t

0

∫

Ω
(µ∆uk + λ∇divuk)ϕdx dt

+

∫ T

0

∫

Ω

(

ε∇uk · ∇ρ− div(ρuk ⊗ uk)−∇ργ − δ∇ρβ − nuk + j
)

ϕdx dt

(3.5)

for any test function ϕ ∈ Xk.

Proposition 3.1. For any initial data (ρ0,u0)(x, 0) with ρ0 ∈ Lγ(Ω)), u0 ∈ L2(Ω) and
∇u0 ∈ L2(Ω),, and f0 ∈ L∞(Ω×R

3 ×R
+)∩L1(Ω×R

3×R
+), there exits a weak solution

to system (3.31)-(3.4) denoted by the triple (ρk,uk, fk) in the spaces L∞([0, T ];Lγ(Xk)×
L∞([0, T ];L2(Xk))× (f0 ∈ L∞(Ω× R

3 × R
+) ∩ L1(Ω ×R

3 × R
+)).

In addition the triple components are uniformly bounded in the k and ε parameters.

The proof of Proposition 3.1 is rather elaborated and will be done in several steps that
gather the necessary estimates. So we start proving or recalling the following results

The first result towards addressing the Part 1 of the k-iteration argument, was proved
in Leger-Vasseur [18].

Proposition 3.2. For any given u ∈ C([0, T ], C(Ω)), there exist a unique non-negative
weak solution to the kinetic problem (3.4) for any T > 0 , provided the initial data satisfies

f0 ∈ L∞(Ω× R
3 × R

+) ∩ L1(Ω × R
3 × R

+)

and

f0 ≥ 0, suppf0 ⊂ Ω× R
3,

that is, f(x, ξ, r, t) satisfies
∫ T

0

∫

R+×R6

f

(

ϕt + ξ · ∇xϕ− u− ξ

r2
· ∇ξϕ

)

dx dξ dr +

∫ T

0

∫

R+×R6

Q(f)ϕdx dξ dr

+

∫ T

0

∫

R+×R6

f0ϕ(0, x, ξ, r) dx dξ dr = 0

(3.6)

for any test function ϕ(t, x, ξ, r).
Moreover, this non-negative weak solution satisfies the following estimates:

f ∈ L∞(0, T ;L1(Ω× R
3 × R

+)),

f ∈ L∞(0, T ;L∞(Ω× R
3 × R

+)),
(3.7)

f ∈ C([0, T ];W−1,p(Ω ×R
3 × R

+)), for any 1 ≤ p ≤ ∞,

supp(f) ⊂ Ω× R
3 for a.e. t ∈ [0, T ].
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The next step is to secure that the weak solution fk(x, ξ, r, t) constructed in Proposi-
tion 3.2 has if kinetic first moment jk(x, t) ∈ L∞(0, T ;L2(Ω)).

Such estimates are a result of the following proposition, whose proof follows immediately.

Proposition 3.3. If uk ∈ C([0, T ];Xk), then there exist operators nk = N(uk), j =
L(uk) : C([0, T ];Xk) → C([0, T ];C(Ω)) satisfying

i) (Lipschitz estimate for the kinetic density)

‖n1
k − n2

k‖L∞(0,T ;L∞(Ω) ≤ C(a, b, T )‖u1
k − u2

k‖L2(0,T ;L2(Ω)),

.

ii) (Lipschitz estimate for the mean velocity)

‖j1k − j2k‖L∞(0,T ;L∞(Ω) ≤ C(a, b, T )‖u1
k − u2

k‖L2(0,T ;L2(Ω)),

for any u1
k,u

2
k in the following set

ML = {uk ∈ C([0, T ];Xk); ‖u‖C([0,T ];Xk) ≤ L, t ∈ [0, T ]}.

Proof. Following the strategy of Leger-Vasseur [18], we construct a sequence of solutions
verifying











∂tfk + ξ · ∇fk + divξ

(

uk−1−ξ

r2
fn

)

= −νfk(x, ξ, r, t)

+ν
∫

r>r∗
B(r∗, r)fk−1(x, ξ, r

∗, t) dr∗,

fk(x, ξ, r, 0) = f0(x, ξ, r).

(3.8)

as follows. First, we need to write the following ODEs:



















dx
dt

= ξ;
dξ
dt

=
uk−1−ξ

r2
;

x(0) = x;

ξ(0) = ξ,

(3.9)

then, by the characteristic method, we have the following solution to (3.8)

fk(t, x, ξ, r) = e
−

∫ t
0
(ν− 3

r2
)d s

f0(x(0, t, x, ξ), ξ(0, t, τ), r)

+ ν

∫ t

0

∫

R+

e
−

∫ t

0
(ν− 3

r2
)d s

B(r, r∗)fk−1(τ, x(τ, t, x, ξ), r
∗)dr∗ dτ.

(3.10)

So taking the limits as k → ∞, one obtains the weak solutions to (3.4) by the standard
argument of weak convergence in Leger-Vasseur [18]. However, we need to use (3.10) to
derive some new estimates due to the compressible fluids and the coupling to the kinetic
equations. Let f1

k and f2
k be two solutions to (3.8) corresponding to u1

k−1 and u2
k−1

respectively, and f1 and f2 be two weak solutions to (3.4) corresponding to u1 and u2
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respectively. Letting Y (t, x, ξ) = (x, ξ), we have

‖f1
k − f2

k‖L∞(0,T ;L∞(Ω×R3×R+))

≤ C(T )‖Y1 − Y2‖L∞(0,T ;L∞(Ω×R3×R+)) +C(T )

∫ t

0
‖f1

k − f2
k‖L∞(0,T ;L∞(Ω×R3×R+)) ds.

