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Abstract

We study the global existence and uniqueness of weak solutions to kinetic
Kolmogorov–Vicsekmodels that canbe considered as non-local, non-linear, Fokker–
Planck type equations describing the dynamics of individuals with orientational
interactions. This model is derived from the discrete Couzin–Vicsek algorithm as
mean-field limit (Bolley et al., Appl Math Lett, 25:339–343, 2012; Degond et al.,
Math Models Methods Appl Sci 18:1193–1215, 2008), which governs the interac-
tions of stochastic agents moving with a velocity of constant magnitude, that is,
the corresponding velocity space for these types of Kolmogorov–Vicsek models
is the unit sphere. Our analysis for L p estimates and compactness properties take
advantage of the orientational interaction property, meaning that the velocity space
is a compact manifold.
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1. Introduction

Recently, a variety of mathematical models capturing the emergent phenomena
of self-driven agents have received extensive attention. In particular, the discrete
Couzin–Vicsek algorithm (CVA) has been proposed as a model describing the
interactions of agents moving with velocity of constant magnitude, and with angles
measured from a reference direction (see [1,4,18,26]).

This manuscript focuses on analytical issues for the kinetic (mesoscopic) de-
scription associated with the discrete Couzin–Vicsek algorithm with stochastic
dynamics corresponding to Brownian motion on a sphere. More precisely, we con-
sider the corresponding kinetic Kolmogorov–Vicsek model describing stochastic
particles with orientational interaction,

∂t f + ω · ∇x f = −∇ω · ( f Fo) + μ�ω f,

Fo(x, ω, t) = ν(ω · �( f ))(I d − ω ⊗ ω)�( f ),

�(J )(x, t) = J ( f )(x, t)

|J ( f )(x, t)| ,

J ( f )(x, t) =
∫

U×Sd−1
K (|x − y|)ω f (y, ω, t) dy dω,

f (x, ω, 0) = f0(x, ω), x ∈ U, ω ∈ S
d−1, t > 0,

(1.1)

where f = f (x, ω, t) is the one-particle distribution function at position x ∈ U ,
velocity direction ω ∈ S

d−1 and time t . The spatial domain U denotes either Rd or
T

d . The operators ∇ω and �ω denote, respectively, the gradient and the Laplace–
Beltrami operator on the sphere S

d−1, and μ > 0 is a diffusion coefficient. The
term Fo(x, ω, t) is the mean-field force that governs the orientational interaction
of self-driven particles by aligning them with the direction �(x, t) ∈ S

d−1 that
depends on the flux J (x, t).

This mean-field force is also proportional to the interaction frequency ν. Its
reciprocal, ν−1, represents the typical time-interval between two successive changes
in the trajectory of the orientational swarm particle to accommodate the presence
of other particles in the neighborhood. The function K is an isotropic observation
kernel around each particle and it is assumed to be integrable in R.

Following Degond and Motsch in [10], the interaction frequency function ν

is taken to be a positive function of cos θ , where θ is the angle between ω and �.
Such dependence of ν with respect to the angle θ represents different turning tran-
sition rates at different angles. Hence, the constitutive form of such an interaction
frequency ν(θ) is inherent to species being modeled by orientational interactions.
As in [10], we assume that ν(θ) is a smooth and bounded function of its argument.

The kinetic Kolmogorov–Fokker–Planck type model with orientational inter-
actions (1.1) was formally derived in [10] as a mean-field limit of the discrete
Couzin–Vicsek algorithm (CVA) with stochastic dynamics. There, the authors
mainly focused on the model (1.1) with the local momentum J̃ instead of J :

�( J̃ )(x, t) = J̃ ( f )(x, t)

| J̃ ( f )(x, t)| , J̃ ( f )(x, t) =
∫
Sd−1

ω f (x, ω, t) dω, (1.2)
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where J̃ was derived from J in (1.1) by rescaling the kernel K in time and spatial
variables. Such scaling describes dynamics for solutions to (1.1) at large time and
length scales compared with the scales of individuals.

In the current manuscript, we focus on the existence and uniqueness properties
of solutions to both models, with J ( f ) as defined in (1.1) and with J̃ ( f ) as defined
in (1.2).

In fact, since J with the kernel K = δ0(Dirac mass) is exactly J̃ , it is enough
to show the global existence and uniqueness of weak solutions to models (1.1) in
an appropriate space, to be specified in Section 2. These results are easily applied
to J̃ , as in (1.2).

The classicalVicsekmodel has received extensive attention in the last few years,
especially regarding its mean-field land hydrodynamic limits and its phase transi-
tion development. More specifically, Bolley, Cañizo and Carrillo have rigorously
justified a mean-field limit in [2] when the force term acting on the particles is not
normalized, that is, ν�(x, t) is replaced by just J (x, t) in force term Fo. This mod-
ification leads to the appearance of phase transitions from disordered states at low
density to aligned (ordered) states at high densities. Such a phase transition problem
has been studied in [1,4,8,9,16,18]. In addition, issues regarding hydrodynamic
descriptions of the classical Vicsek model have been discussed in [8–12,15]. We
also refer to [3,7,19] for related issues.

To date, there have been few results on the existence theory of true kinetic
descriptions. Frouvelle andLiu [16] have shown thewell-posedness in the space-
homogeneous case of (1.2) with the regular force field (I d − ω ⊗ ω) J̃ instead of
(I d − ω ⊗ ω)�( J̃ ). There, they provided the convergence rates towards equilibria
by using the Onsager free energy functional and Lasalle’s invariance principle, and
their results have been applied in [8]. Very recently, Figalli et al. [14] have shown
the well-posedness in the space-homogeneous case of (1.2), and the convergence
of solutions towards steady states, based on the gradient flow approach (see for
example [13,21]).

On the other hand, the authors in [2] have shown the existence of weak solutions
for the space-inhomogeneous equation for a force field Fo given by the difference
between spatial convolutions of mass and momentum with bounded Lipschitz ker-
nels K , namely ωK ∗x ρ − K ∗x J , instead of ν� as considered in this manuscript.
Such a choice of force field has a regularizing effect for the spatial variable com-
pared to our case ν�, which deals with stronger non-linearities.

This manuscript is mainly devoted to showing the existence and uniqueness
properties of weak solutions to the kinetic Kolmogorov–Vicsek type model (1.1).
A difficulty in our analysis arises from the fact that �(J ) in the alignment force
term of (1.1) is undefined as J ( f ) becomes 0. Thus we restrict the problem of
finding global weak solutions to (1.1) to a subclass of solutions with the non-zero
local momentum, that is, J ( f ) �= 0.

In the next section, we briefly present some known results for kinetic models
with orientational interactions, (1.1) and (1.2), which give a heuristic justification
for the a priori non-zero assumption on J ( f ), which is to be stated in our main
result. Section 3 presents a priori estimates and the compactness lemma, which
play crucial roles in the main proof of the existence of a weak solution in the next
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section. Section 4 deals with the construction of weak solutions to (1.1) bymeans of
introducing an ε-regularized problem, for an arbitrary parameter ε > 0, modifying
the alignment force �(J ) uniformly bounded in ε. We then solve the ε-regularized
problem of (1.1) by constructing a sequence of functions { fn,ε}n�1 that converges
to the solution fε. Finally we show that, within the class of solutions satisfying
J ( f ) � 0, there is a subsequence fεk converging to f , solving (1.1). Section 5
is devoted to the proof of the uniqueness of weak solutions in a periodic spatial
domain U = T

d under the additional constraint J ( f ) � α > 0.

