HANDBOOK OF NUMERICAL ANALYSIS

VOLUME

Series Editors Q. Du, R. Glowinski, M. Hintermüller, E. Süli

Handbook of Numerical Methods for Hyperbolic Problems

Applied and Modern Issues

Volume Editors Rémi Abgrall and Chi-Wang Shu

NORTH-HOLLAND

Handbook of Numerical Analysis Volume 18

Handbook of Numerical Methods for Hyperbolic Problems

Applied and Modern Issues

Handbook of Numerical Analysis

Series Editors

Qiang Du

Columbia University, New York, United States of America

Roland Glowinski

University of Houston, Texas, United States of America

Michael Hintermüller

Humboldt University of Berlin, Germany

Endre Süli

University of Oxford, United Kingdom

Handbook of Numerical Analysis

Volume 18

Handbook of Numerical Methods for Hyperbolic Problems

Applied and Modern Issues

Edited by

Rémi Abgrall

Institut für Mathematik & Computational Science, Universität Zürich, Zürich, Switzerland

Chi-Wang Shu

Division of Applied Mathematics Brown University Providence, RI, United States

North-Holland is an imprint of Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2017 Elsevier B.V. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-444-63910-3

ISSN: 1570-8659

For information on all North-Holland publications visit our website at https://www.elsevier.com/

Publisher: Zoe Kruze

Acquisition Editor: Kirsten Shankland
Editorial Project Manager: Hannah Colford
Production Project Manager: Stalin Viswanathan

Cover Designer: Victoria Pearson Typeset by SPi Global, India

Contents

Cont Edito		ntors Introduction	xvi xvi	
1.		ut Cells: Meshes and Solvers . Berger	1	
	1 2 3 4 5	Introduction Brief Early History Mesh Generation Data Structures and Implementation Issues Finite Volume Methods for Cut Cells 5.1 Steady-State Solution Techniques 5.2 Explicit Time-dependent Solution Techniques 5.3 Viscous Flows Conclusions Exhowledgements	3 5 8 10 12 13 17 18 18	
2.	Inverse Lax-Wendroff Procedure for Numerical Boundary Treatment of Hyperbolic Equations			
	C.	-W. Shu and S. Tan		
	1	Introduction	24	
		Problem Description and Interior Schemes	27	
	3	Numerical Boundary Conditions for Static Geometry 3.1 One-Dimensional Scalar Conservation Laws:	28	
		Smooth Solutions 3.2 One-Dimensional Scalar Conservation Laws:	28	
		Solutions Containing Discontinuities	3	
		3.3 Two-Dimensional Euler Equations in Static Geometry	34	
	4	Moving Boundary Treatment for Compressible		
		Inviscid Flows	38	
	5	Numerical Results	42	
	6	Conclusions and Future Work	48	
	D	of a war a sac	4.0	

vi Contents

3.	Μ	ultidimensional Upwinding	53				
	Р.	Roe					
	1	Introduction	53				
	2	Why Multidimensional Methods?	57				
		2.1 Dimensional Splitting and One-Dimensional Upwinding	58				
	3		61				
	4	•	62				
	5	•	64				
	6	<u> </u>	65				
	7	Bicharacteristic Methods	67				
	8	Residual Distribution	69				
		8.1 The N Scheme	70				
		8.2 The NN Scheme	71				
		8.3 Systems of Equations	72				
		8.4 Unsteady Problems	72				
		8.5 Wave Models	73				
		8.6 Elliptic–Hyperbolic Splitting	73				
	9	The Poisson Formulas	75				
		9.1 Application to the Euler Equations	76				
	10	O .	78				
	Re	ferences	78				
4.	Bo	ound-Preserving High-Order Schemes	81				
		Xu and X. Zhang					
	1 Introduction						
	2	A Bound-Preserving Limiter for Approximation Polynomials	82 83				
	2	2.1 First-Order Monotone Schemes	83				
			03				
		2.2 The Weak Monotonicity in High-Order Finite Volume Schemes	84				
		2.3 A Simple and Efficient Scaling Limiter	86				
		2.4 SSP High-Order Time Discretizations	91				
		2.5 Extensions and Applications	92				
	3	Bound-Preserving Flux Limiters	93				
	•	3.1 Basic Idea and Framework	93				
		3.2 Decoupling for the Flux Limiting Parameters	95				
	4		97				
	Acknowledgements						
		ferences	98 98				
_	A -	numentatic Drocoming Cohomos for Military					
5.		symptotic-Preserving Schemes for Multiscale yperbolic and Kinetic Equations	103				
		Hu, S. Jin, and Q. Li					
	1	Introduction	104				
	2	Basic Design Principles of AP Schemes—Two					
		Illustrative Examples	105				

Contents

		2.1 The Jin–Xin Relaxation Model	105				
	_	2.2 The BGK Model	107				
	3	AP Schemes for General Hyperbolic and Kinetic Equations	110				
		3.1 AP Schemes Based on Penalization	111				
		3.2 AP Schemes Based on Exponential Reformulation	115				
	4	3.3 AP Schemes Based on Micro–Macro Decomposition	117				
	4	Other Asymptotic Limits and AP Schemes	118				
		4.1 Diffusion Limit of Linear Transport Equation	118				
		4.2 High-Field Limit	119				
		4.3 Quasi-Neutral Limit in Plasmas	120 121				
		4.4 Low Mach Number Limit of Compressible Flows4.5 Stochastic AP Schemes					
	5		122 123				
		knowledgements	123				
		ferences	123				
,		/ II Polo con I Colorono con I Podo Conservata					
6.		'ell-Balanced Schemes and Path-Conservative umerical Methods	131				
			131				
	M.	J. Castro, T. Morales de Luna, and C. Parés					
	1	132					
	2	Path-Conservative Numerical Schemes	138				
	3	Some Families of Path-Conservative Numerical Schemes	142				
		3.1 Godunov Method	142				
		3.2 Simple Riemann Solvers	142				
		3.3 Roe Methods	144				
		3.4 Functional Viscosity Matrix Methods	145				
		3.5 Other Path-Conservative Methods	148				
	4	High-Order Schemes Based on Reconstruction of States	148				
	5	Well-Balanced Schemes	151				
		5.1 Well-Balanced Property for SRSs	154				
		5.2 Well-Balanced HLL Scheme	155				
		5.3 Well-Balanced SRSs	156				
		5.4 Roe Method	156				
		5.5 Well-Balanced Functional Viscosity Matrix Methods	157				
		5.6 Generalized Hydrostatic Reconstruction	158				
		5.7 Well-Balanced Methods for a Subset of Stationary	1.00				
		Solutions	160				
	,	5.8 High-Order Well-Balanced Schemes	161 166				
	6	0					
		knowledgements	169				
	KE	ferences	169				
7.	A	Practical Guide to Deterministic Particle Methods	177				
	Α.	Chertock					
	1	Introduction	178				
	2	Description of the Particle Method	181				

viii Contents

		2.1 Particle Approximation of the Initial Data	182
		2.2 Time Evolution of Particles	183
		2.3 Particle Function Approximations	186
	3	Remeshing for Particle Distortion	190
		3.1 Particle Weights Redistribution	191
		3.2 Particle Merger—A Local Redistribution Technique	193
	4	Applications to Convection–Diffusion Equations	194
		4.1 Particle Methods for Convection–Diffusion	
		Equations	195
	Ac	cknowledgements	198
	Re	eferences	198
8.	O in	n the Behaviour of Upwind Schemes the Low Mach Number Limit: A Review	203
		. Guillard and B. Nkonga	
	1	Introduction	204
	2	The Multiple Low Mach Number Limits of the	204
	_	Compressible Euler Equations	205
		2.1 Incompressible Limit	205
		2.2 Acoustic Limit	207
		2.3 Acoustic–Incompressible Interactions	208
		2.4 Finite Volume Schemes	213
		2.5 The Diagnosis	215
		2.6 The Remedies	217
	3	Numerical Illustrations	221
		3.1 Order 1: Quadrangular Cartesian Grids	221
		3.2 Order 1: Vertex-Centred Triangular Meshes	223
		3.3 Order 1: Cell-Centred Triangular Meshes	224
		3.4 Order 2: Vertex-Centred Triangular Meshes	226
	4	Conclusion	228
	Re	eferences	228
9.	A	djoint Error Estimation and Adaptivity	
		or Hyperbolic Problems	233
		Houston	
	1	Introduction	234
	2	Error Representation for Linear Problems	235
	_	2.1 Abstract Framework	236
		2.2 Stabilized FEMs for the Linear Transport Equation	240
	3	A Posteriori Error Estimation	243
	4	Nonlinear Hyperbolic Conservation Laws	247
	5	Practical Implementation and Adaptive Mesh Refinement	251
		5.1 Numerical Approximation of the Dual Problem	251
		5.2 Adaptive Mesh Refinement	252
		5.3 Bibliographical Comments	253
	6	Applications	254
		6.1 Inviscid Flow Around a BAC3-11 Airfoil	254

Contents ix

		6.2 Criticality Problems	255
		6.3 Bifurcation Problems	255
	7	Concluding Remarks and Outlook	256
	Ac	knowledgements	258
	Re	ferences	258
4.0			0.00
10.		nstructured Mesh Generation and Adaptation	263
	Α.	Loseille	
	1	Introduction	264
		1.1 Outline	266
	2	An Introduction to Unstructured Mesh Generation	266
		2.1 Surface Mesh Generation	266
	_	2.2 Volume Mesh Generation	267
	3	Metric-Based Mesh Adaptation	269
		3.1 Metric Tensors in Mesh Adaptation	271
		3.2 Techniques for Enhancing Robustness and Performance	272
		3.3 Metric-Based Error Estimates	274
		3.4 Controlling the Interpolation Error	276
		3.5 Geometric Estimate for Surfaces	277
		3.6 Boundary Layers Metric	278
	4	Algorithms for Generating Anisotropic Meshes 4.1 Insertion and Collapse	280
		4.1 Insertion and Collapse4.2 Optimizations and Enhancement for Unsteady	280
		Simulations	282
	5	Adaptive Algorithm and Numerical Illustrations	283
	3	5.1 Adaptive Loop	284
		5.2 A Wing-Body Configuration	285
		5.3 Transonic Flow Around a M6 Wing	286
		5.4 Direct Sonic Boom Simulation	288
		5.5 Boundary Layer Shock Interaction	290
		5.6 Double Mach Reflection and Blast Prediction	294
	6	Conclusion	296
		ferences	297
11.		ne Design of Steady State Schemes	
	fo	r Computational Aerodynamics	303
	F.E	D. Witherden, A. Jameson, and D.W. Zingg	
	1	Introduction	304
	2	Equations of Gas Dynamics and Spatial Discretizations	305
	3	Time-Marching Methods	308
		3.1 Model Problem for Stability Analysis	
		of Convection Dominated Problems	308
		3.2 Multistage Schemes for Steady State Problems	309
		3.3 Implicit Schemes for Steady State Problems	312
		3.4 Acceleration Methods	318
		3.5 Multigrid Methods	323
		3.6 RANS Equations	327

x Contents

	4	Newton-Kryl	ov Methods	332
		4.1 Backgro		332
		4.2 Method	ology	335
		Conclusions		344
	Re	erences		345
12.	Sc	me Failure	s of Riemann Solvers	351
	R.	Abgrall		
	1	Introduction		351
	2	Real Gas Effe	ects	353
		2.1 Mixture		353
			ar Equation of State	355
	3	Multidimensi		356
		Accuracy Effe	ects	358
	Re	erences		360
13.	N	ımerical M	ethods for the Nonlinear	
			er Equations	361
		king		
		Overview		362
		Mathematica	l Model	363
	3	Numerical M	ethods	364
		3.1 Numerio	cal Methods for the Homogeneous Equations	364
			lanced Methods	368
		3.3 Positivit	y-Preserving Methods	374
	4		er-Related Models	377
		4.1 Shallow	Water Flows Through Channels	
		With Irr	egular Geometry	377
		4.2 Shallow	Water Equations on the Sphere	378
			ver Shallow Water Equations	379
	5	Conclusion R	Remarks	380
	Ac	knowledgeme	ents	380
	Re	erences		380
14.	Μ	axwell and	Magnetohydrodynamic Equations	385
	C.	D. Munz and	E. Sonnendrücker	
	1	Introduction		386
	2	Maxwell's Eq	uations	386
		2.1 The Mo		386
			ised Maxwell's Equations: Correcting the Fields	387
			n Grids: Finite Difference and Spectral	
		Method		389
		2.4 FV Sche		390
			inuous Galerkin Schemes	393
		2.6 Finite El	ement Methods	394

Contents xi

	3		netohydrodynamics	396
			The Model	396
		3.2	Discretization	397
			clusion	398
	Re	feren	ices	398
15.	D	eteri	ministic Solvers for Nonlinear Collisional	
	Ki	neti	c Flows: A Conservative Spectral Scheme	
	fo	r Bo	Itzmann Type Flows	403
	1.1	1. Ga	mba	
	1	Intro	oduction	404
		1.1	Kinetic Evolution Models	404
		1.2	Binary Collisional Models and Double Mixing	
			Convolution Forms	405
		1.3	Classical Elastic Collisional Transport Theory:	
			The Boltzmann Equation	408
		1.4	Deterministic Solvers for Integral Equations	
			of Boltzmann Type	409
	2	The	Landau and Boltzmann Operators Relation	
		Thro	ough Their Double Mixing Convolutional Forms	410
			The Grazing Collision Limit	413
	3	A Co	onservative Spectral Method for the Collisional Form	415
		3.1	Choosing a Computational Cut-Off Domain Ω_L	416
		3.2	, ,	418
		3.3	A Conservative Spectral Method for the	
			Homogeneous Boltzmann Equation	419
		3.4	Conservation Method—An Extended Isoperimetric	
			Problem	421
		3.5	Discrete in Time Conservation Method: Lagrange	
			Multiplier Method	425
	4		al Existence, Convergence and Regularity	
		for t	the Semidiscrete Scheme	426
		4.1	Local Existence	427
		4.2	Uniform Propagation of Numerical Unconserved Moments	428
		4.3	Uniform L_k^2 Integrability Propagation	429
		4.4	. 0 / 1 0	430
	5		l Comments and Conclusions	431
	Ac	know	vledgements	432
	Re	feren	ices	432
16.	Ν	ume	rical Methods for Hyperbolic Nets	
	ar	nd N	etworks	435
			ć, M.L. Delle Monache, B. Piccoli, JM. Qiu,	
			c, м.с. Dene монасне, в. Ріссон, јм. Qiu, Гатbača	
		-		
	1		oduction	436
	2	Exar	mples of Nets and Networks	437

xii Contents

		2.1 Examples of Hyperbolic Nets	438
		2.2 Examples of Hyperbolic Networks	446
	3	Numerics for Nets and Networks	450
		3.1 Finite Volume Methods	451
		3.2 Discontinuous Galerkin Methods	451
	Re	eferences	460
17.	Ν	umerical Methods for Astrophysics	465
	C.	Klingenberg	
	1	Introduction	466
	2	Astrophysical Scales for Astrophysical Phenomena	466
		2.1 Spatial Scales	466
		2.2 Density and Temporal Scales	466
	3	Equations Used in Astrophysical Modelling	467
		3.1 Source Terms	468
		3.2 Additional Force Terms	468
		3.3 Equation of State	469
	4	Numerical Methods	469
		4.1 Finite Difference Methods	469
		4.2 Finite Volume Methods	470
		4.3 Discontinuous Galerkin Method	471
		4.4 N-Body Method	472
		4.5 Grid-Free Method: Smoothed Particle	
		Hydrodynamics	472
	5	High-Performance Computing	473
	6	Astrophysical Codes	473
		Conclusion	475
		cknowledgement	475
	Re	eferences	475
18.	Ν	umerical Methods for Conservation Laws	
	W	/ith Discontinuous Coefficients	479
	S.	Mishra	
	1	Introduction	480
		1.1 Conservation Laws With Coefficients	481
	2	Motivating Examples	481
		2.1 Multiphase Flows in Porous Media	481
		2.2 Traffic Flow	482
		2.3 Other Examples of Scalar Conservation Laws With	1
		Discontinuous Flux	483
		2.4 Wave Propagation in Heterogeneous Media	484
		2.5 Systems of Conservation Laws With Singular	
		Source Terms	484
		2.6 Flows as Perturbations of Discontinuous	
		Steady States	485
	3	A Brief Review of Available Theoretical Results	485

Contents	xiii
----------	------

	4	Nun	merical Schemes	491
		4.1	Aligned Schemes	491
		4.2	Staggered Schemes	493
		4.3	Higher-Order Schemes	494
		4.4	Extensions and Other Approaches	495
	5	Nun	merical Experiments	496
		5.1	Numerical Experiment 1	496
		5.2		497
		5.3	Numerical Experiment 3	498
	6	Sum	nmary and Open Problems	500
	Ac	knov	vledgement	502
	Re	eferer	nces	502
19.			tainty Quantification for Hyperbolic	= -
	•		ns of Conservation Laws	507
	R.	Abgı	rall and S. Mishra	
	1	Intro	oduction	508
		1.1		509
		1.2	Uncertainty Quantification	510
	2	Ran	dom Fields and Random Entropy Solutions	511
		2.1	Modelling of Random Inputs	512
		2.2	1 /	514
	3		Method for UQ	515
		3.1	Generalized Polynomial Chaos	516
		3.2		51 <i>7</i>
		3.3		518
	4	Stoc	chastic Collocation Methods	520
		4.1	Standard Stochastic Collocation Method	520
		4.2	Stochastic Finite Volume Methods	521
	5	Mor	nte Carlo and Multilevel Monte Carlo Methods	524
		5.1	Monte Carlo Method	524
		5.2	Multilevel Monte Carlo Finite Volume Method	526
	6	Nun	merical Experiments	529
		6.1	Compressible Euler Equations	529
		6.2	Uncertain Orszag-Tang Vortex	530
		6.3	UQ for the Lituya Bay Mega-Tsunami	533
		6.4	A Random Kelvin-Helmholtz Problem	534
	7	Mea	asure-Valued and Statistical Solutions	536
	8	Con	nclusion and Perspectives	538
	Ac		vledgements	540
	Re	eferer	nces	540
20.			scale Methods for Wave Problems in	
			ogeneous Media	545
	Α.	Abd	ulle and P. Henning	
	1	Intro	oduction	546

xiv Contents

	2	Numerical Methods for the Wave Equation			
		in H	eterogeneous Media Without Scale Separation	549	
		2.1	Approach 1—Harmonic Coordinate Transformations	551	
		2.2	Approach 2—MsFEM Using Limited Global Information	553	
		2.3	Approach 3—Flux-Transfer Transformations	555	
		2.4	Approach 4—Localized Orthogonal Decomposition	558	
		2.5	The Case of General Initial Values: G-Convergence		
			and Perturbation Arguments	561	
	3	Nun	nerical Methods for the Wave Equation		
		in H	eterogeneous Media With Scale Separation	563	
		3.1	Effective Model and Numerical Homogenization		
			Method for Short-Time Wave Propagation	564	
		3.2	Effective Model and Numerical Homogenization		
			Method for Long-Time Wave Propagation	569	
	Acknowledgement				
	Re	feren	ices	574	
Index				577	

Contributors

Numbers in Parentheses indicate the pages on which the author's contributions begin.