(3.11)

As Leger-Vasseur [18],

fk → f in Lp(0, T ;Lp(Ω× R
3 × R

+)) and f ∈ L∞(0, T ;L∞(Ω× R
3 × R

+)). (3.12)

Letting k → ∞ in (3.11), yields

‖f1 − f2‖L∞(0,T ;L∞(Ω×R3×R+))

≤ C(T )‖Y1 − Y2‖L∞(0,T ;L∞(Ω×R3×R+)) +C(T )

∫ t

0
‖f1 − f2‖L∞(0,T ;L∞(Ω×R3×R+)) ds.

(3.13)

However, in our case we need to control the characteristic ODE’s of the transport flow
depending on uk(x, t), that we estimate as follows.

The first term above, after using (3.9) with uk−1, can be estimated by

‖Y1 − Y2‖L∞(0,T ;L∞(Ω×R3×R+))

≤ C

(

∫ t

0
‖u

1
k−1 − u2

k−1

r2
‖L∞(Ω) ds +

∫ t

0
(1 + ‖u

1
k−1

r2
‖W 1,∞(Ω))‖Y1 − Y2‖L∞(Ω×R3×R+) ds

)

,

and so by Gronwall inequality, we obtain

‖Y1 − Y2‖L∞(0,T ;L∞(Ω×R3×R+)) ≤ C(a, b, T )

∫ t

0
‖u1

k−1 − u2
k−1‖L2(Ω) ds. (3.14)

In addition, by (3.13) and (3.14),

‖f1
k − f2

k‖L∞(0,T ;L∞(Ω×R3×R+)) ≤ C(a, b, T )‖u1
k−1 − u2

k−1‖L2(0,T ;Ω). (3.15)

Let nk = N(uk−1) and jk = L(uk−1), from (3.15), one obtains the following two estimates

‖n1k−n
2
k‖L∞(0,T ;L∞(Ω)) = ‖N(u1

k−k)−N(u2
k−1)‖L∞(0,T ;L∞(Ω)) ≤ C(a, b, T )‖u1

k−1−u2
k−1‖L2(0,T ;L2(Ω)),

(3.16)
and

‖j1k − j2k‖ = ‖L(u1
k−1)− L(u2

k−1)‖L∞(0,T ;L∞(Ω)) ≤ C(a, b, T )‖u1
k−1 − u2

k−1‖L2(0,T ;L2(Ω)).

(3.17)
The proof of Proposition 3.3 is completed, and we have all needed estimates to complete
Part 1. of the iteration needed to construct the solutions stated in Proposition 3.1

�

For Part 2. of the iteration, it is natural to obtain an energy identity for the kinetic part
(1.11) of k, ε-approximate compressible fluid kinetic system. The following proposition
yields such identity.
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Proposition 3.4. [Kinetic energy conservation] If u ∈ C([0, T ];Xk), any weak solution
f of (3.4) satisfies the following identity:

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)f dξ dr dx−
∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)f0 dξ dr dx

= 2

∫ t

0

∫

Ω

∫ b

a

∫

R3

r(uk−1 − ξ)fξ dξ dr dx dt.

Proof. Using 1 + |ξ|2 to multiply on both sides of (3.8), and taking integration by parts,
we have

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)fk dξ dr dx−
∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)f0
k dξ dr dx

= 2

∫ t

0

∫

Ω

∫ b

a

∫

R3

r(uk−1 − ξ)fkξ dξ dr dx dt

− ν

∫ t

0

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)fkξ dξ dr dx dt

+ ν

∫ t

0

∫

Ω

∫ b

a

∫

R3

∫

r>r∗
r3(1 + |ξ|2)fk−1(x, ξ, r

∗, t) dr∗ξ dξ dr dx dt.

(3.18)

Letting k → ∞ in (3.18), thanks to (3.12) the Fubini’s theorem, the conclusion can be
followed. �

Lemma 3.1. Let u ∈ Lr(0, T ;LN+p(Ω)) be fixed with any 1 ≤ r ≤ ∞ and p ≥ 1. Assume
that f0 ∈ L∞(Ω × R

3 × R
+) ∩ L1(Ω × R

3 × R
+), r3|ξ|pf0 ∈ L1(Ω × R

3 × R
+), then the

solution f(x, ξ, r, t) of (3.4) has the following estimate
∫ b

a

∫

Ω

∫

R3

r3|ξ|pf dξ dx dr

≤ pCT,N,b





(∫ b

a

∫

Ω

∫

R3

r3|ξ|pf0 dξ dx dr
)

1

N+p

+ (‖f0‖L∞(Ω×R3×R+) + 1)‖uk−1‖Lr(0,T ;N+p(Ω))





N+p

,

(3.19)

for any 0 ≤ t ≤ T.