2. Preliminaries and Main Results

In this section, we briefly review how the kineticKolmogorov–Viscek equations
(1.1) and (1.2), can be formally derived from the discrete Couzin–Vicsek algorithm
model [10] with stochastic dynamics. We then provide our main result and useful
formulations.

2.1. Kinetic Kolmogorov–Vicsek Models

Following [10], the kinetic Kolmogorov–Vicsek model considered in (1.1) is
derived from the classical discrete Vicsek formulation modeling Brownian motion
of the sphere S

d−1 given by the following stochastic differential equations for
1 � i � N :

d Xi = ωi dt,

dωi = (I d − ωi ⊗ ωi ) ν
(
ωi · �̄i

)
�̄i dt + √

2μ (I d − ωi ⊗ ωi ) ◦ d Bi
t ,

�̄i = J̄i

| J̄i |
, J̄i =

∑
j, |X j −Xi |�R

ω j .

(2.1)

Here, the neighborhoodof the i-th particle is the ball centered at Xi ∈ R
d with radius

R > 0. The velocity director ωi ∈ S
d−1 of the i-th particle tends to be aligned with

the director �i of the average velocity of the neighboring particles with noise Bi
t

standing for N independent standard Brownian motions onRd with intensity
√
2μ.

Then, its projection (I d − ωi ⊗ ωi ) ◦ d Bi
t represents the contribution of Brownian

motion to the sphere Sd−1, which should be understood in the Stratonovich sense.
We refer to [20] for a detailed description of Brownian motions on Riemannian
manifolds.We note that the first term in dωi is the sumof smooth binary interactions
with identical speeds, whereas there is no constraint on the velocity in the Cucker–
Smale model [5]. In addition, the interaction frequency (weight) function ν(ωi ·�i )

depends on the angle between ωi and �i , parametrized by cos θi = ωi · �i .
From the individual-based model (2.1), the corresponding kinetic mean-field

limit (1.1) was proposed in [2,10] as the number of particles, N , tends to infinity.
Notice that μ in (1.1) corresponds to the diffusive coefficient associated with the
Brownian motion on the sphere Sd−1.
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The reduced model (1.1) with the modified definition of setting J = J̃ , as
in (1.2), was proposed in [10] by the following scaling argument. Considering
the system dynamics at large times and length scales compared with the scales of
individuals by the dimensionless rescaled variables x̃ = εx, t̃ = εt with ε � 1,
it makes the interactions become local and aligns the particle velocity with the
direction of the local particle flux. This interaction term is balanced at leading
order ε by the diffusion term.

Notice that �( f ) in (1.1) is undefined when J ( f ) becomes 0. Because of this
issue, we study in this manuscript the existence of weak solutions to (1.1) for the
subclass of solutions with non-zero local momentum, that is, J ( f ) �= 0. As shown
in [10], since ω is not a collisional invariant of operator Q, the momentum is not
conserved. Thus, it is not straightforward to get J ( f )(x, t) �= 0 for all (x, t) by
imposing non-zero initial momentum, that is, J ( f )(x, 0) �= 0 for all x . Moreover,
there is no canonical entropy for the type of the kinetic equations found in (1.1). Due
to these analytical difficulties, we heuristically justify our constraint J ( f ) �= 0 by
observing equilibria of (1.2) in the three dimensional case, which has been studied
in [10].

For the classification of equilibria in the d = 3 dimensional case, we recall the
Fisher–von Mises distribution, given by

M�(ω) = 1∫
S2

exp( σ(ω·�)
μ

) dω
exp

(σ(ω · �)

μ

)

for a given unit vector � ∈ S
2, where σ denotes an antiderivative of ν, that is,

dσ
dτ

(τ ) = ν(τ). Since ν is positive, σ is an increasing function and then M� is
maximal at ω · � = 1, that is, for ω pointing in the direction of �. Therefore, �
plays the same role as the averaged velocity in the classical Maxwellian equilibria
for classical kinetic models of rarefied gas dynamics with velocities defined in all
space. The diffusion constant μ corresponds to the temperature strength, which
measures the spreading of the equilibrium state about the average direction �. The
present model has a constant diffusion μ that is in contrast with the classical gas
dynamics where the temperature is a thermodynamical variable whose evolution is
determined by the energy balance equation.

Using the Fisher–von Mises distribution, the operator Q and equilibria of (1.2)
are expressed as follows:

Lemma 2.1. [10] (i) The operator Q( f ) can be written as

Q( f ) = μ∇ω ·
[

M�( f )∇ω

(
f

M�( f )

)]
.

(ii) The equilibria, that is, solutions f (ω) satisfying Q(f) = 0, form a three dimen-
sional manifold E given by

E = {ρM�(ω) | ρ > 0, � ∈ S
2},
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where ρ is the total mass and � is the flux director of ρM�(ω), that is,

ρ =
∫
S2

ρM�(ω) dω, � = J̃ (ρM�)

| J̃ (ρM�)| ,

J̃ (ρM�) :=
∫
S2

ρM�(ω)ω dω = ρc(μ)�,

with

c(μ) =
∫ π

0 cos θ exp
(

σ(cos θ)
μ

)
sin θ dθ

∫ π

0 exp
(

σ(cos θ)
μ

)
sin θ dθ

.

We note that c(μ) → 1 as μ → 0, and c(μ) → 0 as μ → ∞. This means that
the local momentum J̃ (ρM�) of the equilibrium solution f = ρM� is not zero as
long as the diffusion strength μ is not sufficiently large compared to orientational
interaction. Consequently, it is expected that moderate values of μ would yield
non-zero, local momentum J̃ ( f ) for solutions f near the Von Mises equilibria.

2.2. Main Result

We state now the main results for the global existence of weak solutions to
equations (1.1).
We first introduce the following notations for simplification:

• Notation : We denote by D := U × S
d−1, and by Pω⊥ := I d − ω ⊗ ω, as the

mapping v → (I d − ω ⊗ ω)v is the projection of the vector v onto the normal
plane to ω.

• Hypotheses (H) :As stated earlier,we assume that ν(·) is a smooth andbounded
function of its argument, and that K (| · |) ∈ L1(U ). Moreover, in order to avoid
�( f ) being undefined, we impose a priori assumptions stating that the weak
solutions f of (1.1) belong to an admissible class

A := { f | J ( f )(x, t) �= 0, ∀x ∈ U, t > 0} . (2.2)

Theorem 2.1. (Existence for spatial domains U, being either Rd or Td) Assume
(H), and that f0 satisfies

f0 ∈ (L1 ∩ L∞)(D) and f0 � 0. (2.3)

Then, for a given T > 0, the equation (1.1) has a weak solution f , which satisfies

f � 0,

f ∈ C(0, T ; L1(D)) ∩ L∞(D × (0, T )),

∇ω f ∈ L2(D × (0, T ))

(2.4)
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and the following weak formulation: for any φ ∈ C∞
c (D × [0, T )),

∫ t

0

∫
D

f ∂tφ + f ω · ∇xφ + f Fo · ∇ωφ − μ∇ω f · ∇ωφ dx dω ds

+
∫

D
f0φ(0, ·) dx dω = 0,

Fo(x, ω, t) = ν(ω · �( f ))Pω⊥�( f ).