- A. Abdulle (545), ANMC, Section de Mathématiques, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- R. Abgrall (351, 507), Institute of Mathematics, University of Zürich, Zürich, Switzerland
- S. Čanić (435), University of Houston, Houston, TX, United States
- M. Berger (1), Courant Institute, New York University, New York, NY, United States
- M.J. Castro (131), Universidad de Málaga, Málaga, Spain
- A. Chertock (177), North Carolina State University, Raleigh, NC, United States
- M.L. Delle Monache (435), Rutgers University—Camden, Camden, NJ, United States
- L.M. Gamba (403), The University of Texas at Austin, Austin, TX, United States
- H. Guillard (203), Université Côte d'Azur, Inria, CNRS, LJAD, France
- P. Henning (545), KTH Royal Institute of Technology, Stockholm, Sweden
- P. Houston (233), School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- J. Hu (103), Purdue University, West Lafayette, IN, United States
- A. Jameson (303), Stanford University, Stanford, CA, United States
- S. Jin (103), University of Wisconsin-Madison, Madison, WI, United States
- C. Klingenberg (465), Institut für Mathematik, Universität Würzburg, Würzburg, Germany
- Q. Li (103), University of Wisconsin-Madison, Madison, WI, United States
- A. Loseille (263), INRIA Saclay-Ile de France, France
- S. Mishra (479, 507), Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland
- T. Morales de Luna (131), Universidad de Córdoba, Córdoba, Spain
- C.-D. Munz (385), Institute for Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart, Germany
- B. Nkonga (203), Université Côte d'Azur, Inria, CNRS, LJAD, France
- C. Parés (131), Universidad de Málaga, Málaga, Spain
- B. Piccoli (435), Rutgers University—Camden, Camden, NJ, United States

xvi Contributors

- J.-M. Qiu (435), University of Houston, Houston, TX, United States
- P. Roe (53), University of Michigan, Ann Arbor, MI, United States
- C.-W. Shu (23), Brown University, Providence, RI, United States
- E. Sonnendrücker (385), Max-Planck Institute for Plasma Physics; Mathematics Center, TU Munich, Garching, Germany
- J. Tambača (435), University of Zagreb, Zagreb, Croatia
- S. Tan (23), Brown University, Providence, RI, United States
- F.D. Witherden (303), Stanford University, Stanford, CA, United States
- Y. Xing (361), University of California Riverside, Riverside, CA, United States
- Z. Xu (81), Michigan Technological University, Houghton, MI, United States
- X. Zhang (81), Purdue University, West Lafayette, IN, United States
- D.W. Zingg (303), University of Toronto Institute for Aerospace Studies, Toronto, ON, Canada

Editors' Introduction

R. Abgrall* and C.-W. Shu[†]

*Institut für Mathematik, Universität Zürich, Zürich, Switzerland †Brown University, Providence, RI, United States

These two volumes represent the volumes 17 and 18 of Handbook of Numerical Analysis. It is entirely devoted to the numerical methods designed for approximating the solution of hyperbolic equations, or of equations that write as a sum of operators where the most important, in terms of the behaviour of the solution, is the hyperbolic one. An example is the Navier–Stokes equations with high Reynolds number where the solution behaviour is essentially dictated by the hyperbolic operator (here the Euler system), except in boundary layers because of the boundary conditions.

Hyperbolic partial differential equations appear often in applications. The most important application, already mentioned, is fluid dynamics, including specific flows such as multiphase flows, magnetohydrodynamics, water waves, etc. Other application areas include Maxwell equations, kinetic equations, traffic flow models and networks, etc. The solutions of hyperbolic partial differential equations often involve discontinuities, making mathematical analysis and numerical simulations difficult. In the past few decades there has been a large amount of literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. The current volumes attempt to have experts in different types of algorithms write concise summaries so that the readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.

This is a formidable task. We had to make choices because the field has grown tremendously since the early ages dating back to von Neumann in the United States and researchers from the former Soviet Union such as Rusanov and Godunov. This field has grown up for various reasons. The demand on diverse high tech areas ranging from airplanes and rockets, to the nuclear and car industries as well as more recently the green industry, to name just a few, necessitates to master better and better tools to improve performance. If it was possible in the early ages to rely on analytical solutions and experimental facilities only, this is no longer the case because of various constraints: economical, technological (weight, etc.), energy consumption, etc. This evolution has needed improved algorithms, i.e., more and more

xviii Editors' Introduction

accurate as well as more and more robust ones. Hence the research on algorithm has grown up and then exploded since the early 1970s.

In parallel, and also triggered by the same needs, computers have been more and more powerful from scalar, to vectors, then parallel and now massively parallel and hybrid architectures. This evolution of technology has also had a strong impact on the algorithms development.

Because of its success, it is now possible to compute more and more complicated problems, both in terms of geometry and physics.

There is still a lot to do to improve and understand the numerical methods designed for hyperbolic problems. The aim of these two volumes is to give a picture of the current state of the art.

In order to introduce the subject, we have asked Professor Dafermos from Brown University to provide a short summary on the theory of hyperbolic equations. Then, if one looks at the table of content, one would realize that we have tried to cover not only the classical topics, such as the finite volume method and the Riemann solvers that are the building blocks of many of the algorithms, but also less standard methods. Examples include algorithms for computing sharp transition propagated by linearly degenerate waves. Other examples are given by the ENO/WENO family. In that case we have tried to go over the classical description, by giving some analysis of the methods. Other high-order methods are also considered such as the discontinuous Galerkin (DG) ones, the more recent hybrid DG schemes, high-order finite element methods, front-tracking methods, methods for Lagrangian hydrodynamics, entropy stable schemes, etc. Time discretisation is also considered, as well as more specialized problems like the simulation of flows with low Mach numbers, level set techniques, numerical methods for Hamilton–Jacobi equations, etc.

Unfortunately, it is not possible, even in two quite thick volumes, to provide an exhaustive coverage of the state of the art. Even though the table of content seems to be exhaustive, many topics are still missing. For example, we have chosen to be quite restrictive on the subject of time stepping: there is no coverage on ADER and IMEX methods. The handling of problems with source terms is touched by chapters 5 and 6 (well-balanced schemes and asymptotic-preserving schemes), but there is no direct coverage on stiff source terms. If we have a chapter on methods for Cartesian meshes, there is no direct coverage on the application of immersed boundary methods. Similarly we have chosen to consider the problem of meshing in a specific way; there is no direct coverage on adaptive mesh refinement (AMR). The problem on boundary conditions is considered in chapter 2 this volume (volume 18) and chapter 19 previous volume (volume 17) of the handbook (SAT-SPB schemes and inverse Lax-Wendroff procedure), but much more could have been said. It was simply impossible to cover the whole field, and we apologize for this.

To end this introduction, we would like to thank all the contributors to these volumes, as well as the referees. Both have been extremely efficient.

Editors' Introduction xix

ACKNOWLEDGEMENTS

R.A. has been supported in part by SNF grant # 200021_153604. C.-W.S. has been supported in part by NSF grant DMS-1418750.

Chapter 15

Deterministic Solvers for Nonlinear Collisional Kinetic Flows: A Conservative Spectral Scheme for Boltzmann Type Flows

I.M. Gamba

The University of Texas at Austin, Austin, TX, United States

Chapter Outline

_	mapter Gutimie			
1	Introduction	404	3.3 A Conservative Spectral	
	1.1 Kinetic Evolution Models	404	Method for the	
	1.2 Binary Collisional Models		Homogeneous Boltzmann	
	and Double Mixing		Equation	419
	Convolution Forms	405	3.4 Conservation Method—An	
	1.3 Classical Elastic Collisional		Extended Isoperimetric	
	Transport Theory:		Problem	421
	The Boltzmann Equation	408	3.5 Discrete in Time	
	1.4 Deterministic Solvers for		Conservation Method:	
	Integral Equations		Lagrange Multiplier	
	of Boltzmann Type	409	Method	425
2	The Landau and Boltzmann		4 Local Existence, Convergence	
	Operators Relation Through		and Regularity for the	
	Their Double Mixing		Semidiscrete Scheme	426
	Convolutional Forms	410	4.1 Local Existence	427
	2.1 The Grazing Collision		4.2 Uniform Propagation of	
	Limit	413	Numerical Unconserved	
3	A Conservative Spectral Method		Moments	428
	for the Collisional Form	415	4.3 Uniform $\boldsymbol{L}_{\boldsymbol{k}}^2$ Integrability	
	3.1 Choosing a Computational		Propagation	429
	Cut-Off Domain Ω_L	416	4.4 Uniform Semidiscrete H_k	
	3.2 Fourier Series, Projections		Sobolev Regularity	
	and Extensions	418	Propagation	430

5 Final Comments and Acknowledgements 432 Conclusions 431 References 432

ABSTRACT

We present an overview of deterministic solvers for the Boltzmann and Landau equations inspired by their Fourier space representation as weighted convolutional forms, where the later can be obtained as a grazing collision limit of the former. This presentation offers an introduction to the area and elaborates on recent results for conservative spectral Lagrangian schemes applied to several applications ranging from homogeneous flows for Coulomb potentials given by the Landau equation by an approximating of a corresponding Boltzmann model with grazing transition scattering rates, to a full conservative approach for Vlasov-Poisson-Landau system for electron-ion dynamics. This conservative method is enforced by a Lagrangian constrained optimization problem that and conservation correction estimates that give place to semidiscrete error estimates and long-time convergence to statistical equilibrium states given by Maxwellians distributions.

Keywords: Nonlinear integral equations, Rarefied gas flows, Boltzmann and Landau Fokker Plank equations, Deterministic numerical approximations to kinetic equations, Conservative spectral methods

2010 MSC: 45E99, 35A22, 76X05, 76P05, 82C05, 65C20, 65C30

1 INTRODUCTION

Kinetic Evolution Models 1.1

The numerical solutions of kinetic evolution transport given by integral equations of Boltzmann type needs the underlying understanding of the problem to be approximated: the evolution of a probability density function usually described by a Hamiltonian particle transport encountering interactions. Thus, before we discuss different aspects of deterministic solvers for such models, we introduced the basic notions associated to kinetic transport evolution models.

Our starting point is to recall that complex particle model systems with exchangeability properties yield the propagation of chaos property, that is, the particle system can be models by the evolution of independent and identically distributed (iid) continuous random variables or probability density measures. These models appear in many contexts of classical and quantum statistical physics, and more recently in novel applications to social dynamics of multiagent interactions defined by some multiplicatively interacting stochastic processes. The models we shall be considered share is a unified general framework of material transport dynamics can be derived from the so-called *Master Equations* derived for the time evolution of a particle system modelled as being in exactly one of the countable number of admissible states at any given time, where switching between states are treated probabilistically when interactions occur. Such evolution is described by associating a probability density of states through discrete or continuous random variables. Interactions may be of "mean field" type when macroscopic forces depending on, either particle distribution averages, or particles of the same kind usually refer as collisions. Typical examples of "mean field" type interactions result in the so-called collisionless systems of transport models such as Vlasov-Poisson or Vlasov–Maxwell systems for plasma dynamics of charged particles.

However, when interactions due to *collisions* occur and the "switching" of states are described by a time-independent operator, the model represents a kinetic evolution and the process is Markovian. Such process may also include birth and death rates, meaning that probability density is injected in (birth) or taken away from (death) the system, and so the process is not in equilibrium. Examples of such models are the transport dynamics of classical kinetic collisional transport given by Boltzmann or Landau-Fokker-Plank type equations that may include mean field interactions to obtain a Vlasov-Poisson or Vlasov–Maxwell collisional plasma transport system (Chapman and Cowling, 1970; Graham and Méléard, 1999).

Binary Collisional Models and Double Mixing Convolution 1.2 **Forms**

Rigorous justification of the propagation of chaos or Stosszahlansatz relies on contemporary ergodic theory and related areas in probability theory (Chapman and Cowling, 1970; Pulvirenti et al., 2014). We assume here its validity, implying that the system of N-particle interactions can be reduced to a closed form involving products of a single point probability density function (pdf) denoted by f(x, v, t) solving a nonlocal, linear or multilinear structure in state space defined by $v \in \mathbb{R}^n$. In the case of binary interactions such pdf satisfies the following nonlocal weak form

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^d} f(x, v, t) \varphi(v) \mathrm{d}v := \int_{\mathbb{R}^d} Q(f, f)(x, v, t) \varphi(v) \mathrm{d}v$$

$$= \kappa \int_{\mathbb{R}^d \times \mathbb{R}^d} f(x, v, t) f(x, v - u, t) \left(\int_{\Omega} (\varphi(v') - \varphi(v)) B(u, \sigma) \mathrm{d}\sigma \right) \mathrm{d}u \mathrm{d}v$$
(1)

where the $u = v - v_*$ is the relative position for any interacting states pairs (v, v_*) changing into (v', v'_*) , for v fixed and v' determined by an interaction law with $v' = v'(v, v_*, \sigma)$ and $v'_* = v'_*(v, v_*, \sigma)$, with arbitrary $\sigma \in \Omega$ a manifold that determines the postcollisional relative position $u' = v' - v'_*$, for an arbitrary state $v_* \in \mathbb{R}^n$. Such manifold is the sphere S^{n-1} when the interaction correspond to particles characterized by indistinguishable spheres interacting by conserving centre of mass and local energies. The parameter κ quantifies the scaled mean free path in between interactions, and it is assumed to be or oder of unity in rarefied regimes. The material derivative d/dt refers to the Lagrangian formulation of Hamiltonian dynamics of mixing (x, y) states, as in classical to particle plasma physics, and they are viewed as the divergence-free dynamics of space-momentum mixing. The corresponding interacting pairs transition probability rates from (v, v_*) to (v', v'_*) are quantified by the collision kernel $B(u, \sigma)$. This equation is nonlocal and linear in the case when f(x, v - u, t) is replaced by a know probability density. Thus, we define the Kac Master equation formulation as a double mixing convolution structure

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} f(x, v, t) \varphi(v) \, \mathrm{d}v = \int_{\mathbb{R}^d} Q(f, f)(x, v, t) \, \varphi(v) \mathrm{d}v \tag{2}$$

$$= \kappa \int_{\mathbb{R}^d \times \mathbb{R}^d} f(x, v, t) f(x, v - u, t) G_{\varphi, B}(u, v) du dv.$$
 (3)

The weight function $G_{\varphi,B}(u,v)$ is a mixing form of premixing and postmixing positions in v-space that depends only on the state variable v and its relative position state u. This weight function models the σ -average of the interaction on the Ω manifold, i.e.