Proof. For any p ≥ 1, multiplying r3|ξ|p on both sides of kinetic equation (3.8), we have
∫ b

a

∫

Ω

∫

R3

r3|ξ|pfk dξ dx dr −
∫ b

a

∫

Ω

∫

R3

r3|ξ|pf0
k dξ dx dr

= p

∫ t

0

∫ b

a

∫

Ω

∫

R3

r(uk−1 − ξ)fk|ξ|p−1 · ξ

|ξ| dξ dx dr dt

− ν

∫ t

0

∫

Ω

∫ b

a

∫

R3

r3|ξ|pfkξ dξ dr dx dt

+ ν

∫ t

0

∫

Ω

∫ b

a

∫

R3

∫

r>r∗
r3|ξ|pfk−1(x, ξ, r

∗, t) dr∗ξ dξ dr dx dt.

(3.20)
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Letting k → ∞ in (3.20), (3.12) and the Fubini’s theorem gives us
∫ b

a

∫

Ω

∫

R3

r3|ξ|pfk dξ dx dr −
∫ b

a

∫

Ω

∫

R3

r3|ξ|pf0
k dξ dx dr

+ p

∫ t

0

∫ b

a

∫

Ω

∫

R3

r|ξ|pf dξ dx dr dt =

∫ T

0
I(t) dt,

(3.21)

where

I(t) = p

∫ b

a

∫

Ω

∫

R3

r|ξ|p−1fuk−1 ·
ξ

|ξ| dξ dx dr.

Thanks to Hölder inequality, we can control I(t) as follows

I(t) ≤ p‖uk−1‖Ls(Ω)

(

∫

Ω

(
∫ b

a

∫

R3

r|ξ|p−1f dξ dr

)s′

dx

)

1

s′

, (3.22)

where
1

s
+

1

s′
≤ 1.

For any R > 0, we have
∫ b

a

∫

R3

r|ξ|p−1f dξ dr =

∫ b

a

∫

|ξ|≤R

r|ξ|p−1f dξ dr +

∫ b

a

∫

|ξ|≥R

r|ξ|p−1f dξ dr

≤ b2‖f‖L∞(Ω×R3×R+)
RN+p−1

N + p− 1
+

1

a2R

∫ b

a

∫

|ξ|≥R

r3|ξ|pf dξ dr.

(3.23)

Taking s = N + p in (3.22), and

R =

(∫ b

a

∫

R3

r3|ξ|pf dξ dr

)

1

N+p

> 0

in (3.23), one obtains that

I(t) ≤ p‖uk−1‖LN+p(
1

a2
+

b2

N + p− 1
‖f‖L∞(Ω×R3×R+))

(∫ b

a

∫

R3

r3|ξ|pf dξ dr

)

N+p−1

N+p

.

(3.24)
Thanks to (3.21) and (3.24), we deduce

∫ b

a

∫

Ω

∫

R3

r3|ξ|pf dξ dx dr

≤ pCT,N,a,b





(
∫ b

a

∫

Ω

∫

R3

r3|ξ|3f0 dξ dx dr

)

1

N+p

+ (‖f0‖L∞(Ω×R3×R+) + 1)‖uk−1‖Lr(0,T ;LN+p(Ω))





N+p

for any 0 ≤ t ≤ T. �

We are now in conditions to obtain estimates for the zero moment (1.4) and first moment
(1.5) of the solutions of the Vlasov-Boltzman equations (3.4). We estimate these quantities
in the following lemma 3.2 that may be similar to the variation of the classical regularity
of moments, see [21]. The proof closely follows the argument as in [17].
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Lemma 3.2. Under the hypothesis of Lemma 3.1, for any p ≥ 1, 0 ≤ t ≤ T , we have

‖nk‖
L

N+p
N (Ω)

≤ CN,b,T (‖fk‖L∞(Ω×R3×R+) + 1)

(∫ b

a

∫

Ω

∫

R3

r3|ξ|pfk dξ dx dr
)

N
N+p

, (3.25)

and

‖jk‖
L

N+p
N+1 (Ω)

≤ CN,b,T (‖fk‖L∞(Ω×R3×R+) + 1)

(∫ b

a

∫

Ω

∫

R3

r3|ξ|pfk dξ dx dr
)

N+1

N+p

. (3.26)

Proof. For any R > 0, we can estimate n as follows

n(t, x) =

∫ b

a

∫

R3

rf dξ dr =

∫ b

a

∫

|ξ|≤R

rf dξ dr +

∫ b

a

∫

|ξ|≥R

rf dξ dr

≤ bRN‖f‖L∞(Ω×R3×R+) +
1

a2Rp

∫ b

a

∫

|ξ|≥R

r3|ξ|pf dξ dr.

(3.27)

Taking

R =

(
∫ b

a

∫

R3

r3|ξ|pf dξ dr

)

1

N+p

which is finite by Lemma 3.1, depending only on the initial data, yields

n(t, x) ≤ CN,b(‖f‖L∞(Ω×R3×R+) +
1

a2
)

(∫ b

a

∫

R3

r3|ξ|pf dξ dr

)

N
N+p

,

and since the estimate 3.19 is uniform in [0, T ], thus

‖n(t, x)‖
L∞(0,T ;L

N+p
N (Ω))

≤ CN,b,T (‖f‖L∞(Ω×R3×R+)+
1

a2
)

(∫

Ω

∫ b

a

∫

R3

r3|ξ|pf dξ dr dx

)

N
N+p

.