(2.5)

Moreover, the weak solution f satisfies the estimate

‖ f ‖L∞(0,T ;L p(D)) + 2μ(p − 1)

p
‖∇ω f

p
2 ‖

2
p

L2(D×(0,T ))
� eCT p

p−1 ‖ f0‖L p(D), (2.6)

for any 1 � p < ∞, and

‖ f ‖L∞(D×(0,T )) � eCT ‖ f0‖L∞(D). (2.7)

Remark 2.1. The proof of Theorem 2.1 is based on energy methods, where the
diffusion term μ�ω f plays a crucial role, yet the strength of μ > 0 does not
essentially affect the proof of existence. Therefore, without loss of generality, from
now on we set μ = 1.

We next present the uniqueness of weak solutions being constructed in Theo-
rem 2.1, only for periodic domains U = T

d , together with the following subclass:

Aα :=
{

f | ∃ α > 0 s.t. |J ( f )(x, t)| > α, ∀(x, t) ∈ T
d × (0, T )

}
,

which is more restrictive than (2.2). Indeed this class corresponds to the subclass
of weak solutions to the initial value problem (1.1), with uniformly bounded speed
when solved in a spatial torus domain.

Theorem 2.2. (Uniqueness for periodic spatial domainsTd )Assume (H) and (2.3).
Then, for a given T > 0, the periodic boundary problem of (1.1) has a unique weak
solution f in the subclass Aα .

Remark 2.2. Our proof for uniqueness takes advantage of a uniformly positive
lower bound α of J ( f ) in order to control �( f ), and consequently restricted to the
periodic domain T

d . Indeed, imposing that J ( f ) � α > 0 for all x ∈ R
d results

in an infinite mass
∫
Rd×Sd−1 f dx dω = ∞, due to

∞ =
∫
Rd

J ( f ) dx �
∫
Rd×Sd−1

|K ∗x f | dx dω

�
∫
Sd−1

‖K ∗x f ‖L1(Rd ) dω � ‖K‖L1

∫
Rd×Sd−1

f dx dω.



324 Irene M. Gamba & Moon-Jin Kang

2.3. Formulas for Calculus on Sphere

We start recalling some useful formulas on the sphere Sd−1 which are exten-
sively used in this paper.
Let F be a vector-valued function and f be a scalar-valued function. The following
formula, analogous to the integration by parts, holds:

∫
Sd−1

f ∇ω · F dω = −
∫
Sd−1

F · (∇ω f − 2ω f ) dω. (2.8)

By the definition of the projection operator Pω⊥ , it follows that

Pω⊥ω = 0, Pω⊥∇ω f = ∇ω f,

Pω⊥u · v = Pω⊥v · u,
(2.9)

for any scalar-valued function f , and vectors u and v.

In addition, for any constant vector v ∈ R
d , we have

∇ω(ω · v) = Pω⊥v,

∇ω · (Pω⊥v) = −(d − 1)ω · v.
(2.10)

These formulas can be easily derived classical calculus on spherical coordinates
(see [16,24]).

3. A Priori Estimates and the Compactness Lemma

The following Lemma provides a priori estimates in L∞(0, T ; L p(U )), 1 �
p � ∞ for solutions to the initial value problem for the kinetic equation below.
The subsequent Lemma 3.2 provides a compactness tool needed for the existence
result proof of Theorem 2.1.

Lemma 3.1. Assume that f0 satisfies (2.3), and that f is a smooth solution to the
equation

∂t f + ω · ∇x f = −∇ω · ( f ν(ω · �)Pω⊥�) + �ω f,

f (x, ω, 0) = f0(x, ω),
(3.1)

where � : U × R+ → R
d is a bounded vector-valued function of (x, t).

Then, for any 1 � p < ∞,

‖ f ‖L∞(0,T ;L p(D)) + 2(p − 1)

p
‖∇ω f

p
2 ‖

2
p

L2(D×(0,T ))
� eCT p

p−1 ‖ f0‖L p(D). (3.2)

In particular, if p = ∞, then

‖ f ‖L∞(D×(0,T )) � eCT ‖ f0‖L∞(D). (3.3)
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Proof. First of all, for any 1 � p < ∞, it follows from (1.1) that

d

dt

∫
D

f p dx dω = −p
∫

D
f p−1∇ω · ( f ν(ω · �)Pω⊥�) dx dω

+ p
∫

D
f p−1�ω f dx dω

=: I1 + I2.

(3.4)

Using formula (2.8) and ω · ∇ω f = 0, we have

I2 = −p(p − 1)
∫

D
f p−2∇ω f · ∇ω f dx dω + 2p

∫
D

f p−1ω · ∇ω f dx dω

= −4(p − 1)

p

∫
D

|∇ω f
p
2 |2 dx dω.

Next, by formula (2.10), the term I1 from (3.4) is estimated as follows:

I1 = −p
∫

D
f p−1

(
ν(ω · �)∇ω f · Pω⊥� + f ν′(ω · �)|Pω⊥�|2

− (d − 1) f ν(ω · �)ω · �

)
dx dω

� p‖ν(ω · �)‖L∞
∫

D
f p−1|∇ω f | dx dω + p‖ν′(ω · �)‖L∞

∫
D

f p dx dω

+ p(d − 1)‖ν(ω · �)‖L∞
∫

D
f p dx dω.

In addition, using Hölder’s inequality, the first integral in the right hand side
above can be estimated by

∫
D

f p−1|∇ω f | dx dω �
(∫

D
f p dx dω

)1/2 (∫
D

f p−2|∇ω f |2 dx dω

)1/2

= 2

p

(∫
D

f p dx dω

)1/2 (∫
D

|∇ω f
p
2 |2 dx dω

)1/2

.

Then, we have

I1 � 2(p − 1)

p

∫
D

|∇ω f
p
2 |2 dx dω + C

(
p

p − 1
+ p

)∫
D

f p dx dω.

Finally, combining the estimates above for both I1 and I2, we get

d

dt

∫
D

f p dx dω + 2(p−1)

p

∫
D

|∇ω f
p
2 |2 dx dω � C

(
p

p − 1
+ p

) ∫
D

f p dx dω,

which yields a Gronwall type inequality

d

dt
‖ f ‖L p(D) � C

p

p − 1
‖ f ‖L p(D).
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Therefore,

‖ f ‖L∞(0,T ;L p(D)) � eCT p
p−1 ‖ f0‖L p(D),

which implies the L p estimate in (3.2). Hence, taking p → ∞ yields the L∞ bound
(3.3).