$$G_{\varphi,B}(u,v) = \int_{\Omega} (\varphi(v') - \varphi(v)) B(v,u,\sigma) d\sigma, \tag{4}$$

that depends on the σ -average of the test function φ on the exchange law of states multiplied to the transition probability interaction rates $B(u, \sigma)$. These weight functions $G_{\varphi,B}(u,v)$ are often nonlinear and encode most of the information about, not only, the dynamics of interactions but also the regularity of the solution to such equation as much the decay rate to equilibrium states. More precisely,

- (1) The interaction law $v' = v'(v, v_*, \sigma)$; $v'_* = v'_*(v, v_*\sigma)$, microreversible or not, determines the space of *collision invariants*: all those $\varphi(v)$) that nullify the weight function $G_{\varphi,B}(u, v)$. These collision invariants select the properties of the stationary states.
- (2) Propagation of chaos assumption and time irreversibility: decorrelation before the next interaction is encoded in the difference $\varphi(v') - \varphi(v)$ of the weight function and presets stability for the flow. In particular, when the interaction is microreversible and the transition probability rate function $B(u, \sigma)$ has symmetric properties consistent with such microreversibility, then setting $\varphi(v) = \log f(v)$, the monotonicity of the logarithmic function yields the H-theorem (Cercignani et al., 1994)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^{N}} f(x, v, t) \log(v) \, \mathrm{d}v \int_{\mathbb{R}^{d}} Q(f, f)(x, v, t) \log(v) \, \mathrm{d}v$$

$$= \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f(x, v, t) f(x, v - u, t) \left[\int_{\Omega} (\log(v') - \log(v)) B(v, u, \sigma) \, \mathrm{d}\sigma \right] \mathrm{d}u \, \mathrm{d}v \le 0.$$
(5)

In the particular case of elastic interactions conserving centre of mass and local energy, both items (1) and (2) imply that the only stationary state is a Gaussian distribution in v-space, called the equilibrium Maxwellian distribution, defined by the moments corresponding to the collision invariants associated with the initial data $f_0(v) \ge 0$ for a.e. $v \in \mathbb{R}^d$ and $\int_{\mathbb{R}^d} f_0(v) (1+|v|^2) \, \mathrm{d}v < \infty$. In the limit as $t \to +\infty$, we expect that f(v,t) converges to the *equilibrium Maxwellian* distribution, i.e.

$$f(t,v) \to M[m_0, u_0, T_0](v) := m_0 (2\pi T_0)^{-d/2} \exp\left(-\frac{|v - u_0|^2}{2T_0}\right),$$
 (6)

where, if $m_0 > 0$ is the density mass, and the *moments or observables* are defined by

$$m_0 := \int_{\mathbb{R}^d} f_0(v) \, dv, \quad u_0 := \frac{1}{m_0} \int_{\mathbb{R}^d} f_0(v) \, dv, \quad T_0 := \left(dm_0 \right)^{-1} \int_{\mathbb{R}^d} \left| v - u_0 \right|^2 f_0(v) \, dv$$

while f(v, t) = 0 for a.e. $(v, t) \in \mathbb{R}^d \times \mathbb{R}^+$ if $m_0 = 0$. The quantities m_0, u_0 and T_0 are the density mass, mean and variance, associated to probability density f(v, t).

- (3) The transition probability interaction rate operator $B(u, \sigma)$, or *collision kernels*, encodes not only regularity but also quantitative properties of solutions, as well as decay rates to equilibrium. For example, in the classical particle physics dynamics case, the dependence of $|u| = |v v_*|$ relates to intermolecular potentials rates between pairs of interacting particles. In addition, the dependence on σ encodes the rate of collisions depending on the direction of the phase variables before and after the interaction.
- (4) The double mixing convolution structure is changed into a weighted convolution by the Fourier transform: We observed in Gamba and Tharkabhushanam (2009) that if the interaction law satisfies that the post–pre difference of states v'-v depends only on the relative variable $u=v-v_*$ and σ , i.e., $v'-v=\omega(u,\sigma)$ (like in most particle systems of elastic or inelastic interactions) then, when testing the collisional integral with $\varphi(v)=\exp(-iv\cdot\zeta)$ in (1) and (2), it yields an identity for the Fourier transformed equation just in the v-variable, classically defined by $\hat{\cdot}$ (ζ) = $\mathcal{F}_{v\to\zeta}(f(v))(\zeta)=(2\pi)^{d/2}\int_{\mathbb{R}^d}e^{-i\zeta\cdot v}f(v)\mathrm{d}v$, to obtain

$$\hat{Q}(f,f)(\zeta) = \frac{1}{(\sqrt{2\pi})^d} \int_{\mathbb{R}^d} e^{-i\zeta \cdot v} Q(f,f)(v) dv = \kappa \int_{\mathbb{R}^d} \mathcal{F}(f(v)f(v-\mathbf{u}))(\zeta) \mathcal{G}_B(\zeta,u) du$$
with the weight function $\mathcal{G}_B(\zeta,u) = \int_{\sigma \in \Omega} [e^{-i\frac{1}{2}\zeta \cdot \omega(u,\sigma)} - 1] B(u,\sigma) d\sigma.$
(7)

Consequently, $\hat{Q}(f,f)(\zeta)$ is also a weighted convolution of $\hat{f}(\zeta)$. In particular, the Boltzmann evolution in Fourier space is

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{f}(\zeta) = \hat{Q}(f,f)(\zeta) = \kappa \int_{\xi \in \mathbb{R}^d} \hat{G}_B(\zeta,\xi) \hat{f}(\xi) \hat{f}(\xi - \zeta) \mathrm{d}\xi \quad \text{with} \quad \hat{G}_B(\zeta,\xi) = \mathcal{F}_{u \to \xi} \mathcal{G}_B(\zeta,u).$$

Remark. Both $\mathcal{G}_B(\zeta,u)$ and $\hat{G}_B(\zeta,\xi)$ can be viewed as symbol of the multilinear integral operator (as the analogue to symbols of PDE's).

Classical Elastic Collisional Transport Theory: The Boltzmann Equation

Eqs. (1) and (2) are exactly the weak (or Maxwell) formulation of the collisional Boltzmann equation for elastic, inelastic interaction or collisional dynamics given by

$$v' = v + \frac{\beta}{2}(|u|\sigma - u) \text{ and } v'_* = v - \frac{\beta}{2}(|u|\sigma - u) \text{ with relative velocity } u = v - v_*,$$

$$B(u,\sigma) = |u|^{\lambda} b(\hat{u} \cdot \sigma), \text{ with } d < \lambda \le 1, \quad \hat{u} = \frac{u}{|u|} \text{ and}$$

$$\cos \theta = \frac{(\hat{u},\sigma)}{|u|}, \text{ with } \theta \text{ the scattering angle, } 1/2 < \beta \le 1,$$

$$(9)$$

with the scattering direction $\sigma = u'/|u|$ the scattering direction given by the postcollisional relative velocity u'. The classical elastic case if for $\beta = 1$ (i.e. local energy conservation). In particular $v' - v = \frac{\beta}{2}(|u|\sigma - u) = \omega(u, \sigma)$.

In addition, a standard assumption is that the space dynamics in between the interactions evolve according to Hamiltonian dynamics for the evolving pair in x-space/v-phase space given by (x(t), v(t), position and velocity,respectively, when

$$\dot{x} = \partial_{\nu} H(x, \nu), \text{ and } \dot{\nu} = -\partial_{x} H(x, \nu)$$
 (10)

we have the following classical dynamics of rarefied transport associated to the Liouville equation in between interactions and the collisional or interacting nonlocal form given by the Masters equation framework, written in strong form.

Two important cases in the space inhomogeneous setting are binary and linear interactions, discussed next.

(i) The nonlinear Boltzmann transport equation for binary interactions: modelling monoatomic gases corresponds to binary collisional forms with Hamiltonian dynamics (10) between interactions defined for f = f(x, v, t), written in strong form, is

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f = Q(f, f)(x, v, t)$$

$$= \kappa \int \int_{(u, \sigma) \in \mathbb{R}^{d} \times S^{d-1}} B_{\lambda}(|u|, \hat{u} \cdot \sigma) \left[J_{\beta} f(x, v, t) f(x, v - u, t) - f(x, v, t) f(x, v - u, t) \right] d\sigma du$$
(11)

with $B_{\lambda}(|u|, \hat{u} \cdot \sigma) = |u|^{\lambda} b(\hat{u} \cdot \sigma)$ with $-d < \lambda \le 1$, where 'v denotes a precollisional state with respect to v. The term $J_{\beta} = \frac{\partial(v, v_*)}{\langle v, v_* \rangle}$ is the Jacobian of the "post" to "pre"-variable transformation and $|J_1| = 1$. The angular function $b(\hat{u} \cdot \sigma) = b(\cos \theta)$ may or may not be an integrable function on the sphere S^{d-1} . If integrable, i.e., $\int_{S^{d-1}} b(\hat{u} \cdot \sigma) d\sigma < K$, we will say it satisfies the Grad cut-off assumption.

(ii) The linear Boltzmann equation (Forward Kolmogorov equation): The strong formulation of linear evolution of f = f(x, k, t), a pdf, given by

$$D_{t}f = Q(f)(x,k,t) = \int S_{k,k'}(k \leftarrow k')f'dk' - f(x,k,t) \int S_{k',k}(k' \leftarrow k)dk'. \quad (12)$$

When the Hamiltonian dynamics are included, as for the case of charged transport with a repulsive potential $\Phi(x, t)$, this linear (12) models the dynamics of electron transport along an electronic band energy surface $\varepsilon(k)$ given by the Hamiltonian $H = \varepsilon(k) - \Phi(x)$ according to (10). It yields the material derivative

$$D_{t}f = \partial_{t}f + \frac{1}{\hbar}\partial_{k}\varepsilon(k) \cdot \partial_{x}f + \frac{1}{\hbar}\partial_{x}\Phi(x,t) \cdot \partial_{k}f$$
 (13)

corresponding to $\vec{x} = \frac{1}{\hbar} \partial_k \varepsilon(k)$ and $\vec{v} = \frac{1}{\hbar} \partial_x \Phi(\vec{x}) = -\frac{q}{\hbar} \vec{E}(k,t)$. In addition, the potential function Φ , with its corresponding electric field qE(x, t) = $-\partial_x \Phi(x, t)$, takes into account mean field effects of the total system, and is determined by the Poisson equation for charges. The band energy function $\varepsilon(k)$ is an eigenvalue of the Bloch decomposition associated to the quantum crystallographic calculation. These equations model hot electron collisional transport along divergence-free surfaces ($\varepsilon(k)$, $\Phi(x,t)$) in nanoscale semiconductor devices where magnetic forces are negligible.

Both types of collisional models, nonlinear (i) and linear (ii), appear in problems that range from electron/hole transport in a crystal lattice with a linear collisional transport (Cheng et al., 2009, 2012; Morales Escalante and Gamba, 2016; Morales-Escalante et al., 2015), to classical gas dynamics problems (Aoki et al., 1993; Aristov, 2001; Bobylev et al., 2000; Brilliantov and Pöschel, 2004; Chapman and Cowling, 1970; Gamba and Tharkabhushanam, 2009, 2010; Gamba et al., 2004; Munafo et al., 2014; Sone, 2007); to flow of self-interacting particle systems, network dynamics in social, economic and information systems (Bobylev et al., 2009; Duffie et al., 2009; Ringhofer, 2010).

Deterministic Solvers for Integral Equations of Boltzmann Type

In recent years, there has been a development of deterministic solvers for kinetic transport equations, whole first high-dimensional simulations were performed by Monte Carlo sampling methods for particle systems (Bird, 1994). There are essentially three alternatives to Monte Carlo approach for the computation of the Boltzmann equation: conservative finite element methods, conservative Spectral-Lagrangian methods and discrete velocities methods (DVM). Recent references for the conservative spectral methods can be found in Alonso et al. (2016) and Cheng et al. (2009). While in this review presentation we shall focus mostly on the conservative spectral method for nonlinear binary interactions, the linear collisional transport as in the case of collisional plasma simulations for semiconductor transport or Vlasov-Poisson-Maxwell dynamics can be performed by discontinuous Galerkin schemes, where conservation and positivity propagation is achieved by enhancing basis functions for conservation and reconstruction fluxes for positivity. This is possible for linear collisional forms that have only one conserve quantity: density mass. See this type of work in Cheng et al. (2009, 2012), Morales-Escalante et al. (2015), Morales Escalante and Gamba (2016) and references therein.

The propagation of numerical positivity for a probability distribution function f(v, t) defined in all v-space while having its numerical mass, mean and variance preserved for each time step remains a very difficult task. The available reconstruction methods for conservation while preserving positivity propagation that worked so well in the Vlasov-Boltzmann equation for linear interactions (Cheng et al., 2012) fail to work in the nonlinear collisional setting as they yield overdetermined systems of discrete equations with no available solutions to guaranty such properties.

THE LANDAU AND BOLTZMANN OPERATORS RELATION THROUGH THEIR DOUBLE MIXING CONVOLUTIONAL FORMS

The binary interaction problem is the focus of the rest of this chapter. Its particular conservation and positivity propagation involves the preservation of several averaged quantities that are difficult to approximate while keeping the approximate solution positive throughout the flow computational time. Our goal is to present a method for numerically solve the Boltzmann equation with a constrained minimization problem that secures the d + 2 collision invariants conservation property and converge to the unique equilibrium Maxwellian characterized by the moments of initial state $f_0(v)$.

The Landau–Fokker–Plank equation (Landau, 1937; Landau and Lifschitz, 1980) is a limiting model for the Boltzmann equation used to describe binary elastic collisions (9) that only result in very small deflections of particle trajectories. Such limit is necessary in the case for Coulomb potentials of the form $|u|^{-3}$, where the classical formulation of the Boltzmann operator is not well posed. However, without loss of generality, one can consider the general form of a potential $|u|^{\lambda}$, with $-3 \le \lambda \le 1$ in the grazing collision regime. In particular, the strong form of the Landau–Fokker–Planck equation, written in 3 - d (omitting the variables x and t for simplicity), is

$$\partial_{t}f(v) = Q_{L}(f,f)(v)$$

$$= \kappa \operatorname{div}_{v} \left(\int_{\mathbb{R}^{3}} |u|^{\lambda+2} \left(I - \frac{u \otimes u}{|u|^{2}} \right) (f(v-u)\nabla_{v}f(v) - f(v)(\nabla_{v}f)(v-u)) du \right)$$

$$= \kappa \operatorname{div}_{v} \left(\mathcal{D}_{ij}(v)\nabla_{v}f(v) - \mathcal{E}_{i}f(v) \right), \tag{14}$$

with
$$\mathcal{D}_{ij}(v) := \int_{\mathbb{R}^3} |u|^{\lambda+2} \left(I - \frac{u \otimes u}{|u|^2}\right) f(v-u) du$$
 and $\mathcal{E}_i(v) = \int_{\mathbb{R}^3} |u|^{\lambda+2} \left(I - \frac{u \otimes u}{|u|^2}\right) (\nabla_v f)(v-u) du$.

Written in weak form, this operator is a double mixing convolution

$$\int_{\mathbb{R}^{3}} Q_{L}(f,f)\phi(v)dv$$

$$= \kappa \int_{\mathbb{R}^{6}} f(v)f(v-u) \left(-4|u|^{\lambda} u \cdot \nabla \phi + |u|^{\lambda+2} \left(I - \frac{u \otimes u}{|u|^{2}} : D^{2} \phi \right) \right) dvdu, \tag{15}$$

with a local weight function $G_L(u,v) = \left(-4|u|^{\lambda}u \cdot \nabla \phi + |u|^{\lambda+2}\left(I - \frac{u \otimes u}{|u|^2} : D^2\phi\right)\right).$

Its Fourier transform takes the form of the weighted convolution (Gamba and Haack, 2014)

$$\hat{Q_L}(f,f)(\zeta) = \kappa \int_{\mathbb{R}^3} \mathcal{F}\{f(v)f(v-u)\}(\zeta) \left(4i|u|^{\lambda}(u\cdot\zeta) - |u|^{\lambda+2}|\zeta^{\perp}|^2\right) du, \quad (16)$$

where $\zeta^{\perp} = \zeta - (\zeta \cdot u)/|u|^2 u$, the orthogonal component of ζ to u. Thus, the corresponding representation with weight function $\mathcal{G}_L(u,\zeta)$, as in (7), is now given by the local functions in (u,ζ) -space, the weight function is $\mathcal{G}_L(u,\zeta) = |u|^{\lambda} (4i(u \cdot \zeta) - |u|^2 |\zeta^{\perp}|^2)$.