We can also use the same arguments to show

‖j‖
L∞(0,T ;L

N+p
N+1 (Ω))

≤ CN,b,T (‖f‖L∞(Ω×R3×R+) + 1)

(∫

Ω

∫ b

a

∫

R3

r3|ξ|pf dξ dr dx

)

N+1

N+p

.

�

Since eigenfunctions of
∆ei = λiei in Ω

have bounded solutions, then
u ∈ L2(0, T ;L∞(Ω)).

In particular, such estimate allows us to apply Lemma 3.1 to obtain
∫ b

a

∫

Ω

∫

R3

r3|ξ|5f dξ dx dr < ∞, (3.28)

provided the initial data satisfies
∫ b

a

∫

Ω

∫

R3

r3|ξ|pf0 dξ dx dr < ∞
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for any p ≥ 5. Therefore, Applying Lemma 3.2 to get estimate to the corresponding first
moment of the solution of the kinetic equation to (3.28) with p = 5 and N = 3, we obtain

n = N(u) ∈ L∞(0, T ;L
8

3 (Ω)), j = L(u) ∈ L∞(0, T ;L2(Ω)), (3.29)

and satisfy the estimates (3.16) and (3.17). As a consequence we are able to solve the
following regularized compressible Navier-Stokes part by using the estimate on the first
kinetic moment j(t, x) of the system

ρt + div(ρu) = ε∆ρ,

(ρu)t + div(ρu⊗ u) +∇ργ + δ∇ρβ − µ∆u− λ∇divu− ε∇u · ∇ρ+N(u)u = j,
(3.30)

with the initial data (3.2).

In fact, we notice that nu is a good term for the compressible Navier-Stokes equations
because n(t, x) ≥ 0 is on the left side of the momentum equation and so it is active as an
absorbing term that stabilized the momentum flow. Another advantage is that the right
hand side j(x, t) is bounded in L∞(0, T ;L2(Ω)). Thus the weak solution (ρ,u) to (3.30)
can be constructed following the now classical approach in Feireisl-Novotný-Petzeltová
[12] and Feireisl [13] for fluid equations. In fact, we can find the approximate solutions
uk ∈ C([0;T ];Xk) satisfy the integral equation

∫

Ω
ρuk(t) · ϕdx−

∫

Ω
m0 · ϕdx =

∫ t

0

∫

Ω
(µ∆uk + λ∇divuk)ϕdx dt

+

∫ T

0

∫

Ω

(

ε∇uk · ∇ρ− div(ρuk ⊗ uk)−∇ργ − δ∇ρβ − nuk + j
)

ϕdx dt

(3.31)

for any test function ϕ ∈ Xk.

In order to solve (3.31), we follow the same arguments as in [12, 13], and introduce the
following two operators that are crucial to apply fixed point arguments later by generating
an ODE in a suitable Banach space.

In our case, the iteration map for a fixed point argument is constructed as follows. For
any given u ∈ C([0, T ];Xk), ρ is a solution to the following problem

{

∂tρ+ div(ρu) = ε△ρ,

ρ0 ∈ C∞(T3), ρ0 ≥ ρ > 0.
(3.32)

First, we introduce the operator S as follows

S : C([0, T ];Xk) → C([0, T ];C(Ω)), ρ = S(u),
and recall the following two Propositions that can be found in [12]

Proposition 3.5. If 0 < ρ ≤ ρ0 ≤ ρ, ρ0 ∈ C∞(Ω), u ∈ C([0, T ];Xk), then there exists
an operator S : C([0, T ];Xk) → C([0, T ];C(Ω)) satisfying

i) ρ = S(u) is an unique solution to the problem (3.32).

ii) Density bounds:

0 < ρe−
∫ T

0
‖divu‖L∞dt ≤ ρ(x, t) ≤ ρe

∫ T

0
‖divu‖L∞dt, for any x ∈ Ω, t ≥ 0. (3.33)
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iii) Lipchitz condition:

‖S(u1)− S(u2)‖C([0,T ];C(Ω)) ≤ TC(ρ0, ε, L)‖u1 − u2‖C([0,T ];Xk), (3.34)

for any u1,u2 in the following set

ML = {u ∈ C([0, T ];Xk); ‖u‖C([0,T ];Xk) ≤ L, t ∈ [0, T ]}.

In addition, for any given function ρ ∈ C1(Ω) with ρ ≥ ρ > 0, we introduce an operator
M for fixed t, satisfying

M[ρ] : Xk → X∗
k , < M[ρ]u,v >=

∫

Ω
ρu · v dx, for any u, v ∈ Xk,

and we recall from [12], (page 363-364) the following proposition describing the properties
of M:

Proposition 3.6. For any given function ρ ∈ C0(0, T ;C1(Ω)) with ρ ≥ ρ > 0, where ρ is
a constant,

i) ‖M[ρ]‖L(Xk ,X
∗
k
) ≤ C(k)‖ρ‖L1 .

ii) ‖M[ρ]‖L(Xk ,X
∗
k
) ≥ infx∈Ω ρ

iii) If infx∈Ω ρ ≥ ρ > 0, then the operator is invertible with

‖M−1[ρ]‖L(X∗
k
,Xk) ≤ ρ−1,

where L(X∗
k ,Xk) is the set of bounded liner mappings from X∗

k to Xk.

iv) M−1[ρ] is Lipschitz continuous in X∗
k in the sense

‖M−1[ρ1]−M−1[ρ2]‖L(X∗
k
,Xk) ≤ C(n, ρ)‖ρ1 − ρ2‖L1(Ω) (3.35)

for all ρ1, ρ2 ∈ C0(0, T ;L1(Ω)) such that ρ1, ρ2 ≥ ρ > 0.