Remark 3.1. The boundedness of the alignment vector � is essential for the proof
of Lemma 3.1, and the a priori estimates (3.2) and (3.3) still hold for � = �( f )

bounded for any f .

The following lemma provides the compactness property that ensures the strong
L p convergence of solutions to the initial value problem associated with linear
equation (3.5). Such a strong compactness property relies on the boundedness of
both the force term and velocity space (notice that the velocity variable would be
unbounded;wewould have to use the celebrated velocity averaging lemma [22,25]).
As mentioned earlier, the compactness property obtained from the next lemma is
crucial for the existence proof of Theorem 2.1.

Lemma 3.2. Assume that f0 satisfies (2.3), and that fn is a smooth solution to

∂t fn + ω · ∇x fn = −∇ω · (
fnν(ω · Fn)Pω⊥ Fn

) + �ω fn,

fn(x, ω, 0) = f0(x, ω),
(3.5)

where Fn : U × R+ → R
d is a given function of (t, x).

If the sequence (Fn) is bounded in L∞(U ×(0, T )), then there exists a limit function
f such that, up to a subsequence,

fn → f as n → ∞ in L p(D × (0, T )) ∩ L2(U × (0, T ); H1(Sd−1))′,
1 � p < ∞.

Moreover, the associated sequence

Jn :=
∫

D
K (|x − y|)ω fn(y, ω, t) dy dω

strongly converges to the corresponding limit J in L p(U × (0, T )), where

J :=
∫

D
K (|x − y|)ω f (y, ω, t) dy dω.

Proof. Since the sequence (Fn) is bounded in L∞(U × (0, T )), there exists F ∈
L∞(U × (0, T )) such that, up to a subsequence,

Fn ⇀ F weakly − ∗ in L∞(U × (0, T )). (3.6)

Let f be a solution of (3.5) corresponding to the limiting F . Then, the following
identity holds:

∂t ( fn − f ) + ω · ∇x ( fn − f ) = −∇ω · (
( fn − f )ν(ω · Fn)Pω⊥ Fn

)
− ∇ω · (

f (ν(ω · Fn) − ν(ω · F))Pω⊥ Fn
)

− ∇ω · (
f ν(ω · F)Pω⊥(Fn −F)

)+�ω( fn − f ).

(3.7)
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Next, for anyfixed p ∈ [1,∞),multiplying the above equation by p( fn− f )p−1

and integrating over D yields the identity

d

dt

∫
D
( fn − f )p dx dω

= −p
∫

D
( fn − f )p−1∇ω · (

( fn − f )ν(ω · Fn)Pω⊥ Fn
)
dx dω

− p
∫

D
( fn − f )p−1∇ω · (

f (ν(ω · Fn) − ν(ω · F))Pω⊥ Fn
)
dx dω

− p
∫

D
( fn − f )p−1∇ω · (

f ν(ω · F)Pω⊥(Fn − F)
)
dx dω

+ p
∫

D
( fn − f )p−1�ω( fn − f ) dx dω

=: J1 + J2 + J3 + J4. (3.8)

We first estimate the term J1 using the same arguments as the ones used in
Lemma 3.1 in order to estimate I1. Indeed,

J1 = −p
∫

D
( fn − f )p−1 (

ν(ω · Fn)∇ω( fn − f ) · Pω⊥ Fn

+ ( fn − f )ν′(ω · Fn)|Pω⊥ Fn|2
−(d − 1)( fn − f )ν(ω · Fn)ω · Fn) dx dω

� p‖ν(ω · Fn)‖L∞‖Fn‖L∞
∫

D
( fn − f )p−1|∇ω( fn − f )| dx dω

+ p‖ν′(ω · Fn)‖L∞‖Fn‖2L∞

∫
D
( fn − f )p dx dω

+ p(d − 1)‖ν(ω · Fn)‖L∞‖Fn‖L∞
∫

D
( fn − f )p dx dω.

� 2(p − 1)

p

∫
D

|∇ω( fn − f )
p
2 |2 dx dω + Cp2

p − 1

∫
D
( fn − f )p dx dω.

Similarly, J4 is also estimated as was done for I2 in the proof of Lemma 3.1:

J4 = −4(p − 1)

p

∫
D

|∇ω( fn − f )
p
2 |2 dx dω.

Hence, gathering these two last estimates, identity (3.8) yields the estimate

d

dt

∫
D
( fn − f )p dx dω

� C
∫

D
( fn − f )p dx dω − 2(p − 1)

p

∫
D

|∇ω( fn − f )
p
2 |2 dx dω + J2 + J3.
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Next, since fn = f at t = 0, applying Gronwall’s inequality to the above
inequality it holds that for any 0 < t � T ,

∫
D
( fn − f )p dx dω + 2(p − 1)

p

∫ t

0

∫
D

|∇ω( fn − f )
p
2 |2 dx dω ds

� eCT
∫ t

0
(J2 + J3)(s) ds.

The termsJ2 andJ3 can be rewritten using the calculus on the sphere formulas
(2.10) as follows. First, note that the term J2 satisfies the identity

J2 = −p
∫

D
( fn − f )p−1

[
(ν(ω · Fn) − ν(ω · F))∇ω f · Pω⊥ Fn

+ f (ν′(ω · Fn)Fn − ν′(ω · F)F) · Pω⊥ Fn

− (d − 1) f (ν(ω · Fn) − ν(ω · F))ω · Fn

]
dx dω

= −p
∫

D
( fn − f )p−1

[
ν′(ω · F∗

n )ω · (Fn − F)∇ω f · Pω⊥ Fn

+ f

(
ν′(ω · Fn)(Fn − F) + ν′′(ω · F∗∗

n )ω · (Fn − F)F

)
· Pω⊥ Fn

− (d − 1) f ν′(ω · F∗
n )ω · (Fn − F)ω · Fn

]
dx dω

= −p
∫

D
( fn − f )p−1

[
ν′(ω · F∗

n )∇ω f · Pω⊥ Fnω

+ f ν′(ω · Fn)Pω⊥ Fn + f ν′′(ω · F∗∗
n )F · Pω⊥ Fnω

− (d − 1) f ν′(ω · F∗
n )ω · Fnω

]
· (Fn − F) dx dω,

where F∗
n and F∗∗

n are some bounded functions due to the mean value theorem
property, depending solely on the known bounded functions Fn(x, t) and the limit
F defined in (3.6).
Similarly, also by the identities in (2.10), the term J3 satisfies the identity

J3 = −p
∫

D
( fn − f )p−1

[
ν(ω · F)∇ω f · Pω⊥(Fn − F)

+ f ν′(ω · F)Pω⊥ F · Pω⊥(Fn − F)

− (d − 1) f ν(ω · F)ω · (Fn − F)

]
dx dω

= −p
∫

D
( fn − f )p−1

[
ν(ω · F)∇ω f + f ν′(ω · F)Pω⊥ F

− (d − 1) f ν(ω · F)ω

]
· (Fn − F) dx dω.
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Thus, we get the weighted estimate