Applying the Fourier transform to the difference of the Boltzmann (1), (9), (11) and Landau operators (1) and (16), as done in Gamba and Haack (2014), yields the difference of *weighted convolutions*

$$(\hat{Q}_B - \hat{Q}_L)(f, f)(\zeta) = \int_{u \in \mathbb{R}^3} (\mathcal{G}_B(\zeta, u) - \mathcal{G}_L(\zeta, u)) \, \mathcal{F}(f(v)f(v - u))(\zeta) \, \mathrm{d}u, \quad (17)$$

where $\mathcal{G}_B(\zeta,u)$ is represented in (7) for the case of classical elastic interactions, with an angular dependence of $\sigma \in S^2$. Considering a collision cross section that separates in a potential part depending on powers of $|\mathbf{u}|$ and an angular part $b(\hat{u} \cdot \sigma)$, yields

$$\mathcal{G}_{B}(\zeta, u) = \int_{\sigma \in S^{2}} \left[e^{-i\frac{1}{2}\zeta \cdot \omega(u, \sigma)} - 1 \right] |u|^{\lambda} b(\hat{u} \cdot \sigma) d\sigma, \text{ with } v' - v = \frac{1}{2} (|u|\sigma - u).$$

$$\tag{18}$$

In order to be able to handle the approximation analysis and actual computations it is necessary to perform the following fundamental decomposition for spherical integrations of the weight function $\mathcal{G}_{\sigma}(\zeta,u)$, associated to the Fourier transform of the Boltzmann collision operator. This decomposition is done splitting the "polar" direction to the relative velocity u parametrized by the θ -angular parameter, and the corresponding azimuthal direction integration parametrized by a ϕ -angular parameter. The weight function $\mathcal{G}_{\sigma}(\zeta,u)$ form in (18) can be written as

$$\mathcal{G}_{B}(\zeta, u) = 2\pi |u|^{\lambda} \int_{0}^{\pi} b_{\varepsilon}(\cos \theta) \sin \theta \left(e^{i\frac{1}{2}(1-\cos \theta)\zeta \cdot u} J_{0}\left(\frac{|u|\sin \theta|\zeta^{\perp}|}{2}\right) - 1 \right) d\theta, \tag{19}$$

with J_0 is the 0th Bessel function of first kind (see Abramowitz and Stegun, 1964, 9.2.21).

Remark. This formulation of the collisional integral does not separate the gain and loss terms. Cancellation potential singularity is possible in the grazing collision limit where the states v and v' are infinitesimally closed.

Defining σ with a pole in the direction of u, parametrized by $\sigma = \cos \theta \frac{u}{|u|} + \frac{u}{|u|}$ $\sin\theta\omega$, $\omega \in S^{d-2}$,

$$\mathcal{G}_{B}(\zeta,u) = |u|^{\lambda} \int_{0}^{\pi} \int_{S^{d-2}} b(\cos\theta) \sin\theta \left(e^{i\frac{1}{2}(1-\cos\theta)\zeta \cdot u} e^{-i\frac{1}{2}|u|\sin\theta(\zeta \cdot \omega)} - 1 \right) d\theta d\omega.$$
(20)

In the relevant case d=3, the right-hand side of (20) can be written (see Gamba and Haack, 2014 for the calculation)

$$2\pi |u|^{\lambda} \int_{0}^{\pi} b(\cos\theta) \sin\theta \left(e^{i\frac{1}{2}(1-\cos\theta)\zeta \cdot u} J_{0}\left(\frac{|u|\sin\theta|\zeta^{\perp}|}{2}\right) - 1 \right) d\theta. \tag{21}$$

The isotropic case when $b(\cos\theta)$ is constant, ζ can be used instead of u as the polar direction for σ , and so the weight (20) is a sinc-function (Gamba and Tharkabhushanam, 2009).

Finally, let \widehat{G}_b be the Fourier transform of G_b . By symmetry, \widehat{G}_b is real valued. Then, the convolution weights $\hat{G}_b(\zeta, \xi)$ from (8), written in 3 – d, where the integration with respect to u is performed in spherical coordinates $(r, \eta) \in \mathbb{R}^+ \times S^2$,

$$\begin{split} \hat{G}_b(\xi,\zeta) &= 2\pi \int_{\mathbb{R}^3} |u|^{\lambda} e^{-i\xi \cdot u} \int_0^{\pi} b(\cos\theta) \sin\theta \left[e^{\frac{i\zeta}{2} \cdot u(1-\cos\theta)} J_0\left(\frac{1}{2}|u||\zeta^{\perp}|\sin\theta\right) - 1 \right] \mathrm{d}\theta \mathrm{d}u \\ &= 2\pi \int_0^{\infty} \int_{\mathbb{S}^2} r^{\lambda+2} \int_0^{\pi} b(\cos\theta) \sin\theta \left[e^{-ir(\xi-\frac{\zeta}{2}(1-\cos\theta)) \cdot \eta} J_0\left(\frac{1}{2}r|\zeta^{\perp}|\sin\theta\right) - e^{-ir\xi \cdot \eta} \right] \\ &\quad \times \mathrm{d}\theta \mathrm{d}\eta \mathrm{d}r. \end{split}$$

Taking γ the polar angle with respect to ζ direction for the integration in

$$\hat{G}_{b}(\xi,\zeta) = 4\pi^{2} \int_{0}^{\infty} r^{\lambda+2} \int_{0}^{\pi} \int_{0}^{\pi} b(\cos\theta) \sin\theta \sin\gamma J_{0}\left(r \left| \xi - \frac{\xi \cdot \zeta}{|\zeta|^{2}} \zeta \right| \sin\gamma\right) \\
\times \left[\cos\left(r(\xi - \frac{\zeta}{2}(1 - \cos\theta)) \cdot \frac{\zeta}{|\zeta|} \cos\gamma\right) J_{0}\left(\frac{1}{2}r|\zeta| \sin\gamma \sin\theta\right) \\
-\cos\left(r\xi \cdot \frac{\zeta}{|\zeta|} \cos\gamma\right)\right] d\theta d\gamma dr,$$
(22)

This function can be precomputed. This is the actual weight in the weighted convolutional form in Fourier space (8).

The Grazing Collision Limit 2.1

This identity (21) developed in Gamba and Haack (2014) is used to get a detailed expansion of $e^{-i\frac{1}{2}\zeta \cdot (|u|\sigma - u)} - 1$ in powers of $\zeta \cdot (|u|\sigma - u)$, combined with the grazing collisions ansatz of short-range cut-off potentials such as of Rutherford-type potential satisfying the following properties (Villani, 1998): the family of angular kernels $b_{\varepsilon}(\theta) = c_{\varepsilon} b(\theta) 1_{\theta \geq \varepsilon}$, for $\varepsilon > 0$, satisfy

G1.
$$\int_{S^2} b(\hat{u} \cdot \sigma) d\sigma$$
 unbounded but $\lim_{\epsilon \to 0} 4\pi \int_0^{\pi} b_{\epsilon}(\cos \theta) \sin^2 \frac{\theta}{2} \sin \theta d\theta = \Lambda_0 < \infty$.

G2.
$$\int_0^{\pi} b_{\varepsilon}(\cos \theta) (1 - \cos \theta)^{2+k} \sin \theta d\theta \to 0 \text{ for } k \ge 0,$$
G3.
$$b_{\varepsilon}(\theta) \to 0 \text{ uniformly on } \theta > \theta_0; \forall \theta_0 > 0;$$

G3.
$$\theta_{\varepsilon}(\theta) \to 0$$
 uniformly on $\theta > \theta_0$; $\forall \theta_0 > 0$;

We note that the elastic interaction relation (9) implies $|v'-v|^2 = |u|^2 \sin^2 \frac{\theta}{2}$, yielding an angular singularity cancellation by means of the grazing collision ansatz G1. The constant c_{ε} depends on the singularity of the angular function $b(\theta)$ and $c_{\varepsilon} \to 0$ and $\varepsilon \to 0$. Hence conditions G2 and G3 indicate the interaction is "grazing", meaning that, as $\varepsilon \to 0$, then because of the cut-off $\theta \to 0$ and so $v \approx v_*$.

A δ , ε -family of admissible angular singularities: In the sequel, we consider the d=3 dimensional space. Introducing ε and δ reference parameters, in the notation of the ε -grazing and δ -singular angular function $b_{\varepsilon}^{\delta}(\cos\theta)\sin^{d-2}\theta$, define the functions $H_{\delta}(x)$ as the antiderivative from the area differential of the angular part of the differential cross section as follows

$$\begin{split} b_{\varepsilon}^{\delta}(\hat{u}\cdot\sigma)\mathrm{d}\sigma &= -\frac{1}{2\pi H_{\delta}(\sin(\varepsilon/2))} \frac{1}{\sin^{4+\delta}(\theta/2)} \sin(\theta) \mathbf{1}_{\theta \geq \varepsilon} \, \mathrm{d}\theta \mathrm{d}\omega \\ &= -\frac{4}{2\pi H_{\delta}(\sin(\varepsilon/2))} \frac{1}{x^{1+\delta}} \frac{1}{x^{2}} \, \mathbf{1}_{x \geq \sin(\varepsilon/2)} \mathrm{d}x \mathrm{d}\omega \,, \end{split} \tag{23}$$

for $x = \sin(\theta/2)$. Thus, equating the last term above to the right-hand side of relation (21), one can explicitly calculate $H_{\delta}(x)$ as the antiderivative of $x^{-(1+\delta)}$, to obtain

$$H_{\delta}(x) = -\frac{x^{-\delta}}{\delta}$$
, for $\delta > 0$ and $H_0(x) = \log x$, for $\delta = 0$; (24)

where the choice of the exponent δ must satisfy condition G3, for $H_{\delta}(x)$.

Finally, an expansion of the weight $\mathcal{G}_{b_{\varepsilon}^{\delta}}(u,\zeta)$ as calculated in (21), which recovers an ε and $\sin(\theta/2)$ free term, labelled $\mathcal{G}_L(u,\zeta)$ in Gamba and Haack (2014), so that the following theorem holds

Theorem 1. Assume that f_{ε}^{δ} satisfies

$$|\mathcal{F}\{f_{\varepsilon}^{\delta}(\mathbf{v},t)f_{\varepsilon}^{\delta}(\mathbf{v}-\mathbf{u})\}(\zeta)| \leq \frac{A(\zeta,t)}{1+|\mathbf{u}|^{3+a}},\tag{25}$$

with $A(\zeta,t)$ uniformly bounded by $k(1+|\zeta|)^{-3}$, k constant, and a>0. Moreover, assume the angular scattering cross section $b_{\varepsilon}^{\delta}(\cos\theta)\sin\theta^{d-2}$ satisfies conditions G1, G2 and G3 with H_{δ} from (24), with $0 \leq \delta < 2$, and $\lambda = -3$. Then, the rate of convergence from the Boltzmann with grazing collisions to the Landau collision operator is given by

$$\|\widehat{Q_L}(f_{\varepsilon}^{\delta}, f_{\varepsilon}^{\delta}) - \widehat{Q_{b_{\varepsilon}^{\delta}}}(f_{\varepsilon}^{\delta}, f_{\varepsilon}^{\delta})\|_{L^{\infty}} \leq O\left(\frac{\left|1 + (\left|\log\left(\sin\left(\varepsilon/2\right)\right)\right| - 1\right) 1_{\{\delta = 1\}}\right|}{|H_{\delta}(\sin\left(\varepsilon/2\right))|}\right) \rightarrow_{\varepsilon \to 0} 0.$$
(26)

The proof of this statement can be found in Gamba and Haack (2014), but basically consists in showing

$$\mathcal{G}_{\sigma}(u,\zeta) = \mathcal{G}_{L}(u,\zeta) + O(b_{\varepsilon}) \text{ and } \int_{\mathbb{R}^{d}} O(b_{\varepsilon}) \mathcal{F}(f(v)f(v-u))(\zeta) du \to_{\varepsilon \to 0} 0, \quad (27)$$

if $|\mathcal{F}\{f_{\varepsilon}^{\delta}(\mathbf{v},t)f_{\varepsilon}^{\delta}(\mathbf{v}-\mathbf{u})\}(\zeta)|$ satisfies conditions (25), uniformly in time. This estimate will ensure the asymptotics of solutions to the Boltzmann equation for Coulombic interactions in the grazing collision limit to solutions of the Landau equation. It is important to observe that the rate of decay in ε depends on the choice of the angular singularity in b_{ε}^{δ} . In addition, it is numerically observed different entropy decay rates to equilibrium depending on the singularity strength measure by δ in the angular function $b_{\varepsilon}^{\delta}(\hat{u}\cdot\sigma)\sin^{d-2}\theta$.

The numerical implementations of a comparison of the Boltzmann equation for grazing collision limits and the corresponding reduced Landau equation were extensively performed in Gamba and Haack (2014). The conservative spectral method (see Sections 3 and 4) was implemented, where the weight function (22) was precomputed. Numerical simulations of such comparisons for different cross sections are in Fig. 1.

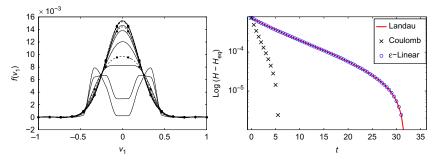


FIG. 1 Comparisons of solutions to Boltzmann using Rutherford cross section (Villani, 1998) and to Landau equations. Left: Slice of the distribution marginal function at times t = 0, 9, 36,81, 144, 225, 900. Solid lines: Spline reconstruction of Landau equation solution. Dashed lines with solid circles: Spline reconstruction of Boltzmann equation. $\varepsilon = 10^{-4}$, N = 16. Right: Convergence of entropy to equilibrium: Log of entropy decay for Boltzmann solution with the Rutherford cross section (24) with $\delta = 0$ with crosses, and with ε -linear cross section with $\delta = 1$ with circles, and Landau solution with solid curve. N = 16, $\varepsilon = 10^{-4}$. When calculating the entropy H, we exclude grid points where the distribution is negative. From Gamba, I.M., Haack, J.R., 2014. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit. J. Comput. Phys. 270, 40–57.

A CONSERVATIVE SPECTRAL METHOD FOR THE COLLISIONAL FORM

The following approach and its approximation analysis and error estimates for the solutions to the Cauchy problem Boltzmann equation were introduced in Alonso et al. (2016), Gamba and Tharkabhushanam (2009) and Gamba and Tharkabhushanam (2010) inspired by the work in Bobylev and Rjasanow (1999) and Pareschi and Russo (2000). We present here a short version of the strategy to be used. We recall the definition of the Lebesgue's spaces $L_k^p(\Omega)$ and the Hilbert spaces $H_k^\alpha(\Omega)$ for a measurable set Ω (for the purpose of this discussion without loss of generality Ω is either $(-L, L)^d$ or \mathbb{R}^d most of the time.)

$$L_k^p(\Omega) := \left\{ f : \|f\|_{L_k^p(\Omega)} := \left(\int_{\Omega} \left| f(v) \langle v \rangle^k \right|^p \mathrm{d}v \right)^{\frac{1}{p}} < \infty \right\}, \text{ with } p \in [1, \infty), \ k \in \mathbb{R},$$

$$H_k^{\alpha}(\Omega) := \left\{ f : \|f\|_{H_k^{\alpha}(\Omega)} := \left(\sum_{\beta \leq \alpha} \|D^{\beta} f\|_{L_k^{\alpha}(\Omega)}^2 \right)^{\frac{1}{2}} < \infty \right\}, \text{ with } \alpha \in \mathbb{N}^d, \ k \in \mathbb{R},$$

where $\langle v \rangle := \sqrt{1 + |v|^2}$. The standard definition is used for the case $p = \infty$,

$$L_k^{\infty}(\Omega):=\left\{f:\|f\|_{L_k^{\infty}(\Omega)}:=\operatorname{esssup}\left|f(v)\langle v\rangle^k\right|<\infty\right\}, \text{ with } k\in\mathbb{R}.$$

It will be commonly used the following shorthand to ease notation when the domain Ω is clear from the context

$$\|\cdot\|_{L_{t}^{p}(\Omega)} = \|\cdot\|_{L_{t}^{p}} = \|\cdot\|_{p,k},$$

and the subindex k will be omitted in the norms for the classical spaces L^p and H^{α} . What follows is short presentation of the extended work in Alonso et al. (2016).

Choosing a Computational Cut-Off Domain Ω_I 3.1

Because the computation of this problem entices to numerically solve the evolution of a probability distribution function defined in the whole \mathbb{R}^d -space, it is relevant to discuss the choice of a computational cut-off domain in such a way that the numerical error for the flow evolution is negligible regarding this choice of computational window. This discussion is actually independent of the choice computational scheme and applies to existing as well new approaches such as the recently developed in Zhang and Gamba (2016). The following result is rigorous and applied to the Boltzmann equation for hard potentials, that is (11) with $1 \ge \lambda > 0$. Hence, for any f(v, t) solution of the elastic homogeneous Boltzmann equation lying in $C(0,T;H^{\alpha}(\mathbb{R}^d))$, with a given initial state $f(v,0) = f_0(v) \in H^{\alpha}(\mathbb{R}^d)$. A natural question to ask is: can one secure the propagation of regularity and tail decay for the solution of the Boltzmann problem, uniformly in time? What are good functional spaces for probability distribution functions that are solutions of the Boltzmann flow problem? These questions have been recently addressed in Bobylev et al. (2004) and Gamba et al. (2009) and provide an answer in a suitable form for any computational approach of the space homogeneous elastic Boltzmann equation.