The proofs of these two propositions can be found on [12] (page 363) and (page 363-364)
respectively. They are sufficient in order to show the needed compactness for the existence
of a fixed point solution set.

We apply the strategy of [12] to the problem under consideration, namely the existence
of solutions to the coupled compressible fluid equation to the gas kinetic equation, done
through the gas density n defined by (1.4) and gas current j defined by (1.5).

Indeed, making use of the operators M[ρ], ρ = S(uk), n = N(uk) and j = L(uk),
we rewrite (3.31) as the following ordinary differential equation on the finite-dimensional
space Xk:

d

dt
(M[S(uk)(t)]uk(t)) = N (S(uk), N(uk), L(uk),uk), t > 0,

M[S(uk)(0)]uk(0) = M[ρ0]u0,
(3.36)



16 IRENE M. GAMBA AND CHENG YU

where

[N (S(uk), N(uk), L(uk),uk), ϕ] =

∫

Ω
(µ∆uk + λ∇divuk + ε∇uk · ∇ρ) · ϕdx

−
∫

Ω

(

div(ρuk ⊗ uk) +∇ργ + δ∇ρβ + nuk − j
)

· ϕdx,

for all ϕ ∈ Xk. Integrating (3.36) over (0, t), we can write the problem as the following
nonlinear problem:

uk(t) = M−1[S(uk)(t)]
(

M[ρ0]u0 +

∫ T

0
N (S(uk), N(uk), L(uk),uk)(s)ds

)

. (3.37)

Since N (S(uk), N(uk), L(uk),uk) is a Liptzchiz function, as all its argument from (3.16),
(3.17), (3.34) and (3.35), this equation can be solved with the fixed-point theorem of
Banach, at least on a small time 0 < T ′ ≤ T. Thus, we obtained uk ∈ C0(0, T ′;Xk).

In order to extend the existence final time in order to get T ′ = T, it is enough to show
there exists uniform estimates on solution triple (ρk,uk, fk) in suitable functional spaces
defined over the finite dimensional space Xk.

Indeed, the following definition of a suitable energy functional and subsequent proposi-
tion provide the global in time existence of solutions to the approximation system (3.1)-
(3.2).

We first define the following energy functional associate to solutions of system (3.1)-
(3.2).

Definition 3.1 (The Energy Functional). The natural energy functional associated to the
triple (ρk,uk, fk) solution to the approximation system (3.1)-(3.2) is given by

E(t) := E(ρk,uk, fk)(t) :=

∫

Ω
(
1

2
ρk|uk|2 +

ρ
γ
k

γ − 1
+

δ

β − 1
ρ
β
k) dx

+

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)fk dξ dr dx,

The corresponding initial energy is

E0 :=

∫

Ω
(
m2

0

2ρ0
+

ρ
γ
0

γ − 1
+

δ

β − 1
ρ
β
0 ) dx+

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)f0 dξ dr dx. (3.38)

The desired estimates will follow from the following result.

Proposition 3.7 (The Energy Inequality). Let the triple (ρk,uk, fk) be the solution to
system (3.1)-(3.2) constructed above, then for any T > 0, the (ρk,uk, fk) satisfies the
following energy inequality

E(t) + µ

∫ T

0

∫

Ω
|∇uk|2 dx dt+ λ

∫ T

0

∫

Ω
|divuk|2 dx dt

+ ε

∫ T

0

∫

Ω
(γργ−2

k + δβρ
β−2
k )|∇ρk|2 dx dt ≤ E0.

(3.39)
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Proof. First, taking ϕ = uk in (3.31), one obtains the following identity corresponding to
the regularized Navier-Stokes part (3.30)

d

dt

∫

Ω
(
1

2
ρk|uk|2 +

ρ
γ
k

γ − 1
+

δ

β − 1
ρ
β
k) dx

+ µ

∫

Ω
|∇uk|2 dx+ λ

∫

Ω
|divuk|2 dx+ ε

∫

Ω
(γργ−2

k + δβρ
β−2
k )|∇ρk|2 dx

+

∫

Ω
nk|uk|2 dx =

∫

Ω
jkuk dx,

(3.40)

for any t ∈ [0, T ′]. Next, applying Proposition 3.4, and adding (3.40), we obtain the
following L2 energy identity for the whole system that includs the kinetic equation (3.4):

d

dt

(∫

Ω
(
1

2
ρk|uk|2 +

ρ
γ
k

γ − 1
+

δ

β − 1
ρ
β
k) dx+

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)fk dξ dr dx
)

+ µ

∫

Ω
|∇uk|2 dx+ λ

∫

Ω
|divuk|2 dx+ ε

∫

Ω
(γργ−2

k + δβρ
β−2
k )|∇ρk|2 dx

+

∫

Ω

∫ b

a

∫

R3

rfk|uk − ξ|2 dξ dr dx = 0

on [0, T ′].
Integrating with respect to t, we deduce the following energy identity