‖ fn − f ‖p
L p(D) + 4(p − 1)

p

∫ T

0

∫
D

|∇ω( fn − f )
p
2 |2 dx dω ds

� eCT
∫ T

0

∫
D

�(x, w, s) · (Fn − F) dx dω ds,

(3.9)

where the weight function, given by

�(x, w, s) = −p( fn − f )p−1
[
ν′(ω · F∗

n )∇ω f · Pω⊥ Fnω + f ν′(ω · Fn)Pω⊥ Fn

+ f ν′′(ω · F∗∗
n )F · Pω⊥ Fnω − (d − 1) f ν′(ω · F∗

n )ω · Fnω

+ ν(ω · F)∇ω f + f ν′(ω · F)Pω⊥ F − (d − 1) f ν(ω · F)ω

]
,

is shown to satisfy � ∈ L1(D × (0, T )).
In order to show this assertion, first we show the uniform control property of both fn

and f , and their gradients. Indeed, by the uniform boundedness of (Fn), applying
the same estimates as in Lemma 3.1 for both g = fn and f , respectively, we obtain

‖g‖L∞(0,T ;L p(D)) � C‖ f0‖L p(D), 1 � p � ∞,

‖∇ωg
p
2 ‖L2(D×(0,T )) � C‖ f0‖p/2

L p(D), 1 � p < ∞,

where the positive constant C only depends on p and T .

Next, by Hölder’s inequality it follows that
∫ T

0

∫
D
( fn − f )p−1∇ω f dx dω ds

�
(∫

D
( fn − f )p dx dω

)1/2(∫
D
( fn − f )p−2|∇ω f |2 dx dω

)1/2

� C

( ∫
D
( f p

n + f p) dx dω

)1/2( ∫
D

|∇ω f
p
2 |2 dx dω

)1/2

� C0,

and

∫ T

0

∫
D

( fn − f )p−1 f dx dω ds �
(∫

D
( fn − f )p dx dω

) p−1
p

(∫
D

f p dx dω

) 1
p

� C

( ∫
D

( f p
n + f p) dx dω

) p−1
p

( ∫
D

f p dx dω

) 1
p

� C0,

where the positive constant C0 depends only on ‖ f0‖L p(D).
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Therefore, the weight function �(x, w, t) can be estimated by

‖�‖L1(D×(0,T )) � C∗
(
‖( fn − f )p−1∇ω f ‖L1(D×(0,T ))

+‖( fn − f )p−1 f ‖L1(D×(0,T ))

)

� C∗C0,

where the positive constant C∗ is given by

C∗ = pd

[((
‖ν′

(
ω · F∗

n

)
‖L∞ + ‖ν′

(
ω · Fn

)
‖L∞

)

+ ‖ν′′
(

ω · F∗∗
n

)
‖L∞‖F‖L∞

)
‖Fn‖L∞

+ ‖ν(ω · F)‖L∞ + ‖ν′(ω · F)‖L∞‖F‖L∞
]
,

which does not depend on n thanks to the uniform boundedness of the sequence
Fn .

Hence, applying (3.6) to (3.9), it follows that

fn → f in L p(D × (0, T )),

∇ω fn → ∇ω f in L2(D × (0, T )).
(3.10)

Finally, in order to complete the proof of Lemma 3.2, it remains to show that
(3.10) implies the strong convergence of the associated sequence (Jn) = (J ( fn))

towards J ( f ). Indeed, Minkowski inequality, Hölder’s inequality and Young’s in-
equality yield

‖Jn − J‖L p(U×(0,T )) =
(∫ T

0

∫
U

∣∣∣∣
∫
Sd−1

K ∗x ( fn − f )ω dω

∣∣∣∣
p

dx ds

) 1
p

�
∫
Sd−1

( ∫ T

0

∫
U

|K ∗x ( fn − f )|p dx ds

) 1
p

dω

� C

( ∫ T

0

∫
Sd−1

‖K ∗x ( fn − f )‖p
L p(U ) dω ds

) 1
p

� C‖K‖L1(Rd )‖ fn − f ‖L p(D×(0,T )),

(3.11)

which completes the proof.
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4. Proof of Existence: Theorem 2.1

The proof of Theorem 2.1 entices the construction of an iteration scheme that
generates a sequence ( fn), where fn is a solution to the linear equation (3.5) at n-th
step, with Fn := �( fn−1) evaluated at the (n − 1)-th solution fn−1 obtained in the
previous (n − 1)-th step.

This first, intuitive approach confronts a difficulty, since the n-iteration scheme
generating the sequence fn does not secure the non-zero momentum |J ( fn)| > 0,
even if |J ( fn−1)| > 0. In fact, if that were the case, the term �( fn) would be
undefined and therefore we could not secure that it is bounded. In particular, since
the compactness properties of Lemmas 3.1 and 3.2 require a bounded force term (in
(3.1) and (3.5) respectively), then, at least with the tools developed in this paper,
it would not be possible to secure the existence of a solution fn+1 for the next
n-iterative step.

A way to avoid this difficulty is to use an ε-regularization approach by adding
an arbitrary ε > 0 parameter to the denominator of �( fn), for all n ∈ N. Such
regularization generates a double parameter (ε, n) sequence of solutions fε,n that
it is shown to satisfy the property |J ( fε,n)| > 0 for all n ∈ N, uniformly in ε > 0.

4.1. The ε-Regularized Equation

The ε-regularization approach consists of solving the non-linear problem (1.1)
by adding ε > 0 to the denominator of �( f ), that is

∂t fε + ω · ∇x fε = −∇ω ·
(

fεν(ω · �ε)Pω⊥�ε

)
+ �ω fε,

�ε( fε)(x, t) := Jε( fε)(x, t)

|Jε( fε)(x, t)| + ε
,

Jε( fε)(x, t) =
∫

U×Sd−1
K (|x − y|)ω fε(y, ω, t) dy dω

fε(x, ω, 0) = f0(x, ω), x ∈ U, ω ∈ S
d−1, t > 0.

(4.1)

This new non-linear ε-problem is then solved by generating a sequence of
solutions fε,n to (3.5) with a bounded Fε,n := �ε( fε,n−1) for the previous iterated
solution fε,n−1.

In the sequel, we showfirst that it is possible to construct a sequence of solutions
fε,n converging to fε in L p(D×(0, T ))∩ L2(U ×(0, T ); H1(Sd−1)), 1 � p � ∞
for any ε > 0, so that the results remain true in the ε → 0 limit.

The details of this procedure are as follows.

4.2. Construction of Approximate Solutions

The construction of an (ε, n)-sequence of approximate solutions fε,n to the
non-linear ε-regularized Eq. (4.1) is now done by the following iteration scheme.
For any fixed ε > 0, set fε,0(x, ω, t) := f0(x, ω) to be the initial state associated
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with (1.1). Then, define fε,1 as the solution of the following linear initial value
problem:

∂t fε,1 + ω · ∇x fε,1 = −∇ω ·
(

fε,1ν(ω · �ε,0)Pω⊥�ε,0

)
+ �ω fε,1,

�ε,0(x, t) = Jε,0(x, t)

|Jε,0(x, t)| + ε
,

Jε,0(x, t) =
∫

U×Sd−1
K (|x − y|)ω fε,0(y, ω, t) dy dω

fε,1(x, ω, 0) = f0(x, ω).