To address this problem, we introduce the following notation for exponentially weighted integrable functions. Define

$$L^{1}_{(r,2)}(\mathbb{R}^{d}) := \left\{ g : \|g\|_{L^{1}_{(r,2)}} := \int_{\mathbb{R}^{d}} |g(y)| \, e^{r|y|^{2}} \mathrm{d}y < \infty \right\}, \text{ with } r > 0,$$
 (28)

and analogous definition for the spaces $L^p_{(r,2)}(\mathbb{R}^d)$ with $p \in (1,\infty]$. These functional spaces are comprise of nonnegative elements in $L^1_{(r,2)}(\mathbb{R}^d)$ that are Gaussian (or Maxwellian) weighted regular probability densities, meaning that the probability density g not only has all its moments bounded but also grow as the moments of a Gaussian distribution. That also means the probability density g(y) decays like $e^{-r|y|^2}$ with rate r for large |y| in the sense of L^1 . In particular, one may view r^{-1} as the corresponding Gaussian or Maxwellian *tail* temperature of the density.

The following rigorous result was obtained for the elastic homogenous Boltzmann initial value problem (Gamba et al., 2009) that shows if $f_0(v) \in L^1_{(r_0,2)}(\mathbb{R}^d)$, then solution $f(v,t) \in L^1_{(r,2)}(\mathbb{R}^d_v)$, for some $0 < r \le r_0$, uniformly in t, where r only depends on a number k'-moments of the initial state f_0 , with k' > 2, as well as on the scattering kernel B (i.e. on the potential rate λ and the angular function $b(\hat{u} \cdot \sigma)$). In addition, if the angular cross section satisfies $b(\hat{u}\cdot\sigma)\in L^{1+}(\mathbb{S}^{d-1})$, then the propagation of $f(v,t)\in L^{\infty}_{(\bar{r},2)}(\mathbb{R}^d)$, with $0 < \bar{r} \le r \le r_0$, for all time t > 0 was also shown in Gamba et al. (2009), provided the initial data $f_0(v) \in L^{\infty}_{(r_0,2)}(\mathbb{R}^d)$. As a consequence, for any given initial state $f_0 \in L^1_{\omega^2|v|^2}(\mathbb{R}^d)$ or $f_0 \in L^\infty_{\omega^2|v|^2}(\mathbb{R}^d)$, there exists a rate $\beta = \beta(k'(f_0), \lambda, b)$, for which these exponentially weighted L^1 and L^{∞} norms propagate uniformly in time.

This propagation property secures a stable numerical simulation of the Boltzmann equation, provided the numerical preserving the conservation laws or corresponding collision invariants hold. This property yields the convergence to the analytic solution of the initial value problem and its long-time behaviour converges to the equilibrium Maxwellian, as defined in (6). In fact we showed that it is sufficient to choose the domain $\Omega_L = (-L, L)^d$ large enough such that, at least, most of the mass and energy of the solution f will be contained in it throughout the simulation. One possible strategy for choosing the size of the simulation domain is as follows: assume without loss of generality a bounded initial datum f_0 with compact support and having zero momentum $\int f_0 v = 0$. Then,

$$f_0(v) \le C_0 m_0 (2\pi T_0)^{-d/2} e^{-\frac{r_0|v|^2}{2T_0}},$$
 (29)

where $m_0 := \int f_0 dv$ is the initial mass, $T_0 := \int f_0 |v|^2 dv$ is the initial temperature, and $r_0 \in (0, 1]$ and $C_0 \ge 1$ are the stretching and dilating constants. The aforementioned analytical results secure that for some $r := r(f_0, \lambda, b) \in (0, r_0]$ and $C := C(f_0, \lambda, b) \ge 1$

$$f(t,v) \le C_0 m_0 (2\pi T_0)^{-d/2} e^{-\frac{r|v|^2}{2T_0}} =: M(f_0,C,r), \ t > 0.$$

A simple criteria to pick the segment length L of the simulation domain Ω_L are to ensure that most of the mass and kinetic energy (or variance) of f will remain in it throughout the numerical simulation. In other words, we want that, for some small number $\mu << 1$,

$$\int_{\Omega_{r}^{c}} f(v,t) \langle v \rangle^{2} dv \leq \int_{\Omega_{r}^{c}} M(f_{0},C,r) \langle v \rangle^{2} dv \leq \mu \int_{\Omega_{r}} f_{0}(v) \langle v \rangle^{2} dv = \mu (m_{0} + T_{0}).$$

where μ is chosen to be understood as a domain cut-off error tolerance that remains uniform in time and solely depends on the initial state and Ω_L . Equivalently, one needs to choose the size of L, or equivalently the measure of Ω_L , such that

$$(m_0 + T_0)^{-1} \int_{\Omega_r^c} M(f_0, C, r) \langle v \rangle^2 dv \le \mu \approx 0$$
(30)

In order to minimize the computation effort, one should pick the smallest of such domains, that is, $\Omega_{L*} = \min \{L > 0 : \text{supp}(f_0) \subset \Omega_L, \Omega_L^c \text{ satisfaces}(30) \}.$

The choice of μ in (30) depends on the knowledge of precise values for the constants C and r not so easy to determine for a generic initial data, Hence, in order to avoid overestimating the size of Ω_L , the simulation domain, it is best to set $r_0 = r = 1$ and choose $C = C_0 \ge 1$ as the smallest constant satisfying (29) (which always exists for any compactly supported and bounded f_0), and set

$$\max \left\{ f_0, \, m_0 \, (2\pi T_0)^{-d/2} \, e^{-\frac{|v|^2}{2T_0}} \right\} \leq M(f_0, C, 1),$$

with equality if and only if f_0 is the equilibrium Maxwellian as in (6) (in such a case C = 1). Then the use of classical Normal Table for log-normal distributions yields the error μ incurred in the simulation as a function of the chosen Ω_L , uniformly in time, for any simulation of the Boltzmann collisional model homogeneous in x-space.

Remark. In this deterministic approach, as much as with Monte Carlo methods like the Bird scheme (Bird, 1994), the x-space inhomogeneous Hamiltonian transport for nonlinear collisional forms is performed by time operatorsplitting algorithms. That means, depending on the problem, the computational v-domain Ω_L can be updated with respect to the characteristic flow associated to underlying Hamiltonian dynamics.

3.2 **Fourier Series, Projections and Extensions**

In the implementation of any spectral method the single most important analytical tool is the Fourier transform defined by $\hat{f}(\zeta) := (2\pi)^{d/2} \int_{\mathbb{R}^d} f(v) e^{-i\zeta \cdot v} dv$, defined for any $f \in L^1(\mathbb{R}^d)$. Our goal is to approximate the collisional form in Fourier space, given by the weighted convolution in Fourier space (8), by making use on the approximant Fourier series in a rather simple and convenient way. Indeed, fixing a domain of work $\Omega_L := (-L, L)^d$ for L > 0, recall that for any $f \in L^2(\Omega_L)$ the Fourier series of f, denoted from now on by f_L is given by $f_L \sim 1/((2L)^d) \sum_{k \in \mathbb{Z}^d} \hat{f}_L(\zeta_k) e^{i\zeta_k \cdot \nu}$, where $\zeta_k := \frac{2\pi k}{I}$ are the spectral modes and $\hat{f}_L(\zeta_k)$ is the Fourier transform of f_L evaluated in such modes.

Next, define the operator $\Pi^N: L^2(\Omega_L) \to L^2(\Omega_L)$ as

$$\left(\Pi^{N} f_{L}\right)(v) := f_{L}^{\Pi}(v) = \left(\frac{1}{(2L)^{d}} \sum_{|k| \le N} \hat{f}_{L}(\zeta_{k}) e^{i\zeta_{k} \cdot v}\right) \mathbf{1}_{\Omega_{L}}(v), \tag{31}$$

that is, the *orthogonal projection* on the "first N" basis elements and see that for any integer α the derivative operator commutes with the projection operator. In Ω_L

$$\partial^{\alpha} (\Pi^{N} f_{L})(v) = \left(\frac{1}{(2L)^{d}} \sum_{|k| \le N} \widehat{\partial^{\alpha} f}(\zeta_{k}) e^{i\zeta_{k} \cdot v} \right) \mathbf{1}_{\Omega_{L}}(v) = (\Pi^{N} \partial^{\alpha} f)(v). \tag{32}$$

The Parseval's theorem implies $\|\Pi^N f_L\|_{L^2(\Omega_L)} \le \|f_L\|_{L^2(\Omega_L)}$ for any N; and $\|\Pi^N f_L - f_L\|_{L^2(\Omega_I)} \setminus 0$ as $N \to \infty$. Because of the decay properties described in the procedure of choosing the computational domain Ω_L , we can avoid the expected aliasing effect for a classical Fourier approximation by series by using the classical extension theorem in Sobolev spaces as follows.

3.2.1 The Extension Operator

For fixed $\alpha_0 \geq 0$ we introduce the *extension operator* $E: L^2(\Omega_L) \to L^2(\mathbb{R}^d)$ such that $E: H^{\alpha}(\Omega_L) \to H^{\alpha}(\mathbb{R}^d)$ holds for any $\alpha \leq \alpha_0$. The construction of such operator (Stein, 1970) is well known having the following properties:

- **E1.** Linear and bounded, with $||Ef||_{H^{\alpha}(\mathbb{R}^d)} \leq C_{\alpha} ||f||_{H^{\alpha}(\Omega_L)}$ for $\alpha \leq \alpha_0$.
- **E2.** Ef = f a.e. in Ω_L . Furthermore, denoting f^{\pm} the positive and negative parts of f one has $(Ef)^{\pm} = Ef^{\pm}$, a.e. in \mathbb{R}^d .
- E3. Outside Ω_L the extension is constructed using a reflexion of f near the boundary $\partial \Omega_L$. Thus, for any $\delta \geq 1$ we can choose an extension with support in $\delta\Omega_L$, the dilation of Ω_L by δ , and $\|Ef\|_{L^p(\delta\Omega_L\setminus\Omega_L)}\leq C_0$ $||f||_{L^p(\Omega_L\setminus\delta^{-1}\Omega_L)}$ for $1\leq p\leq 2$, where the constant C_0 is independent of the support of the extension.
- **E4.** In particular, properties E2 and E3 imply that for any $\delta \geq 1$, there is an extension such that $\| Ef \|_{L_{t}^{p}(\mathbb{R}^{d})} \le 2C_{0}\delta^{2k} \| f \|_{L_{t}^{p}(\Omega_{L})}$ for $1 \le p \le 2, k \ge 0$.

The case $\delta = 1$ is only possible using an extension by zero, that is, when $(Ef)(v) = f(v)1_{\Omega_t}(v)$, and so α_0 is restricted to zero.

A Conservative Spectral Method for the Homogeneous **Boltzmann Equation**

After the cut-off domain Ω_L has been fixed, the projection operator is applied to both sides of Eq. (8) to obtain

$$\frac{\partial \Pi^N f}{\partial t}(v,t) = \Pi^N Q(f,f)(v,t), \text{ in } (0,T] \times \Omega_L.$$

Hence, for such a domain Ω_L and sufficiently large number of modes N, it is expected that the approximation $\Pi^N Q(f, f) \sim \Pi^N Q(\Pi^N f, \Pi^N f)$, in $(0, T] \times \Omega_L$ will be valid, leading to pose and solve the problem

$$\frac{\partial g}{\partial t}(v,t) = \Pi^N Q(g,g)(v,t), \text{ in } (0,T] \times \Omega_L,$$

with initial condition $g_0 = \Pi^N f_0$, and expect that it should be a good approximation to $\Pi^N f$. In other words we define the numerical solution to be $g_N := g$ and expect to show that this discrete solution will be a good approximation to the solution of the Boltzmann problem in the cut-off domain, that is, $g \approx f$ in Ω_L , provided the number of modes N used is sufficiently large. This formalism has been shown in Alonso et al. (2016), under some assumptions for the space homogeneous Boltzmann equation. To this end, we much study a modified problem, namely, the convergence towards f of the solution g of the semidiscrete problem

$$\frac{\partial g}{\partial t}(v,t) = Q_c(g,g)(v,t) \quad \text{in} \quad (0,T] \times \Omega_L, \tag{33}$$

with initial condition $g_0 := g_0^N = \Pi^N f_0$. The operator $Q_c(g)$ is defined as the $L^2(\Omega_L)$ -closest function to $\Pi^N Q(Eg, Eg)$ having null mass, momentum and energy. Since the gain collision operator is global in velocity, it turns out that a good approximation to f will be obtained as long as Ω_L and N are sufficiently large. The extension operator E has a subtle job to do in the approximation scheme which is related precisely to the global behaviour of the gain collision operator. Since solutions of the approximation problem (33) lie in Ω_L , they are truncated versions of f. The gain operator does not possess higher derivatives in Ω_L when acting on truncated functions due to the singularity created in the boundary $\partial \Omega_L$. The extension smooths out the gain collision operator at the price of extending the domain. In the case of discontinuous solutions where only L^2 -error estimate is expected, the correct extension to use in the scheme is the extension by zero. We discuss this more carefully in the following sections.

Before continue with the discussion, we are now in position to summarize the main results on convergence, error estimates and asymptotic behaviour. These statements are stated in the following theorem. Rigorous proofs can be found at Alonso et al. (2016).

Theorem 2 (Error estimates and convergence to the equilibrium Maxwellian). Fix an initial nonnegative initial data $f_0 \in (L_2^1 \cap L^2)(\mathbb{R}^d)$. Then, for any time T>0 there exist a lateral size $L:=L(T,f_0)$ and a number of modes $N_0:=$ $N(T, L, f_0)$ such that

- 1. Semidiscrete existence and uniqueness: The semidiscrete problem (33)
- has a unique solution $g \in C(0,T;L^2(\Omega_L))$ for any $N \geq N_0$. 2. L_k^2 -error estimates: if $f_0 \in (L^1 \cap L^2)_{k'+k+\frac{1}{2}}(\mathbb{R}^d)$ for some $k', k \geq 0$, then

$$\sup_{t \in [0,T]} \|f - g\|_{L_k^2(\Omega_L)} \le CL^{-\lambda k'} e^{cT}, \text{ for any } N \ge N_0,$$

where $N_0 := N(T, L, f_0, k)$, $C := C(k, f_0)$, $c := c(k, f_0)$ and f is the solution of the Boltzmann equation (11).

3. H^{α} -error estimates: For the smooth case $f_0 \in \left(L_2^1 \cap H_q^{\alpha_0}\right)(\mathbb{R}^d)$, with $\alpha_0 > 0$ and $q = \max\{k' + k, 1 + \frac{d}{2\lambda}\}$, with $k' \geq 2$, it follows for any $\alpha \leq \alpha_0$

$$\sup_{t\in[0,T]} \|f-g\|_{H_k^\alpha(\Omega_L)} \leq C_{k'} e^{c_k T} \left(O\left(\frac{L^{\lambda k+|\alpha_0|}}{N^{|\alpha_0|-|\alpha|}}\right) + O\left(L^{-\lambda k'}\right) \right), \text{ for any } N \geq N_0,$$

where $N_0 := N(T, L, f_0, k, \alpha)$. And finally,

4. Convergence to the equilibrium Maxwellian: for every $\delta > 0$ there exist a simulation time $T := T(\delta) > 0$, corresponding lateral size $L := L(T, f_0)$ and baseline number of modes $N_0 := N_0(T, L, f_0, \alpha)$ such that for any $\alpha \leq \alpha_0$

$$\sup_{t\in [\frac{T}{2},T]} \|\mathcal{M}_0 - g\|_{H^{\alpha}(\Omega_L)} \leq \delta, \quad N \geq N_0,$$

where \mathcal{M}_0 is the equilibrium Maxwellian (6) having the same mass, momentum and kinetic energy of the initial configuration $f_0(v)$.

The sketch of the proof of Theorem 2, presented next, relies on the control problem that enforces conservation at the numerical level.

3.4 Conservation Method—An Extended Isoperimetric Problem

This is the procedure that secures the conservation of the necessary collision invariants. This procedure is posed as a standard $L^2(\Omega_L)$ -optimization problem. Therefore, due to the truncation of the velocity domain the projection of Q(f,f), namely $\Pi^N Q(f,f)$, does not preserve mass, momentum and energy. In order to accomplish these conservation properties, the problem is posed as constraints in a optimization problem to a conserved state. We denote, for the sake of brevity,

$$Q_u(f)(v) := \Pi^N(Q(\mathsf{E}f, \mathsf{E}f) \ \mathbf{1}_{\Omega_I})(v). \tag{34}$$

The indicator function $\mathbf{1}_{\Omega_L}(v)$ is due to the fact that the domain of Q(Ef, Ef) most likely be larger than Ω_L , and thus the extension operator helps to avoid introducing spurious nonsmoothness within the domain Ω_L due to the domain cut-off, as described in Section 3.2.