E(ρk,uk, fk)(t) + µ

∫ Tk

0

∫

Ω
|∇uk|2 dx dt+ λ

∫ Tk

0

∫

Ω
|divuk|2 dx dt

+ ε

∫ Tk

0

∫

Ω
(γργ−2

k + δβρ
β−2
k )|∇ρk|2 dx dt

+

∫ Tk

0

∫

Ω

∫ b

a

∫

R3

rfk|uk − ξ|2 dξ dr dx dt = E0,

on [0, T ′], where the total energy energy E(t) = E(ρk,uk, fk)(t) and its initial form E0

were defined in (3.38) and (3.38), respectively.
In particular, since both terms

ε

∫ Tk

0

∫

Ω
(γργ−2

k + δβρ
β−2
k )|∇ρk|2 dx dt

and
∫ T

0

∫

Ω

∫ b

a

∫

R3

rfk|uk − ξ|2 dξ dr dx dt,

are non-negative, then the energy inequality (3.39) naturally. �

the energy inequality (3.39), together with estimate (3.33), yield the following uniform
bounds in k and ε, for the the components of the triple solutions to system (3.1)-(3.2)

‖uk‖L∞(0,T ;L2(Ω)) ≤ C0 < ∞,

‖ρk‖L∞(0,T ;Lγ(Ω)) ≤ C0 < ∞,

‖∇uk‖L2(0,T ;L2(Ω)) ≤ C0 < ∞,

(3.41)
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where C0 only depends on the initial data.
To end, noting that the L∞(Xk) and L2(Xk)−norms are equivalent on the finite dimen-

sional space Xk, then

sup
t∈[0,Tk]

(‖uk‖L∞ + ‖∇uk‖L∞) ≤ C0(E0).

As a consequence of this observation, the existence time interval [0, T ′] can be extended
to [0, T ]. for all T > 0.

Hence, the existence proof of a weak solution triple (ρε,δk ,uε,δ
k , f

ε,δ
k ) to the regularization

(3.1)-(3.2) for any T > 0 is completed.

4. Recover the weak solutions

In order to complete Theorem 2.1,we need to recover weak solutions to (1.8)-(1.11). To
this end, we pass to the limits in the following order, as k → ∞, next ε → 0 and finally
δ → 0, for the unique solutions constructed as in Proposition 3.7. Here we use the triple
(ρk,uk, fk) to denote the solution constructed as in Proposition 3.7, were still omit the
supraindexed ε and δ for notation simplicity.

Thanks to (3.39), the following uniformly estimates hold

‖√ρkuk‖L∞(0,T ;L2(Ω)) ≤ C < ∞, (4.1)

‖ρk‖L∞(0,T ;Lγ(Ω)) ≤ C < ∞, (4.2)

‖∇uk‖L2(0,T ;L2(Ω)) ≤ C < ∞, (4.3)

δ

∫

Ω

1

β − 1
ρ
β
k dx ≤ C < ∞, for any t ∈ (0, T ), (4.4)

ε

∫ T

0

∫

Ω
(γργ−2

k + δβρ
β−2
k )|∇ρk|2 dx dt ≤ C < ∞, (4.5)

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)fk dξ dr dx ≤ C < ∞, for any t ∈ (0, T ). (4.6)

Then a consequence we can show the following Lemma.

Lemma 4.1. There exists a constant C independent on index k, and regularization pa-
rameters ε and δ such that

‖nk(t)‖L∞(0,T ;L2(Ω)) ≤ C, (4.7)

‖jk(t)‖
L∞(0,T ;L

3
2 (Ω))

≤ C. (4.8)

Proof. By (4.3), we have

‖uk‖L2(0,T ;L6(Ω)) ≤ C,

where C is uniform in k, ε and δ; and hence uk is also uniformly bounded in L2(0, T ;L6(Ω)).
Therefore, taking N = p = 3 in Lemma 3.1 and Lemma 3.2, then (4.7) and (4.8) follow. �
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The next step is to show that the limit in k for the sequence of solution (ρk,uk, fk)
exists in the following sense.

Proposition 4.1. Let the solutions of (ρk,uk, fk) constructed in Proposition 3.7, then for
any γ > 3

2 ,

ρk → ρ in L1((0, T ) × Ω) and C([0, T ];Lγ
weak(Ω)),

uk → u weakly in L2(0, T ;W 1,2
0 (Ω)),

ρkuk → ρu in C([0, T ];L
2γ
γ+1

weak(Ω)),

and

ρ
γ
k → ργ in L

γ+θ
γ ((0, T ) × Ω) for some 0 < θ <

γ

3
.

Remark 4.1. The proof of this proposition follows from techniques developed by Lions
[20] and Feireisl [11, 12, 13] applied to the compressible Navier-Stokes equations with the
external forces. They are crucial for the limiting process of the solution to the whole
fluid-kinetic system. In the sake of completeness we write some of these estimates in the
actual larger system context.