Inductively, each fε,n+1 is defined to be the solution of the following linear initial
value problem:

∂t fε,n+1 + ω · ∇x fε,n+1 = −∇ω ·
(

fε,n+1ν(ω · �ε,n)Pω⊥�ε,n

)
+ �ω fε,n+1,

�ε,n(x, t) = Jε,n(x, t)

|Jε,n(x, t)| + ε
,

Jε,n(x, t) =
∫

U×Sd−1
K (|x − y|)ω fε,n(y, ω, t) dy dω

fε,n+1(x, ω, 0) = f0(x, ω).

(4.2)

The justification for the unique solvability of the (ε, n)-approximate initial value
problem (4.2), for n � 1, follows from the next lemma.

Lemma 4.1. For any T > 0, ε > 0, n � 1, assume that fε,n is a given integrable
function and that f0 satisfies (2.3). Then, there exists a unique solution fε,n+1 � 0
to the Eq. (4.2) satisfying the L p-estimates: for any 1 � p < ∞,

‖ fε,n+1‖L∞(0,T ;L p(D)) + 2(p − 1)

p
‖∇ω f

p
2

ε,n+1‖
2
p

L2(D×(0,T ))
� eCT p

p−1 ‖ f0‖L p(D),

(4.3)
and

‖ fε,n+1‖L∞(D×(0,T )) � eCT ‖ f0‖L∞(D). (4.4)

The proof of Lemma 4.1 follows the same argument as Degond’s proof in [6].
We include its proof in the Appendix for the reader’s convenience.

4.3. Passing to the Limit as n → ∞

The convergence of fε,n towards some limit function fε, which solves the
regularized Eq. (4.1), is secured by the following proposition.
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Proposition 4.1. For a given T > 0 and arbitrary ε > 0, if f0 satisfies (2.3), then
there exists a weak solution fε � 0 to Eq. (4.1) satisfying the L p-estimates: for
1 � p < ∞,

‖ fε‖L∞(0,T ;L p(D)) + 2(p − 1)

p
‖∇ω f

p
2

ε ‖
2
p

L2(D×(0,T ))
� eCT p

p−1 ‖ f0‖L p(D), (4.5)

and
‖ fε‖L∞(D×(0,T )) � eCT ‖ f0‖L∞(D). (4.6)

Proof. Since the sequence (�ε,n) defined in (4.2) is bounded in L∞(U × (0, T )),
we use Lemma 3.2 with Fε,n = �ε,n . Thus, there exists a limit function fε such
that, up to a subsequence,

fε,n → fε as n → ∞ in L p(D × (0, T )) ∩ L2
(

U × (0, T ); H1
(
S

d−1
))

,

Jε,n → Jε as n → ∞ in L p(U × (0, T )),

which yields

�ε,n → �ε := Jε

|Jε| + ε
as n → ∞ in L∞(0, T ; L p(D)).

Indeed,∫
U

|�ε,n − �ε|p dx

=
∫

U

∣∣∣∣ε(Jε,n − Jε) + |Jε|(Jε,n − Jε) + Jε(|Jε| − |Jε,n|)
(|Jε,n| + ε)(|Jε| + ε)

∣∣∣∣
p

dx

� 1

ε p

∫
U

∣∣∣∣ε(Jε,n − Jε) + |Jε|(Jε,n − Jε) + Jε(|Jε| − |Jε,n|)
|Jε| + ε

∣∣∣∣
p

dx

� C(ε)

∫
U

(
|Jε,n − Jε|p + |Jε,n − Jε|p + ||Jε,n| − |Jε||p

)
dx

� C(ε)

∫
U

|Jε,n − Jε|p dx .

Therefore, the limit fε satisfies the following weak formulation of (4.1): for all
φ ∈ C∞

c (D × [0, T )),
∫ t

0

∫
D

fε∂tφ + fεω · ∇xφ + fε Fε · ∇ωφ − ∇ω fε · ∇ωφ dx dω ds

+
∫

D
f0φ(0, ·) dx dω = 0,

Fε = ν(ω · �ε)Pω⊥�ε, �ε(x, t) = Jε(x, t)

|Jε(x, t)| + ε
.

In addition, using Lemma 3.1 together with the boundedness of �ε, above, the L p

estimates from (4.5) and (4.6) follow.
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4.4. Passing to the Limit as ε → 0

The proof of Theorem 2.1 is completed after showing the convergence from
(4.1) to (1.1) as 0 < ε → 0, in the weak sense. In fact, it is enough to show such a
limit for any convergent sequence 0 < εk → 0.

First, consider a sequence

Fk := Jεk

|Jεk | + εk
, Jεk =

∫
Sd−1

ω fεk dω.

Since such a sequence is bounded in L∞(U × (0, T )) uniformly in εk , Lemma 3.2
can be applied, so there exists a limit function f such that, up to a subsequence,

fεk → f as k → ∞ in L p(D × (0, T )) ∩ L2(U × (0, T ); H1(Sd−1)),

Jεk → J as k → ∞ in L p(U × (0, T )).
(4.7)

Next, in order to see that f is the weak solution to (1.1), it is enough to show
that f satisfies the weak formulation (2.5) as a limit of the following formulation
for (4.1):

∫ t

0

∫
D

fεk ∂tφ + fεk ω · ∇xφ + fεk ν

(
ω · Jεk

|Jεk | + εk

)
Pω⊥

Jεk

|Jεk | + εk
· ∇ωφ

− ∇ω fεk · ∇ωφ dx dω ds

+
∫

D
f0φ(0, ·) dx dω = 0,

for any φ ∈ C∞
c (D × [0, T )).

By the convergence of fεk in (4.7), clearly all linear terms in the above for-
mulation converge to their corresponding terms in (2.5). On the other hand, the
convergence of the nonlinear term requires further justification, which is provided
in the following Lemma.

Lemma 4.2. Assume that |J (x, t)| > 0, as in (2.2). Then, as k → ∞,
∫ t

0

∫
D

fεk ν

(
ω · Jεk

|Jεk | + εk

)
Pω⊥

Jεk

|Jεk | + εk
· ∇ωφ dx dω ds

−→
∫ t

0

∫
D

f ν

(
ω · J

|J |
)
Pω⊥

J

|J | · ∇ωφ dx dω ds. (4.8)

Proof. By the properties (2.9) of calculus on the sphere applied to the projection
operator, Pω⊥ is the identity operator acting on gradient functions of the sphere
S

d−1, that is, Pω⊥ · ∇ω� = ∇ω� holds for any test function � of w ∈ S
d−1. Then,

the limit as k → ∞ in (4.8) is identical to showing the analogous limit for the
formulation without the projection operator. That is, for k → ∞,

∫ t

0

∫
D

fεk ν

(
ω · Jεk

|Jεk | + εk

)
Jεk

|Jεk | + εk
· ∇ωφ dx dω ds

→
∫ t

0

∫
D

f ν

(
ω · J

|J |
)

J

|J | · ∇ωφ dx dω ds. (4.9)
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We first control the integrand in (4.9) using the estimates (4.6) and the bound-
edness of ν, so that there is a uniform constant C such that

∥∥∥∥ fεk ν

(
ω · Jεk

|Jεk | + εk

)
Jεk

|Jεk | + εk

∥∥∥∥
L∞(D×(0,T ))

� ‖ fεk ‖L∞(D×(0,T ))‖ν‖L∞ � C,

which implies, for some F , that

fεk ν

(
ω · Jεk

|Jεk | + εk

)
Jεk

|Jεk | + εk
⇀ F weakly − ∗ in L∞(D × (0, T )).