The conservation optimization problem consists into minimize, in the Banach space

$$\mathcal{B}^e = \left\{ X \in L^2(\Omega_L) : \int_{\Omega_L} X = \int_{\Omega_L} X v = \int_{\Omega_L} X |v|^2 = 0 \right\},$$

the functional, defined for a computed and unconserved collision operator $Q_u(f)$, by

$$\mathcal{A}^{e}(X) := \int_{\Omega_{t}} (Q_{u}(f)(v) - X)^{2} dv. \tag{35}$$

In other words, minimize the L^2 -distance to the projected collision operator subject to mass, momentum and energy conservation. The following lemma plays is fundamental for error estimates as well as the convergence to the equilibrium Maxwellian (6).

Lemma 1 (Elastic Lagrange estimate). The problem (35) has a unique minimizer given by

$$X^{\star} = Q_{u}(f)(v) - \frac{1}{2} \left(\gamma_{1} + \sum_{j=1}^{d} \gamma_{j+1} v_{j} + \gamma_{d+2} |v|^{2} \right),$$

where γ_i , for $1 \le j \le d + 2$, are Lagrange multipliers associated with the elastic optimization problem. Furthermore, these Lagrange multipliers are given by

$$\gamma_1 = O_d \rho_u + O_{d+2} e_u; \quad \gamma_{j+1} = O_{d+2} \mu_u^j, \quad j = 1, 2, ..., d; \quad \gamma_{d+2} = O_{d+2} \rho_u + O_{d+4} e_u.$$

The parameters ρ_u, e_u, μ_u^j are defined below in (38) and $O_r := O(L^{-r})$ only depends inversely on diameter $|\Omega_L|$. The minimized objective function is

$$\mathcal{A}^{e}(X^{*}) = \|Q_{u}(f) - X^{*}\|_{L^{2}(\Omega L)}^{2} \le C(d) \left(2\gamma_{1}^{2}L^{d} + \left(\sum_{j=1}^{d} \gamma_{j+1}^{2} \right) L^{d+2} + \gamma_{d+2}^{2}L^{d+4} \right)$$

$$\le \frac{C(d)}{L^{d}} \left(\rho_{u}^{2} + \frac{e_{u}^{2}}{L^{d+1}} + \sum_{j=2}^{d+1} \mu_{j}^{2} \right)$$

$$(36)$$

The proof of this lemma is constructive and very fundamental. When the objective function is an integral equation and the constraints are integrals, the optimization problem can be solved by forming the Lagrangian functional and finding its critical points. Indeed, set for all j = 1, 2, ..., d,

$$\psi_1(X) := \int_{\Omega_t} X(v) dv; \ \psi_{j+1}(X) := \int_{\Omega_t} v_j X(v) dv; \ \psi_{d+2}(X) := \int_{\Omega_t} |v|^2 X(v) dv,$$

and define

$$\mathcal{H}(X,X',\pmb{\gamma}):=\mathcal{A}^e(X)+\sum_{i=1}^{d+2}\gamma_i\psi_i(X)=\int_{\Omega_L}h(v,X,X',\pmb{\gamma})dv.$$

then, introduced $h(v, X, X', \gamma) := (Q_u(f)(v) - X(v))^2 + (\gamma_1 + \sum_{j=1}^d \gamma_{j+1} v_j + \gamma_{d+2} |v|^2) X(v)$. In order to find the critical points compute $D_X\mathcal{H}$ and $D_{\gamma_i}\mathcal{H}$ and note that the derivatives $D_{\gamma_i}\mathcal{H}$ just retrieve the constraint integrals. Hence, for multiple independent variables v_i and a single dependent function X(v) the Euler-Lagrange equations are

$$D_2h(v,X,X',\boldsymbol{\gamma}) = \sum_{i=1}^d \frac{\partial D_3h}{\partial v_i}(v,X,X',\boldsymbol{\gamma}) = 0.$$

We used the fact that h is independent of X'. This gives the following equation for the conservation correction in terms of the Lagrange multipliers

$$2(X(v) - Q_u(f)(v)) + \gamma_1 + \sum_{j=1}^d \gamma_{j+1} v_j + \gamma_{d+2} |v|^2 = 0,$$
and therefore, $X^*(v) = Q_u(f)(v) - \frac{1}{2} \left(\gamma_1 + \sum_{j=1}^d \gamma_{j+1} v_j + \gamma_{d+2} |v|^2 \right).$ (37)

Letting $g(v,\gamma) = \gamma_1 + \sum_{j=1}^d \gamma_{j+1} v_j + \gamma_{d+2} |v|^2$ and substituting (37) into the constraints $\psi_j(X^\star) = 0$ yields

$$\rho_{u} := \int_{\Omega_{L}} Q_{u}(f)(v) dv = \frac{1}{2} \int_{\Omega_{L}} g(v, \gamma) dv
\mu_{u}^{j} := \int_{\Omega_{L}} v_{j} Q_{u}(f)(v) dv = \frac{1}{2} \int_{\Omega_{L}} v_{j} g(v, \gamma) dv, \quad j = 1, 2, ..., d,
e_{u} := \int_{\Omega_{L}} |v|^{2} Q_{u}(f)(v) dv = \frac{1}{2} \int_{\Omega_{L}} |v|^{2} g(v, \gamma) dv.$$
(38)

Identities (38) form a d+2 by d+2 system of linear equations that can be uniquely solved. Indeed, solving for the critical γ_0 , γ_{j+1} , j=1, 2, ..., d and γ_{j+2} yields

$$\gamma_1 = O_d \rho_u + O_{d+2} e_u; \quad \gamma_{j+1} = O_d \mu_u^j; \quad \gamma_{d+2} = O_{d+2} \rho_u + O_{d+4} e_u,$$
 (39)

where $O_r := O(L^{-r})$. In particular, O_r depends inversely on $|\Omega_L|$. Substituting these values of critical Lagrange multipliers (39) into (37) gives explicitly the critical $X^*(v)$. Moreover, the objective function $\mathcal{A}^e(X)$ can be computed at its minimum as

$$\begin{split} \mathcal{A}^{e}(X^{\star}) = & \| Q_{u}(f) - X^{\star} \|_{L^{2}(\Omega_{L})}^{2} = \int_{\Omega_{L}} (Q_{u}(f)(v) - X^{\star}(v))^{2} dv \\ = & \frac{1}{4} \int_{\Omega_{L}} \left(\gamma_{1} + \sum_{j=1}^{d} \gamma_{j+1} v_{j} + \gamma_{d+2} |v|^{2} \right)^{2} dv. \end{split}$$

Upon simplification, taking $\Omega_L = (-L, L)^d$ and expressing the Lagrange multipliers $\gamma_j, j = 1...d + 2$ in terms of the unconserved moments $\rho_u, \mu_{u,j+1}, j = 1...d$ and e_u from relation (39), one obtains

$$\begin{split} \|\,Q_u(f) - X^* \,\|_{L^2(\Omega_L)}^2 & \leq C(d) \left(2\gamma_1^2 L^d + \frac{2}{d} \left(\sum_{j=1}^d \gamma_{j+1}^2 \right) L^{2d-1} + \gamma_{d+2}^2 L^{d+4} \right) \\ & \leq \frac{1}{L^d} \, O\left(\left(\rho_u + \frac{e_u}{L^{(d+1)/2}} \right)^2 + \sum_{j=1}^{d+1} \mu_{j+1}^2 \right), \end{split}$$

which is just an $O(L^{-d})$ proportional to these unconserved moments that are shown to be uniformly bounded in time in Lemma 3 in Section 4.2. In a sense this result is better described as an isomoment estimate, which yields estimate (36). The strict convexity of \mathcal{A}^e implies that this critical point is the unique minimizer. This results clearly shows that the last estimate secures, after a few iterations of the conservation algorithm (to be fully described in the next section) that, for a fixed L and a number of modes N the solution of the minimization problem will converge to an approximate of the collision operator whose first d + 2 moments are null. This is the tool that will allows us to construct error estimates for the approximation to the true solution to the Boltzmann equation and the numerically calculated one for the spectralconserved algorithm. In addition these conservation correction estimates from Lemma 2 in (42), provide the necessary tool to prove that the numerical solution converges to the equilibrium Maxwellian (6) (see Alonso et al., 2016 for details.)

Summarizing, we are now in conditions to define the conserved projection operator $Q_c(f)$ as follows.

Definition. For any fixed $f \in L^2(\Omega_L)$ the conserved projection operator $Q_c(f)$ is defined as the minimizer of problem (E) That is,

$$Q_c(f) := X^*. \tag{40}$$

From Lemma 1, the minimized objective function (36) in the elastic optimization problem depends only on the nonconserved moments ρ_u, μ_u^j , and e_u of $Q_n(f)$. These quantities are to be approximating the d+2 dimensional zero vector, therefore, the conserved projection operator is a perturbation of $Q_u(f)$ by a second order polynomial. Denoting the moments of a function f by

$$m_k(f) := \int_{\mathbb{R}^d} |f(v)| |v|^{\lambda k} \, \mathrm{d}v. \tag{41}$$

Lemma 2 (Conservation correction estimate). Fix $f \in L^2(\Omega_L)$, then the accuracy of the conservation minimization problem is proportional to the spectral accuracy. That is, for any $k, k' \ge 0$ and $\delta > 1$ there exists an extension E such that

$$\| (Q_{c}(f) - Q_{u}(f))|v|^{\lambda k} \|_{L^{2}(\Omega_{L})} \leq \frac{C}{\sqrt{k+d}} L^{\lambda k} \| Q(Ef, Ef) - Q_{u}(f) \|_{L^{2}(\Omega_{L})}$$

$$+ \frac{\delta^{2\lambda k'}}{\sqrt{k+d}} O_{(d/2+\lambda(k'-k))}(m_{k'+1}(f)m_{0}(f) + Z_{k'}(f)),$$

$$(42)$$

where C is a universal constant and $Z_{k'}(f)$ depending on the moments up to order k'.

Discrete in Time Conservation Method: Lagrange Multiplier Method

In this section we consider the discrete version of the conservation scheme. For such a discrete formulation, the conservation routine is implemented as a Lagrange multiplier method where the conservation properties of the discrete distribution are set as constraints. Let $M = N^d$, the total number of Fourier modes. For elastic collisions, $\rho = 0$, $\mathbf{m} = (m_1, ..., m_d) = (0, ..., 0)$ and e=0 are conserved. Let $\omega_i>0$ be the integration weights for $1\leq j\leq M$ and define

$$\mathbf{Q}_{u} = (Q_{u,1} \ Q_{u,2} \ \cdots \ Q_{u,M})^{T}$$

as the distribution vector at the computed time step, and

$$\mathbf{Q}_c = (Q_{c,1} \ Q_{c,2} \ \cdots \ Q_{c,M})^T$$

as the corrected distribution vector with the required moments conserved. For the elastic case, let

$$\mathbf{C}_{(d+2)\times M}^{e} = \begin{pmatrix} \omega_{j} \\ v_{1} \, \omega_{j} \\ \cdots \\ v_{d} \, \omega_{j} \\ |v_{j}|^{2} \, \omega_{j} \end{pmatrix} \quad 1 \leq j \leq M, \tag{43}$$

be the integration matrix, and $\mathbf{a}_{(d+2)\times 1}^e = \left(\frac{\mathrm{d}}{\mathrm{d}t}\rho \quad \frac{\mathrm{d}}{\mathrm{d}t}m_1 \quad \cdots \quad \frac{\mathrm{d}}{\mathrm{d}t}m_\mathrm{d} \quad \frac{\mathrm{d}}{\mathrm{d}t}e\right)^T$ be the vector of conserved quantities (note that \mathbf{a}^e is null d + 2-dimensional null vector in the case of elastic theory, but may not be in general). With this notation in mind, the discrete conservation method can be written as a constrained optimization problem: find \mathbf{Q}_c such that is the unique solutions of

$$\mathcal{A}(\mathbf{Q}_c) = \{\min \|\mathbf{Q}_u - \mathbf{Q}_c\|_2^2 : \mathbf{C}^e \mathbf{Q}_c = \mathbf{a}^e \text{ with } \mathbf{C}^e \in \mathbb{R}^{d+2\times M}, \mathbf{Q}_u \in \mathbb{R}^M, \mathbf{a}^e \in \mathbb{R}^{d+2} \}.$$

The Lagrange multiplier is used to solve the minimization problem $\mathcal{A}(\mathbf{Q}_c)$. Let $\gamma \in \mathbb{R}^{d+2}$ be the Lagrange multiplier vector. Then the scalar objective function to be optimized is given by

$$L(\mathbf{Q}_c, \boldsymbol{\gamma}) = \sum_{j=1}^{M} |Q_{u,j} - Q_{c,j}|^2 + \boldsymbol{\gamma}^T (\mathbf{C}^e \mathbf{Q}_c - \mathbf{a}^e).$$
 (44)

Eq. (44) can be solved explicitly for the corrected distribution value and the resulting equation of correction be implemented numerically in the code. Indeed, taking the derivative of $L(\mathbf{Q}_c, \boldsymbol{\gamma})$ with respect to $Q_{c,j}$, for $1 \leq j \leq M$ and γ_i , for $1 \le i \le d + 2$

$$\frac{\partial \mathbf{L}}{\partial Q_{c,j}} = 0, \quad j = 1, ..., M \quad \Rightarrow \quad \mathbf{Q}_c = \mathbf{Q}_u + \frac{1}{2} (\mathbf{C}^e)^T \boldsymbol{\gamma}. \tag{45}$$

Moreover,

$$\frac{\partial \mathbf{L}}{\partial \gamma_i} = 0, \ i = 1, ..., d + 2 \ \Rightarrow \ \mathbf{C}^e \mathbf{Q}_c = \mathbf{a}^e,$$

retrieves the constraints. Hence, one needs to solve for γ the following equation

$$\mathbf{C}^{e}(\mathbf{C}^{e})^{T} \boldsymbol{\gamma} = 2(\mathbf{a}^{e} - \mathbf{C}^{e} \mathbf{Q}_{u}). \tag{46}$$

Now, since $\mathbf{C}^e(\mathbf{C}^e)^T$ is symmetric and \mathbf{C}^e is an integration matrix, then \mathbf{C}^e is also positive definite. As a consequence, the inverse of $\mathbf{C}^e(\mathbf{C}^e)^T$ exists and one can compute the value of γ simply by

$$\gamma = 2(\mathbf{C}^e(\mathbf{C}^e)^T)^{-1}(\mathbf{a}^e - \mathbf{C}^e\mathbf{Q}_u).$$

Substituting γ into (45) and recalling that $\mathbf{a}^e = \mathbf{0}$ for the elastic case,

$$\mathbf{Q}_{c} = \mathbf{Q}_{u} + (\mathbf{C}^{e})^{T} \left(\mathbf{C}^{e} (\mathbf{C}^{e})^{T} \right)^{-1} (-\mathbf{C}^{e} \mathbf{Q}_{u}) = \left[\mathbb{I} - (\mathbf{C}^{e})^{T} \left(\mathbf{C}^{e} (\mathbf{C}^{e})^{T} \right)^{-1} \mathbf{C}^{e} \right] \mathbf{Q}_{u} :$$

$$= \Lambda_{N}(\mathbf{C}^{e}) \mathbf{Q}_{u},$$
(47)

where $\mathbb{I} = N \times N$ identity matrix. In the sequel, we regard this conservation routine as Conserve. Thus,

$$Conserve(\mathbf{Q}_u) = \mathbf{Q}_c = \Lambda_N(\mathbf{C}^e) \mathbf{Q}_u. \tag{48}$$

Define D_t to be any time discretization operator of arbitrary order. Then, the discrete problem that we solve reads

$$D_t \mathbf{f} = \Lambda_N(\mathbf{C}^e) \, \mathbf{Q}_u. \tag{49}$$

Thus, multiplying (49) by \mathbb{C}^e it follows the conservation of observables

$$D_t(\mathbf{C}^e \mathbf{f}) = \mathbf{C}^e D_t \mathbf{f} = \mathbf{C}^e \Lambda_N(\mathbf{C}^e) \mathbf{Q}_u = 0, \tag{50}$$

where we used the commutation $\mathbf{C}^e D_t = D_t \mathbf{C}^e$ valid since \mathbf{C}^e is independent of time, see Gamba and Tharkabhushanam (2009) for additional comments.