The uniform estimate (4.10) hold for the solutions of the compressible Navier-Stokes
equations, even with the external force, if it is in Lp(0, T ;Lq(Ω)) for some p, q > 1. For
the more detail, we refer the readers to [11, 12, 13, 20]. Thus, the first step consist in
controlling the uniform estimate of the force term in k, δ and ε, namely

−
∫ b

a

∫

R3

r(uk − ξ)fk dξ dr = −nkuk + jk, (4.9)

which has been proved to be bounded in Lp(0, T ;Lq(Ω)) for some p, q > 1, uniformly in
k, δ and ε. In fact, we have

‖jk − nkuk‖
L2(0,T ;L

3
2 (Ω))

≤ C‖jk‖
L∞(0,T ;L

3
2 (Ω))

+ C‖nk‖L∞(0,T ;L2(Ω)‖uk‖L2(0,T ;L6(Ω)),

and hence jk − nkuk is uniformly bounded in L2(0, T ;L
3

2 (Ω)).

Note that −
∫ b

a

∫

R3 r(uk − ξ)fk dξ dr is bounded in L2(0, T ;L
3

2 (Ω)), we can apply the
argument in [11, 12, 13, 20] to (3.1). We obtain the following estimate in Lemma 4.2.

Lemma 4.2. For any γ > 3
2 , there exists a constant 0 < θ < γ

3 , depending on γ, such
that

∫ T

0

∫

Ω
(aργ+θ

k + δρ
β+θ
k ) dx dt ≤ C < ∞, (4.10)

where C > 0 is uniformly on n, ε and δ.

With above convergence of Proposition 4.1 in hand, we are ready to pass to the limits for
the Navier-Stokes part as k → ∞. We could use the similar arguments to handle the other
limits with respects to ε and δ. For more details on the weak stability of the compressible
Navier-Stokes equations, we refer the readers to [19, 12, 13].

Headlines focus on the stability of weak solutions to the kinetic equation (3.4). By
(3.7), we have

fk ⇀ f L∞(0, T ;Lp(Ω× R
3 × R

+))− weak∗ (4.11)

for any 1 < p ≤ ∞.
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Letting ϕ(x) be a smooth compactly supported test function, we have

∫

(jk −
∫ b

a

∫

R3

rξf dξ dr)ϕ(x) dx

≤
∫ ∫ ∫

r(fk − f)(1 + |ξ|)ϕ(x) dξ dr dx

=

∫ ∫ ∫

(

r
2

3 (fk − f)
2

3 (1 + |ξ|) 4

3ϕ
2

3 (x)
)(

r
1

3 (fk − f)
1

3 (1 + |ξ|)−1

3 ϕ
1

3 (x)
)

dξ dr dx

≤ 2

(∫ ∫ ∫

r(fk − f)(1 + |ξ|2)ϕ(x) dξ dr dx
)

2

3
(∫ ∫ ∫

r(fk − f)
ϕ(x)

1 + |ξ| dξ dr dx
)

1

3

= 2C

(
∫ ∫ ∫

r(fk − f)
ϕ(x)

1 + |ξ| dξ dr dx
) 1

3

,

(4.12)

where we used (4.6) and a fact

(∫ ∫ ∫

r(fk − f)(1 + |ξ|2)ϕ(x) dξ dr dx
) 2

3

≤
(

2

∫ ∫ ∫

r(1 + |ξ|2)fk dξ dr dx
) 2

3

≤ C.

Thus, the last term in (4.12) converges to zero as k goes to infinity since fk converges to
f weakly in L2(0, T ;L2(Ω× R

3 × R
+)) and

rϕ(x)

1 + |ξ| ∈ L2
loc(Ω× R

3 × R
+)).

It follows that

jk ⇀ j weakly in L∞(0, T ;Lp(Ω)) (4.13)

for any 1 < p ≤ 3
2 , where j =

∫ ∫

rξf dξ dr.
Similarly, we have that

nk =

∫ ∫

rfk dξ dr ⇀ n =

∫ ∫

rf dξ dr weakly in L2(0, T ;L2
loc(Ω)). (4.14)

By (3.7) again, fk is uniformly bounded in L∞(0, T ;L∞(Ω×R
3×R

+). Relying on this,
we can show the following uniform bounds. With (4.14), we have the weak convergence
of Q(fk).

Lemma 4.3. If (3.7), then Q(fk) is uniformly bounded in

L∞(0, T ;L∞(Ω× R
3 × R

+) ∩ L∞(0, T ;Lp(Ω× R
3 × R

+)

for any p ≥ 1, and

∫ b

a

∫

R3

Q(fk) dξ dr ⇀

∫ b

a

∫

R3

Q(f) dξ dr weakly in L2(0, T ;L2(Ω)). (4.15)
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Proof.

‖Q(fk)‖L∞ ≤ ν‖fk(x, ξ, r, t)‖L∞ + ν‖fk(x, ξ, r, t)‖L∞

∫

r>r∗
B(r∗, r) dr∗

≤ (ν +Cν)‖fk(x, ξ, r, t)‖L∞ ,

where we used a fact
∫

r>r∗
B(r∗, r) dr∗ ≤ C.

Similarly,

‖Q(fk)‖L1 ≤ ν‖fk(x, ξ, r, t)‖L1 + ν‖
∫

r>r∗
B(r∗, r)fk(t, x, ξ, r

∗) dr∗‖L1

≤ ν‖fk(x, ξ, r, t)‖L1 + ν‖fk(x, ξ, r, t)‖L1

∫

r>r∗
B(r, r∗) dr∗

≤ (ν + cν)‖fk(x, ξ, r, t)‖L1 .