Then, it remains to show that

F = f ν

(
ω · J

|J |
)

J

|J | , on
{
(t, x, ω) ∈ (0, T ] × U × S

d−1 | |J (x, t)| > 0
}

.

In order to obtain this last identity, we consider the bounded set

X R,δ :=
{
(t, x, ω) ∈ (0, T ] × BR(0) × S

d−1 | |J (x, t)| > δ
}

,

where R and δ are any positive constants, and BR(0) denotes the ball in U , with
radius R, centered at 0.

Since fεk → f and Jεk → J almost everywhere on X R,δ by (4.7), then by
Egorov’s theorem, for any η > 0, there exists a Yη ⊂ X R,δ such that |X R,δ\Yη| < η

and

fεk → f, Jεk → J in L∞(Yη) ,

and so, for sufficiently large k,

|Jεk (x, t)| >
δ

2
for (x, t) ∈ Yη.

Therefore, the L∞(Yη) ε-convergence follows from

∥∥∥∥ Jεk

|Jεk | + εk
− J

|J |
∥∥∥∥

L∞(Yη)

=
∥∥∥∥ |J |(Jεk − J ) + J (|J | − |Jεk |) − εk J

(|Jεk | + εk)|J |
∥∥∥∥

L∞(Yη)

� 2

δ

∥∥∥∥ |J |(Jεk − J ) + J (|J | − |Jεk |) − εk J

|J |
∥∥∥∥

L∞(Yη)

� 2

δ

(‖Jεk − J‖L∞(Yη) + ‖|Jεk | − |J |‖L∞(Yη) − εk
)

→ 0,
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which yields∥∥∥∥ fεk ν

(
ω · Jεk

|Jεk | + εk

)
Jεk

|Jεk | + εk
− f ν

(
ω · J

|J |
)

J

|J |
∥∥∥∥

L∞(Yη)

=
∥∥∥∥ fεk

[
ν

(
ω · Jεk

|Jεk | + εk

)
− ν

(
ω · J

|J |
)]

Jεk

|Jεk | + εk

∥∥∥∥
L∞(Yη)

+
∥∥∥∥ fεk ν

(
ω · J

|J |
)(

Jεk

|Jεk | + εk
− J

|J |
)∥∥∥∥

L∞(Yη)

+
∥∥∥∥( fεk − f )ν

(
ω · Jεk

|Jεk | + εk

)
Jεk

|Jεk | + εk

∥∥∥∥
L∞(Yη)

� C‖ fεk ‖L∞(‖ν′‖L∞ + ‖ν‖L∞)

∥∥∥∥ Jεk

|Jεk | + εk
− J

|J |
∥∥∥∥

L∞(Yη)

+ C‖ fεk − f ‖L∞(Yη)‖ν‖L∞ → 0.

Hence, the following identity holds:

F = f ν

(
ω · J

|J |
)

J

|J | on Yη,

and, since η, R and δ are arbitrary, taking η, δ → 0 and R → ∞, it follows that

F = f ν

(
ω · J

|J |
)

J

|J | on
{
(t, x, ω) ∈ (0, T ] × U × S

d−1 | |J (x, t)| > 0
}

,

which completes the proof of Lemma 4.2.

Finally, thanks to lemma 4.2 and (4.7), it follows that f satisfies the weak
formulation (2.5). In addition, estimates (2.6) and (2.7) follow directly from (4.5)
and (4.6), respectively. Therefore, the proof of Theorem 2.1 is now completed.

5. Proof of Uniqueness: Theorem 2.2

The uniqueness argument is considered in the subclass Aα of weak solutions
constructed in Theorem 2.1. Let f and g be any weak solutions to the initial value
problem (1.1) in Aα . A straightforward computation yields that

1

2

d

dt

∫
Td×Sd−1

| f − g|2 dx dω +
∫
Td×Sd−1

|∇ω( f − g)|2 dx dω

= −
∫
Td×Sd−1

( f − g)∇ω ·
(

( f − g)ν(ω · �( f ))Pω⊥�( f )

)
dx dω

−
∫
Td×Sd−1

( f − g)∇ω ·
(

g(ν(ω · �( f )) − ν(ω · �(g)))Pω⊥�( f )

)
dx dω

−
∫
Td×Sd−1

( f − g)∇ω ·
(

gν(ω · �(g))Pω⊥(�( f ) − �(g))

)
dx dω

=: J1 + J2 + J3. (5.10)
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Using the same estimates applied to J1 in the proof of Lemma 3.2, we can also
estimate

J1 � 1

4

∫
Td×Sd−1

|∇ω( f − g)|2 dx dω + C
∫
Td×Sd−1

| f − g|2 dx dω.

Next, J2 and J3 can also be estimated by the same approach from (3.11) in
Lemma 3.2 to get

‖J ( f ) − J (g)‖L2(Td ) � C‖K‖L1(Td)‖ f − g‖L2(Td×Sd−1).

Moreover, since |J ( f )| � α in the set Aα , then the difference of alignment forces
for any two weak solutions is controlled by

|�( f ) − �(g)| �

∣∣∣∣|J (g)|(J ( f ) − J (g)) − J (g)(|J ( f )| − |J (g)|)
∣∣∣∣

α|J (g)|
� 2

α
|J ( f ) − J (g)| ,

which yields

‖�( f ) − �(g)‖L2(Td) � C‖ f − g‖L2(Td×Sd−1).

Therefore, by property (2.4) for any weak solution, the control of term J2 in (5.10)
follows from

J2 =
∫
Td×Sd−1

∇ω( f − g) · Pω⊥�( f )g(ν(ω · �( f )) − ν(ω · �(g))) dx dω

� ‖g‖L∞‖ν′‖L∞
∫
Td×Sd−1

|∇ω( f − g)||�( f ) − �(g)| dx dω

� 1

4

∫
Td×Sd−1

|∇ω( f − g)|2 dx dω + C
∫
Td×Sd−1

| f − g|2 dx dω.

Likewise, the control of the last term J3 in (5.10) follows, since

J3 � 1

4

∫
Td×Sd−1

|∇ω( f − g)|2 dx dω + C
∫
Td×Sd−1

| f − g|2 dx dω.

Hence, gathering the above estimates and using Gronwall’s inequality, we have

∫
Td×Sd−1

| f − g|2 dx dω � eCT
∫
Td×Sd−1

| f0 − g0|2 dx dω,

which implies the uniqueness of weak solutions to the initial value problem (1.1)
in Aα .
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6. Conclusion

We have shown the existence of global weak solutions to problem (1.1) (as well
for J , defined as in (1.2)) in a subclass of solutions with the non-zero local momen-
tum. These solutions are unique on the subclass of solutions in the d dimensional
torus whose mean speed is uniformly bounded below by a strictly positive constant.