LOCAL EXISTENCE, CONVERGENCE AND REGULARITY FOR THE SEMIDISCRETE SCHEME

In this section we enunciate L_k^1 and L_k^2 estimates for the approximation solutions $\{g_N\}$ of the problem (33) in the elastic case. The reader must refer to reference Alonso et al. (2016) for rigorous details. For the purpose of this presentation we use several well-known results that require different integrability properties for the angular kernel b, by assuming $b(\hat{u} \cdot \sigma)$ bounded from $\sigma \in S^{d-1}$ like it is the case for hard spheres in three dimensions (generalization for $b \in L^1(\mathbb{S}^{d-1})$ can be made at the cost of technical work). What is important that we work with hard potentials and so $1 \ge \lambda > 0$ in (9). The theory for Maxwell molecules $\lambda = 0$ needs a slightly different approach.

Recall that we have imposed conservation of mass, momentum and energy by building the operator $Q_c(g)$ with a constrained minimization procedure. Thus,

$$\int_{\Omega_L} g(v,t)\psi(v)dv = \int_{\Omega_L} g_0(v)\psi(v)dv$$

for any collision invariant $\psi(v) = \{1, v, |v|^2\}$. However, due to velocity truncation, the approximating solution g in general may be negative in some small portions of the domain. This is precisely the technical difficulty that we have to overcome. In Section 4.1, we present the statement of the proof of convergence of the proposed approximation in the number of modes N in a time interval (0, T(L)) where T(L) is a time depending on the lateral size L of the velocity domain Ω_L . We find a control on the negative mass that can be formed in such interval characterized in terms of L. In Sections 4.2 and 4.3, we improve the estimates assuming that the approximating solutions behaves well, that is, its negative mass does not increases too fast in the time interval in question.

Local Existence 4.1

Since the natural space to study the spectral scheme is $L^2(\Omega_L)$, thus we start proving that the problem is well posed in this space. Due to velocity truncation, we do not have the standard a priori estimates in L^1 that help in the theory, however, the constrain method permits to extend the time where the scheme gives an accurate solution of the original Boltzmann problem.

Proposition 1. Let $g_0 \in L^2(\Omega_L)$ and fix the domain $(0, T(L)] \times \Omega_L$ with $T(L) \sim$ $(L^{d+2(\lambda+1)} \parallel g_0 \parallel_{L^2(\Omega_L)})^{-1}$. Then the approximating problem (33) has a unique solution $g \in \mathcal{C}(0, T(L); L^2(\Omega_L))$ with initial condition g_0 . In addition, the approximating sequence $\{g_N\}$ to solutions of (33), with initial condition $g_{0N} = \Pi^N g_0$, converges strongly in $\mathcal{C}(0, T(L); L^2(\Omega_L))$ as $N \to \infty$. In particular,

$$\sup_{t \in [0, T(L)]} \| Q(Eg_N, Eg_N) - Q_u(g_N) \|_{L^2(\Omega_L)} \to 0 \text{ as } N \to 0,$$
(51)

and the strong limit \bar{g} is the unique solution of the equation

$$\frac{\partial \bar{g}}{\partial t} = Q(E\bar{g}, E\bar{g}) \mathbf{I}_{\Omega_L} - \frac{1}{2} \left(\overline{\gamma}_1 + \sum_{j=1}^d \overline{\gamma}_{j+1} v_j + \overline{\gamma}_{d+2} |v|^2 \right), \quad \bar{g}(0) = g_0. \tag{52}$$

The coefficients of the quadratic polynomial are given in Lemma 1 with parameters (38) evaluated at $Q(E\bar{g}, E\bar{g})$. Furthermore, the negative mass of g is quantified as

$$\sup_{t \in [0, T(L)]} \|g^{-}\|_{L^{2}(\Omega_{L})} = \|g_{0}^{-}\|_{L^{2}(\Omega_{L})} + O_{d/2 + \lambda + 2} \|g_{0}\|_{L^{2}(\Omega_{L})}.$$
(53)

^aNote that g actually depends on N since Q_c depends on N. We omit this dependence to ease notation.

Uniform Propagation of Numerical Unconserved Moments 4.2

We assume now that a solution $g \in \mathcal{C}(0,T;L^2(\Omega_L))$ for problem (33) with initial condition $g_0 \in L^2(\Omega_L)$ exists. The *conservation scheme* and the following stability condition implies that moments up to order 2 are controlled by the initial datum.

4.2.1 Stability Condition

We denote $T_{\epsilon} \in [0, T]$ the time where the smallness relation for the negative mass and energy of g and the boundedness of sequence $\{g_N\} := \{g\}$ in L^2 holds, that is for some fixed $\epsilon > 0$,

$$\sup_{t \in [0, T_{\epsilon}]} \frac{\int_{\{g < 0\}} |g(v, t)| \langle v \rangle^{2} dv}{\int_{\{g \ge 0\}} g(v, t) \langle v \rangle^{2} dv} \le \epsilon, \quad \sup_{N \in \mathbb{Z}^{+}} \sup_{t \in [0, T_{\epsilon}]} ||g(t)||_{L^{2}(\Omega_{L})} < \infty.$$
 (54)

Remark. This stability condition even holds for the scheme to compute the Boltzmann equation with an anisotropic grazing-Coulomb collision cross section (23) as shown in Fig. 2 in the grazing collision limit approximating the Landau equation. The conservation Spectral-Lagrangian scheme secures that after 800 mean free times, the value of $\epsilon < 0.05$ in the relation (54), meaning that the relative proportion of negative energy is very small, and so the solutions keeps essentially positive, and so stabilizes the scheme.

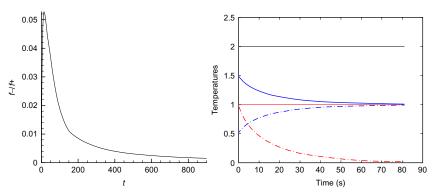


FIG. 2 Left: Ratio of energy in negative grid points to energy in positive grid points from the stability condition (54). The grazing parameter is $\varepsilon = 10^{-4}$, N = 16. Right: Temperatures evolution for the a benchmark component plasma system: solid blue, ion temperature T_i ; dash-dot blue, electron temperature T_e ; solid black, total conserved temperature $\bar{T} = T_i + T_e$; dash-dot red, temperature difference $|T_i - T_e|$ evolution. Left panel from Gamba, I.M., Haack, J.R., 2014. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit. J. Comput. Phys. 270, 40-57. Right panel from Zhang, C., Gamba, I.M., 2016. A Conservative Scheme for Vlasov Poisson Landau Modeling Collisional Plasmas. arXiv:1605.05787 (e-prints, section 7.1.2).

Indeed, for $k = \{0, 2\}$

$$\begin{split} \int_{\Omega_L} |g| |v|^k &= \int_{\Omega_L} g_0 |v|^k - 2 \int_{\Omega_L} g^- |v|^k \leq \int_{\Omega_L} g_0 |v|^k \\ &+ 2\epsilon \int_{\Omega_L} g^+ |v|^k \leq \int_{\Omega_L} g_0 |v|^k + 2\epsilon \int_{\Omega_L} |g| |v|^k. \end{split}$$

Hence, choosing $\epsilon \leq 1/4$ it follows

$$\int_{\Omega_{t}} |g(v,t)| |v|^{k} dv \le 2 \int_{\Omega_{t}} g_{0} |v|^{k} dv, \text{ for } t \in [0, T_{\epsilon}], k = 1, 2;$$
 (55)

and the following lemma holds.

Lemma 3 (Numerical moments bounds). For any lateral size L > 0 and moment k > 0 there exist an extension E and a number of modes $N_0(T_\epsilon, L, k)$ such that

$$\sup_{t \in [0, T_c]} \|g\|_{L_k^1(\Omega_L)} \le C_k \Big(\|g_0\|_{L_2^1}, m_{k'}(g_0) \Big), \quad \forall \ N \ge N_0, \tag{56}$$

with $C_k(\cdot)$ a constant depending only on k, $\|g_0\|_{L^1_2}$, and $m_{k'}(g_0)$ with $k' = \max\{k, k_0\}$. The number $k_0 > 0$ it is uniquely determined by $\|g_0\|_{L^1_2}$.

The proof of this fundamental results relies on the conservative scheme estimate

$$\int_{\Omega_{L}} g(w,t)|v-w|^{2} dw = \int_{\Omega_{L}} g_{0}(w)|v-w|^{2} dw.$$
 (57)

and condition (54) to obtain an uniform lower bound for the collision operator negative part. The following result implies stability of the conservative scheme as well as convergence to the equilibrium Maxwellian. This lower bound is shown in Alonso et al. (2016) with the assumption that the entropy $\int g(v) \log g(v) \, dv$ is bounded, since the numerical approximant g(v) may not be positive at all its point of definition.

Lemma 4 (Lower bound for the discrete collision frequency). Assume the uniform propagation of some moment $\frac{2+\mu}{\lambda}$, and that $\sup_{t\in[0,T_\epsilon]}\int_{\Omega_L}|g(w,t)||w|^{2+\mu}dw \leq C(g_0) < \infty$ for some $\mu > 0$. Then,

$$(g_*|u|^{\lambda})(v) \ge C(g_0)\langle v \rangle^{\lambda},$$
 (58)

with $C(g_0) > 0$ depending only on the mass, energy and the $\frac{2+\mu}{\lambda}$ -moment of g_0 .

4.3 Uniform L_{k}^{2} Integrability Propagation

The result from Lemma 4 is fundamental to obtain the following weighted Sobolev estimates for the approximate solution to the collisional equation.

Lemma 5 (L_k^2 -propagation estimates). For any lateral size L > 0 and moment k > 0 there exist an extension E and a number of modes $N_0(T_{\epsilon}, L, k)$ such that

$$\sup_{t\in[0,T_{\epsilon}]} \|g\|_{L_{k}^{2}(\Omega_{L})} \leq \max \Big\{ \|g_{0}\|_{L_{k}^{2}(\Omega_{L})}, C_{k}(m_{k}(g_{0})) \Big\}, \ N \geq N_{0}.$$

Moreover, the negative mass of g can be estimated as

$$\begin{split} \sup_{t \in [0,T_{\epsilon}]} \| g^{-} \|_{L^{2}(\Omega_{L})} &\leq e^{C \left(\| g_{0} \|_{L^{1}_{2}(\Omega_{L})} \right) T_{\epsilon}} \\ & \left(\| g_{0}^{-} \|_{L^{2}(\Omega_{L})} + O_{\mathrm{d}/2 + \lambda k} \tilde{C}_{k}(m_{k+1}(g_{0})) \, \max \left\{ 1, T_{\epsilon} \right\} \right), \ N \geq N_{0}. \end{split}$$

The constants C_k and \tilde{C}_k are independent of the asymptotic parameters T_{ϵ} , Land N.

The nest results gather the necessary information to estimate the propagation of higher order Sobolev regularity for the approximate solution, if initially so.

Uniform Semidiscrete H_k Sobolev Regularity Propagation

At last, we obtain the extend the discrete L_k^2 integrability estimates from Lemma 5 to the derivatives of g. Indeed, the follow result has been shown as well.

Lemma 6 Assume $g_0 \in H_{k+2}^{\alpha}(\Omega_L)$ with $\alpha \in [0, \alpha_0]$ and $k \geq 0$. For any lateral size L > 0 there exist an extension E_{α_0} and a number of modes $N_0(T_{\epsilon}, L, k, \alpha)$ such that

$$\sup_{t\in[0,T_c]} \|g\|_{H_k^x(\Omega_L)} \leq \max\Big\{ \|g_0\|_{H_{k+2}^x(\Omega_L)}, C_k(m_k(g_0))\Big\}, \ N \geq N_0,$$

where $C_k(\cdot)$ depends on k and the k-moment of g_0 .

Remark. The initial restriction $\alpha \in [0, \alpha_0]$ is due to the fact that in general Q(Eg, Eg) possesses at most α_0 derivatives.

Finally, gathering the results of Sections 3.4 and 3.5, with the results of global existence, L_k^1 and L_k^2 moment estimates, as well the higher order Sobolev regularity estimates form (6) of last section as well as spectral accuracy for the collisional integral shown in Gamba and Tharkabhushanam (2009), one can obtain both error estimates for the spectral scheme in the case of smooth and nonsmooth initial data, and convergence to the equilibrium Maxwellian (6). The first result removes the small negative mass and energy assumption (54) needed for the a priori estimates throughout the previous section. The results hold for any initial state $f_0(v)$ associated to the Cauchy problem for the Boltzmann equation, assumed to be $L^2(\mathbb{R}^d)$ and nonnegative (see Alonso et al., 2016 for rigorous details).

5 FINAL COMMENTS AND CONCLUSIONS

The conservative spectral Lagrangian method for the Boltzmann equation was applied for a system of such equations in the modelling of a multienergy level gas (Munafo et al., 2014). In this case, the formulation of the numerical method accounts for both elastic and inelastic collisions. It was also be used for the particular case of a mixture of monatomic gases without internal energy. The conservation of mass, momentum and energy during collisions is enforced through the solution of constrained optimization problem to keep the collision invariances associated to the mixtures (see Munafo et al., 2014, section 4.3). The effectiveness have been compared with the results obtained by means of the DSMC method and excellent agreement has been observed. More recently this conservative spectral Lagrangian approach has been implemented for a system of electron-ions in plasma modelled by a 2 × 2 system of Poisson-Vlasov-Landau equations (Zhang and Gamba, 2016), implemented by time-splitting methods staggering the time steps for advection of the Vlasov-Poisson system and the collisional system including recombinations. The constrained optimization problem is applied to the collisional step in a revised version from Gamba and Tharkabhushanam (2009) where the matrix C^e defined in (43) was calculated in Fourier space given by the Fourier of the collision invariant polynomials to obtain a more accurate formulation. The benchmarking for the constrained optimization implementation for the mixing problem was done for an example of a space homogeneous system where the explicit decay the difference for electron and ion temperatures is known (Zhang and Gamba, 2016, section 7.1.2). Yet the used scheme captures the total conserved temperature being the sum of the Ions and electron temperatures, respectively (see Fig. 2, right side).

To end, we point out that the conservative spectral Lagrangian scheme for approximating solutions for the Boltzmann equation for elastic interactions converges to the equilibrium Maxwellian (6) if the equation is scalar, as is it shown in Theorem 2, part 4. One should note that it is the conservation subscheme the one that enforces the convergence to the equilibrium Maxwellian state by enforcing the collision invariants. This is exactly how the Boltzmann and H-theorems (Cercignani et al., 1994) work: the equilibrium Maxwellian (6) is proven to be the stationary state due to the conservation properties combined with the elastic collision law.

In other words for the case of inelastic collision (when the collision invariants are just d + 1) or for space inhomogeneous multicomponent Boltzmann systems flow models, it is not correct to assume that the stationary state is a Maxwellian distribution density (i.e. a Gaussian in v-space) as, for instance, asymptotic preserving schemes assume. Just the enforcing the conserved quantities for the system by the constrain minimization problem, the Conservation Correction Estimate of Lemma 2 will select the correct equilibrium states for each of the system components.

ACKNOWLEDGEMENTS

The author thanks Ricardo J. Alonso, Jeffrey Haack and S. Harsha Tharkabhushanam for their very valuable contributions. She has been partially supported by NSF under grants DMS-1413064 and NSF-RNMS 1107465. Support from the Institute of Computational Engineering and Sciences (ICES) at the University of Texas Austin is gratefully acknowledged.

REFERENCES

- Abramowitz, M., Stegun, I.A., 1964. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, No. 55U.S. Government Printing Office, Washington, DC.
- Alonso, R.J., Gamba, I.M., Tharkabhushanam, S.H., 2016. Convergence and error estimates for the Lagrangian based conservative spectral method for Boltzmann equations. arXiv:1611.04171 (e-prints, submitted for publication).
- Aoki, K., Nishino, K., Sone, Y., Sugimoto, H., 1993. Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: effect of gas motion along the condensed phase. In: Nonlinear PDE-JAPAN Symposium 2, 1991 (Kyoto, 1991) Lecture Notes Numer. Appl. Anal., No. 12. Kinokuniya, Tokyo, pp. 35–85.
- Aristov, V.V., 2001. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Fluid Mechanics and its Applications, No. 60, Kluwer Academic Publishers, Dordrecht. ISBN 1-4020-0388-9, xviii+294. http://dx.doi.org/10.1007/978-94-010-0866-2.
- Bird, G.A., 1994. Molecular Gas Dynamics. Clarendon Press, Oxford.
- Bobylev, A.V., Rjasanow, S., 1999. Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B. Fluids 18 (5), 869-887.
- Bobylev, A.V., Carrillo, J.A., Gamba, I.M., 2000. On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98 (3-4), 743-773. ISSN 0022-4715.
- Bobylev, A.V., Gamba, I.M., Panferov, V.A., 2004. Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116 (5-6), 1651-1682. ISSN 0022-4715.
- Bobylev, A., Cercignani, C., Gamba, I.M., 2009. On the self-similar asymptotic for generalized non-linear kinetic Maxwell models. Commun. Math. Phys. 291, 599-644. arXiv:math-ph/ 0608035.
- Brilliantov, N.V., Pöschel, T., 2004. Kinetic Theory of Granular Gases. Oxford Graduate Texts. Oxford University Press, Oxford. ISBN 0-19-853038-2, xii+329. http://dx.doi.org/10.1093/ acprof:oso/9780198530381.001.0001.
- Cercignani, C., Reinhard, I., Pulvirenti, M., 1994. The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, No. 106. Springer-Verlag, New York.
- Chapman, S., Cowling, T.G., 1970. The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, third ed. Cambridge University Press, London, xxiv+423.
- Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W., 2009. A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices. Comput. Methods Appl. Mech. Eng. 198 (37–40), 3130–3150. ISSN 0045-7825. http://dx.doi.org/10.1016/j.cma.2009.05.015.
- Cheng, Y., Gamba, I.M., Proft, J., 2012. Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations. Math. Comput. 81 (277), 153-190. ISSN 0025-5718. http://dx.doi.org/10.1090/ S0025-5718-2011-02504-4.