For any smooth ϕ(x),
∫

Ω

(∫ b

a

∫

R3

Q(fk)(x, ξ, r, t) dξ dr −
∫ b

a

∫

R3

Q(fk)(x, ξ, r, t) dξ dr

)

ϕ(x) dx

≤ ν

a

∫

Ω

∫ b

a

∫

R3

r(fk − f) dξ drϕ(x) dx+
ν

a

∫

Ω

∫ b

a

∫

R3

∫

r>r∗
rB(r∗, r)(fk − f) dr∗ dξ dr dx

≤ Cν

a

∫

Ω

∫ b

a

∫

R3

r(fk − f) dξ drϕ(x) dx → 0

as k → ∞. By (4.14), we have (4.15). �

The last task is to handle the convergence of the right-hand side of (3.31)
∫ b

a

∫

R3

rukfk dξ dr.

To prove this one, we follow the same argument as in [23]. In fact, we shall use the
following lemma, which was from [20].

Lemma 4.4. Let gn and hn converge weakly to g and h respectively in Lp1(0, T ;Lp2(Ω))
and Lq1(0, T ;Lq2(Ω)) where 1 ≤ p1, q1 ≤ +∞,

1

p1
+

1

q1
=

1

p2
+

1

q2
= 1.

We assume in addition that

∂gn

∂t
is bounded in L1(0, T ;W−m,1(Ω)) for some m ≥ 0independent of n

and

‖hn − hn(·+ ξ, t)‖Lq1 (0,T ;Lq2 (Ω)) → 0as |ξ| → 0, uniformly in n.

Then, gnhn converges to gh in the sense of distributions on Ω× (0, T ).
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Indeed, we have

(nk)t = −divx(jk),

and so (nk)t is bounded in L∞(0, T ;W−1,1(Ω)). Since ∇uk is bounded in L2(0, T ;L2(Ω)),
we can apply a classical compactness lemma [20] to have

nkuk → nu in the sense of distributions. (4.16)

Similarly, we are able to show, as k → ∞,
∫

Ω

∫ b

a

∫

R3

uk − ξ

r2
fkφdξ dr dx →

∫

Ω

∫ b

a

∫

R3

u− ξ

r2
fφ dξ dr dx (4.17)

for any φ ∈ C1([0, T ]× Ω) with compact support with respect to x.
With Proposition 4.1, (4.13), (4.15), (4.16) and (4.17), we are ready to pass to the limits

in the weak formulation of the Navier-Stokes and in the weak formulation of kinetic equa-
tion. Thus, we are allowed to pass to the limits as k goes to infinity in the approximation
of (3.31) for the following weak formulations

∫

Ω
ρkuk(t) · ϕdx−

∫

Ω
m0 · ϕdx =

∫ t

0

∫

Ω
(µ∆uk + λ∇divuk)ϕdx dt

+

∫ t

0

∫

Ω

(

ε∇uk · ∇ρk − div(ρkuk ⊗ uk)−∇ρ
γ
k − δ∇ρ

β
k − nkuk + jk

)

ϕdx dt,

and

−
∫ t

0

∫ b

a

∫

Ω

∫

R3

fk

(

∂tφ+ ξ · ∇xφ+
(uk − ξ)

r2
· ∇ξφ

)

dxdξ drds

=

∫ b

a

∫

Ω

∫

R3

f0φ(0, ·, ·) dxdξ dr +
∫ t

0

∫ b

a

∫

Ω

∫

R3

Q(fk)φdξ dx dr dt.

Here we should remark that the all uniform bounds in this section are independent on ε

and δ. Thus, we can pass into the limits as k → ∞, ε → 0 and δ → 0 at the same time.
Thus, all convergence results in this section allow us to recover the weak formulations
(2.3)-(2.4) by passing into the limits as k → ∞, ε → 0 and δ → 0.

At last, passing to the limits in (3.39) with respects to k → ∞, ε → 0 and δ → 0, the
following energy inequality could be obtained in the following Lemma:

Lemma 4.5. If (ρ,u) is the weak limit of (ρk,uk) as k goes to infinity, then
∫

Ω
(
1

2
ρ|u|2 + ργ

γ − 1
) dx+

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)f dξ dr dx

+ µ

∫ T

0

∫

Ω
|∇u|2 dx dt+ λ

∫ T

0

∫

Ω
|divu|2 dx dt

≤
∫

Ω
(
m2

0

2ρ0
+

ρ
γ
0

γ − 1
) dx+

∫

Ω

∫ b

a

∫

R3

r3(1 + |ξ|2)f0 dξ dr dx.

(4.18)

In addition, the same conclusion holds true as the limits ε → 0 and δ → 0.

Proof. Using the weak convergence and the convexity of the energy, estimates (4.18) follow
by passing to the limit from (3.39) with respect to k → ∞.
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Finally, because all estimates for are also unifomm for both ε and δ small, then the
corresponding limiting problem, as both parameters tend to zero, yield a solution to the
problem posed in Theorem 2.1. �

Thus, we have completed the proof of our main result Theorem 2.1.
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