An important future work would be to remove our assumption on the non-zero
local momentum. The main difficulty is due to the lack of momentum conserva-
tion for solutions to problem (1.1), and the canonical entropy associated with the
equation in (1.1). Thus, at this point, we have neither suitable functional spaces nor
distances to study the behavior of solutions whose momentum may vanish locally.
This difficulty is related to the issue of the stability of solutions to (1.1). Another
future work is to extend the uniqueness result to the whole spatial domain Rd .
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Appendix A. Proof of Lemma 4.1

For notational simplicity, we omit the subindex n + 1 in (4.2). Our goal is to prove
the existence of solutions f to the linear equation

∂t f + ω · ∇x f = −∇ω ·
(

f ν(ω · �̄)Pω⊥�̄

)
+ �ω f,

�̄ = J̄ (x, t)

| J̄ (x, t)| + ε
, J̄ (x, t) =

∫
D

K (|x − y|)ωg(y, ω, t) dy dω,

f (x, ω, 0) = f0(x, ω),

(7.1)

where g is just a given integrable function.
We begin by rewriting (7.1) as

∂t f + ω · ∇x f + ν(ω · �̄)Pω⊥�̄ · ∇ω f

+ f ν′(ω · �̄)|Pω⊥�̄|2 − (d − 1) f ν(ω · �̄)ω · �̄ − �ω f = 0,

f (x, ω, 0) = f0(x, ω),

(7.2)

where the formulas of (2.10) on projections and on calculus on the sphere were
used.
Next, taking f̄ (x, ω, t) := e−λt f (x, ω, t) for a given λ > 0 leads to the modified
initial value problem

∂t f̄ + ω · ∇x f̄ + ψ1 · ∇ω f̄ +
(

λ + ψ2 + ψ3

)
f̄ − �ω f̄ = 0,

f̄ (x, ω, 0) = f0(x, ω),

(7.3)
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where the functions ψ1, ψ2 and ψ3 are given by

ψ1(x, ω, t) = ν(ω · �̄)Pω⊥�̄,

ψ2(x, ω, t) = ν′(ω · �̄)|Pω⊥�̄|2,
ψ3(x, ω, t) = −(d − 1)ν(ω · �̄)ω · �̄ ,

respectively. Now, since |�̄| � 1, and the smooth function ν is bounded, then
ψ1, ψ2 and ψ3 are also bounded. Therefore, by J. L. Lions’ existence theorem in
[23], the existence of a solution for (7.3) follows from the same argument given by
Degond in [6]. That means equation (7.3) has a solution f̄ in the space

Y :=
{

f ∈ L2
(
[0, T ] × U ; H1

(
S

d−1
))

| ∂t f

+ω · ∇x f ∈ L2
(
[0, T ] × U ; H−1

(
S

d−1
))}

.

Furthermore, by Green’s formula, used in [6], the following identity holds: for any
f ∈ Y ,

〈∂t f + ω · ∇x f, f 〉 = 1

2

∫
D
(| f (x, ω, T )|2 − | f (x, ω, 0)|2) dx dω, (7.4)

where 〈·, ·〉 denotes the pairing of L2([0, T ] × U ; H−1(Sd−1)) and L2([0, T ] ×
U ; H1(Sd−1)).
This identity (7.4) is needed below to show the uniqueness of solutions f in Y as
follows.
Let f̄ ∈ Y be a solution to (7.3) with initial data f0 = 0. Then, by (7.4), it follows
that

0 = 〈∂t f̄ + ω · ∇x f̄ + ψ1 · ∇ω f̄ + (λ + ψ2 + ψ3) f̄ − �ω f̄ , f̄ 〉
= 1

2

∫
D

| f̄ (x, ω, T )|2 dx dω − 1

2

∫
D

∇ω · ψ1| f̄ |2 dx dω

+
∫

D
(λ + ψ2 + ψ3)| f̄ |2 dx dω +

∫
D

|∇ω f̄ |2 dx dω

�
(

λ − 1

2
‖∇ω · ψ1‖L∞([0,T ]×D) − ‖ψ2‖L∞([0,T ]×D)

− ‖ψ3‖L∞([0,T ]×D)

)∫
D

| f̄ |2 dx dω. (7.5)

Next, since

∇ω · ψ1 = ν′(ω · �̄)∇ω(ω · �̄) · Pω⊥�̄ + ν(ω · �̄)∇ω · Pω⊥�̄

= ν′(ω · �̄)|Pω⊥�̄|2 − (d − 1)ν(ω · �̄)ω · �̄,

the term ∇ω · ψ1 is bounded. Thus, choosing λ such that

λ >
1

2
‖∇ω · ψ1‖L∞([0,T ]×D) + ‖ψ2‖L∞([0,T ]×D) + ‖ψ3‖L∞([0,T ]×D), (7.6)
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estimate (7.5) yields f̄ = 0, which proves the uniqueness of the linear equation
(7.3). Therefore, (7.3) has a unique solution f̄ ∈ L2([0, T ] × U ; H1(Sd−1)).
Furthermore, since f0 � 0 and f0 ∈ L∞(D), by an argument similar to that in
(7.5),

f̄ � 0 and f̄ ∈ L∞([0, T ] × D).

Indeed, using the identity from [6] on any f ∈ Y , with f− := max(− f, 0):

〈∂t f + ω · ∇x f, f−〉 = 1

2

∫
D
(| f−(x, ω, 0)|2 − | f−(x, ω, T )|2) dx dω.

Then, since f−(x, ω, 0) = 0 when f0 � 0, it follows that

0 = 〈∂t f̄ + ω · ∇x f̄ + ψ1 · ∇ω f̄ + (λ + ψ2 + ψ3) f̄ − �ω f̄ , f̄−〉
= −1

2

∫
D

| f̄−(x, ω, T )|2 dx dω + 1

2

∫
D

∇ω · ψ1| f̄−|2 dx dω

−
∫

D
(λ + ψ2 + ψ3)| f̄−|2 dx dω −

∫
D

|∇ω f̄−|2 dx dω

� −
(

λ − 1

2
‖∇ω · ψ1‖L∞([0,T ]×D) − ‖ψ2‖L∞([0,T ]×D)

− ‖ψ3‖L∞([0,T ]×D)

) ∫
D

| f̄−|2 dx dω.

Using the same λ as in (7.6) yields f̄− = 0, which proves f̄ � 0.
The same argument also deduces that

‖ f̄ ‖L∞([0,T ]×D) � ‖ f0‖L∞(D).

Finally, using the transformation f (x, ω, t) = eλt f̄ (x, ω, t), the results hold for
solutions of (7.2) as well. In addition, since the f̄ properties are invariant under
such a transformation, then the proof of existence is completed, and estimates (4.3)
and (4.4) follow directly from Lemma 3.1 together with the boundedness of �̄.
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