- Duffie, D., Malamud, S., Manso, G., 2009. Information percolation with equilibrium search dynamics. Econometrica 77 (5), 1513-1574. ISSN 0012-9682. http://dx.doi.org/10.3982/ECTA8160.
- Gamba, I.M., Haack, J.R., 2014. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit. J. Comput. Phys. 270, 40-57.
- Gamba, I.M., Tharkabhushanam, S.H., 2009. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys. 228 (6), 2012–2036.
- Gamba, I.M., Tharkabhushanam, S.H., 2010. Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation. J. Comput. Math. 28, 430–460.
- Gamba, I.M., Panferov, V., Villani, C., 2004. On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246 (3), 503-541.
- Gamba, I.M., Panferov, V., Villani, C., 2009. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal 194, 253-282.
- Graham, C., Méléard, S., 1999. Probabilistic tools and Monte-Carlo approximations for some Boltzmann equations. In: ESAIM Proc., CEMRACS 1999 (Orsay), No. 10. Soc. Math. Appl. Indust., Paris, pp. 77–126. http://dx.doi.org/10.1051/proc: 2001010 (electronic).
- Landau, L.D., 1937. Kinetic equation for the case of Coulomb interaction. Zh. Eks. Teor. Fiz. 7, 203. Landau, L.D., Lifschitz, E.M., 1980. Statistical Physics, third ed. Butterworth-Heinemann.
- Morales Escalante, J.A., Gamba, I.M., 2016. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries. arXiv:1512.09210 (e-prints, submitted for publication).
- Morales-Escalante, J., Gamba, I.M., Cheng, Y., Majorana, A., Shu, C.-W., Chelikowsky, J., 2015. Discontinuous Galerkin deterministic solvers for a Boltzmann-Poisson model of hot electron transport by averaged empirical pseudopotential band structures. arXiv:1512.05403 (e-prints, submitted for publication).
- Munafo, A., Haack, J.R., Gamba, I.M., Magin, T.E., 2014. A spectral-Lagrangian Boltzmann solver for a multi-energy level gas. J. Comput. Phys. 264, 152-176.
- Pareschi, L., Russo, G., 2000. Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37 (4), 1217-1245. ISSN 0036-1429. http://dx.doi.org/10.1137/S0036142998343300.
- Pulvirenti, M., Saffirio, C., Simonella, S., 2014. On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26 (2), 1450001, 64. ISSN 0129-055X. http://dx. doi.org/10.1142/S0129055X14500019.
- Ringhofer, C., 2010. A level set approach to modeling general service rules in supply chains. Commun. Math. Sci. 8 (4), 909–930. ISSN 1539-6746. http://projecteuclid.org.ezproxy.lib. utexas.edu/euclid.cms/1288725265.
- Sone, Y., 2007. Molecular Gas Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc., Boston, MA. ISBN 978-0-8176-4345-4; 0-8176-4345-1, xiv+658.
- Stein, E.M., 1970. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ, xiv+290.
- Villani, C., 1998. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143 (3), 273-307. ISSN 0003-9527. http://dx. doi.org/10.1007/s002050050106.
- Zhang, C., Gamba, I.M., 2016. A conservative scheme for Vlasov Poisson Landau modeling collisional plasmas. arXiv:1605.05787 (e-prints, submitted for publication).
- Zhang, C., Gamba, I.M., 2016. A conservative discontinuous Galerkin solver for space homogeneous Boltzmann equation. http://www.ma.utexas.edu/users/gamba/papers/DGBE%5Fsubmit %5F2016.pdf (submitted for publication).

Note: Page numbers followed by "f" indicate figures, and "t" indicate tables.

A	Additional force terms, 468–469
Acceleration methods, 318–323	Additive-Schwarz approach, 338
enthalpy damping, 319-320	Aligned schemes, 491–493
preconditioning, 320–321	All-speed scheme, 218–220
residual averaging, 321–323	Alternating direction method, 313
variable local time stepping, 318–319	Ampère's equation, 387, 395-397
Accuracy effects, 358–360	Anisotropic mesh
Acoustic-incompressible interactions	insertion and collapse, 280-282
aerodynamical parameters, 208	unsteady simulations, 282-283
barotropic flows, 209	Anisotropic mesh adaptation, 270
classical iteration techniques, 209–210	Anisotropic mesh gradation, 272-273
Euler system, 208–209	Anisotropic quotients
filtered variable, 211–212	adaptive loop, 285
nonbarotropic flows, 209	direct sonic boom simulation, 289-290,
pressure fluctuations, 209–212	289f, 291t
quadratic operator, 209–210	Anisotropic ratio
velocity waves, 208	adaptive loop, 285
Acoustic limit, 207–208	direct sonic boom simulation, 289-290,
Acoustic waves, 351	289f, 291t
dimensional splitting, 58	Antman-Cosserat curved rod model, 439f,
Active flux method, 76	440–443, 442 <i>f</i>
Adaptive algorithm	Approximate-Schur approach, 338
adaptive loop, 284–285	AREPO, 474
blast prediction, 294–296	Astrophysics
boundary layer shock interaction, 290–294	codes, 473–475
direct sonic boom simulation, 288–290	density and temporal scales, 466-467
double mach reflection, 294–296	equations
transonic flow around M6 wing, 286–288	additional force terms, 468–469
wing-body configuration, 285	source terms, 468
Adaptive loop	of state, 469
anisotropic quotients, 285	high-performance computing, 473
anisotropic ratio, 285	numerical methods
cavity-based operators, 284	discontinuous Galerkin method, 471-472
Delaunay approach, 285	finite difference methods, 469-470
FEFLO, 284	finite volume methods, 470-471
frontal approach, 285	grid-free method, 472-473
smoothing procedure, 284	N-body method, 472
for steady simulations, 284	spatial scales, 466
for unsteady simulations, 284	Asymptotic-preserving (AP) schemes
WOLF, 284	asymptotic limits
Adaptive mesh generator, 271–272	compressible flows, low mach number
Adaptive mesh refinement, 252–253	limit of, 121–122

Asymptotic-preserving (AP) schemes	penalization method, 113–114
(Continued)	stiff term, 117
high-field limit, 119–120 linear transport equation, diffusion limit	weighted convolution, 411–412 Boris–Book–Zalesak method, 93–94
of, 118–119	Boris correction, 387–388
plasmas, quasi-neutral limit in, 120–121 stochastic AP schemes, 122–123	Boundary layer shock interaction, 290–294, 293–294 <i>f</i>
Boltzmann equation, coupling of, 104–105	Boundary layers mesh generation, 278-280
design principles	Boundary representation (BREP), 266–267,
Bhatnagar–Gross–Krook (BGK) model,	267 <i>f</i>
107–110	Bound-preserving flux limiting approach,
Jin–Xin relaxation model, 105–107	93–94
hyperbolic and kinetic equations	Bound-preserving property
exponential reformulation, 115–116	flux limiters
micro-macro decomposition, 117–118	decoupling for, 95–97
penalization, 111–114	idea and framework, 93–95
scales, 104–105, 104 <i>f</i>	limiter for approximation polynomials
ATHENA, 474	extensions and applications, 92–93
AUSM, 307	first-order monotone schemes, 83–84
	simple and efficient scaling limiter,
В	86–91
Balance law, 152, 437-438, 468, 480-481	SSP high-order time discretizations, 91–92
Baldwin-Lomax turbulence model, 333f	weak monotonicity, in high-order finite
Barotropic flows, 209	volume schemes, 84–86
Barrow's rule, 163–166	Boussinesq-type equation, 569–570
Batch sedimentation model, 483	Burgers equation, 32f, 33, 33t
Bhatnagar-Gross-Krook (BGK) model,	Butcher tableaux, 116
111–112, 114	Buteller tubleaux, 110
implicit-explicit (IMEX) scheme, 109	6
kinetic flux vector splitting (KFVS) scheme,	C
108–109	Cart3D, 5–7
kinetic theory, 107–108	Cartesian grids, 24, 389–390
Knudsen number, 107–108	Cartesian mesh methods, 2, 27, 38–39,
nonstiff convection, 108	469–470
stiff collision, 108	finite difference methods, 469–470
Strang splitting, 109–110	Cauchy–Kowalevski procedure, 150–151
Bicharacteristic methods, 67–68, 68 <i>f</i>	Cavity-based operators, 284
Bilinear interpolation, 62	Cell-centred triangular meshes, 224–226, 225 <i>f</i>
Binary collisional models	Cell linking, 13–14
collision invariants, 406 collision kernel. 407	Cell residual, 69
	Chapman–Enskog expansion, 111 Chebyshev polynomials, 147
decorrelation, 406	Clarifier—thickener unit, 483
equilibrium Maxwellian distribution, 406 Fourier transform, 407	Collision operator, 111–112
Blast prediction, 294–296	Compressible Euler system, 205–221
Bloch waves techniques, 569–570	Computational aerodynamics
Body-fitted grids, 24	gas dynamics and spatial discretizations,
Boltzmann equation, 408–409	305–308
deterministic solvers, 409–410	Newton–Krylov methods
doublemixing convolution, 411	additional considerations and algorithm
hyperbolic and kinetic equations, 110–111	parameters, 340–342
Landau–Fokker–Plank equation, 410–411	globalization, 338–339

GMRES, 334, 343f	traffic flow, 482–483
implicit methods, 335	wave propagation, in heterogeneous
inexact, 335–336	media, 484
Jacobian-free, 336–337	weak solution, 487
NASA Common Research Model, 343,	Conservative flux difference approximation,
344 <i>f</i>	366–367
nonsymmetric linear systems, 334	Conservative spectral method
parallelization, 337–338	for collision method, 415–426
parallel scaling algorithm, 343, 344f	computational cut-off domain, 416-418
preconditioning, 337–338	extension operator, 419
pseudo-transient continuation, 334	Fourier series, 418–419
Spalart–Allmaras one-equation turbulence model, 342	projections and extensions, 418–419 extended isoperimetric problem, 421–424
steady and unsteady flows, 332	for homogeneous Boltzmann equation,
time-marching methods	418–419
acceleration methods, 318–323	equilibrium Maxwellian, 421
alternative approach, 304-305	error estimation, 420–421
implicit schemes, 312–318	extension operator, 419-420
model problem, 308–309	gain operator, 419–420
multigrid methods, 323–327	semidiscrete problem, 420
multistage schemes, 309–312	Continuity equation, 218, 387
RANS equations, 327–332	Convection—diffusion equation
Computational domain, 491	applications to, 194–197
Computational fluid dynamics (CFD), 204,	diffusion-velocity particle method, 197
264–265	weighted particle method, 195–196
Computational pipeline, 264–265, 264–265 <i>f</i>	Cordes-type condition, 552
Computational uncertainty propagation,	Coriolis force, 362–363
510–511	
	Corner transport methods
Conservation laws, 364–365, 447–448 Conservation laws with discontinuous	bilinear interpolation, 62
	gas-dynamic equations, 63–64
coefficients	linear advection equation, 62, 63f
clarifier–thickener unit, 483	multidimensional Riemann problems, 63,
flows, 485	64 <i>f</i>
interface connection, 489	Courant–Friedrichs–Lewy (CFL) condition,
interface entropy condition, 489	31, 321
interior entropy condition, 487–488	Courant, Isaacson and Rees (CIR) scheme, 54,
ion etching, 483	65
Kruzkov entropy condition, 490	C-property scheme, 133–134, 509
multiphase flows, in porous media, 481–482	upwind discretization, 134
nonuniqueness, 486	Curvilinear transformation, 24
numerical experiments, 496–500,	Cut-cells
496f, 500f	Cartesian mesh methods, 2
numerical methods	data structure, 8–10
aligned schemes, 491–493	early history, 3–4
finite volume schemes, 495–496	embedded boundary mesh, 2-3
front tracking scheme, 496	finite volume methods
higher-order schemes, 494-495	dual time stepping, 11
multidimensional problems, 495	explicit time-dependent solution
staggered schemes, 493-494	techniques, 13–17
time-dependent coefficients, 495	stability problem, 10–11
oscillations, 486	steady-state problem, 10
scalar conservation law, 485	steady-state solution techniques, 12–13
singular source terms, 484	viscous flows, 17–18

Cut-cells (Continued)	Divergence theorem, 470
implementation issues, 8-10	Double Mach reflection problem, 42–43, 43f,
mesh generation, 1–2	294–296, 295 <i>f</i>
algorithm, 5–6	density contours of, 43–44, 44f
Cart3D, 5–7	Dual control volume, 223
Cartesian mesh generator, 5, 7, 8f	Dual problem
geometry, 5	numerical approximation, 251–252
triangulation, 8	Dual-weighted-residual (DWR) error
problem, 25	estimation technique
Cylinder lift-off problem, 45–46, 47–48 <i>f</i> , 47 <i>t</i>	BAC3-11 airfoil, 254
	bifurcation problems, 255–256
D	criticality problems, 255
Dalton law, 353–354	
Darcy's law, 481–482	E
Delaunay method, 268, 269f, 285	Edge-based formula, 65–66
Density scales, 466–467	Edge collapse, 280–282, 281 <i>f</i>
Diagonal matrix, 144	Eigenvalues, 152
Dichotomy approach, 280	Eigenvectors, 152
Diffusion limit, 118–119	Einstein summation rule, 570–571
Diffusion-velocity particle method, 179, 197	Electrostatic plasma, 119-120
Dimensional splitting	Elliptic–hyperbolic splitting, 73–75, 75 <i>f</i>
acoustic wave, 58	Enthalpy damping, 319–320
Glimm's Random Choice method, 59	Entropy conservative methods, 148
Godunov-type methods, 58	Entropy-stable methods, 148
operator splitting, 60	Entropy variables, 140
superfluous dissipation, 59-60, 60f	ENZO, 474
Dimensional upwinding, 60-61	Equation of state, 469
Dirac's deltas, 138-139	Error representation, 235
Direct sonic boom simulation	abstract framework
anisotropic quotient, 289-290, 289f, 291t	advantages and disadvantages, 237-238
anisotropic ratio, 289–290, 289f, 291t	bilinear form and functional, 236-237
final adapted mesh, 289–290, 289f, 291t	consistent reformulation, 237
initial surface mesh, 288, 288f, 293f	discretization, 237–238
interpolation error, 289–290	dual problems, 239
pressure extractions, 289–290, 292f	foregoing assumptions, 239
SSBJ design, Dassault Aviation, 288, 288f	linear operator, 236
Discontinuous Galerkin (DG) method,	posteriori error estimation, 243–244
367–368, 393–394, 451–460, 471–472	stabilized FEMs
applications	bilinear form, 241
to traffic network, 454–455	definition, 241–242
to water channel, 455–456	dual problems, 242
for nonlinear wave equation net problem, 452–454	linear functional, 241 weak formulation, 240–241
numerical coupling conditions at junctions, 456	Essentially non-oscillatory (ENO) schemes, 29, 83, 86, 391
PDE-ODE coupling conditions, 456–460	Euler code, 74–75
RK time discretization in time, 455	Euler equations, 92–93, 95, 179, 304–306, 320
Discrete continuity equation, 387	micro–macro decomposition, 117
Discrete velocities methods (DVM), 409–410	multiple low MACH number limits,
Discretization, MHD equations, 397–398	205–221
Dissipation, 55	potential limits, 216
Dissipation matrix, 220–221	Euler–Poisson equations, 120–121
* · · · · · · · · · · · · · · · · · · ·	* *

Front Community 260 Community Well belowed	
Exact C-property, 369. See also Well-balanced methods	stability problem, 10–11
Explicit time-dependent solution techniques	steady-state problem, 10 steady-state solution techniques, 12–13
accuracy, 16	viscous flows, 17–18
cancellation property, 14–15	First-order finite volume method, 509–510
cell merging, 13–14	First-order IMEX discretization, 112
dimensionally split, 16–17	First-order monotone schemes, 83–84
flux redistribution, 17	FLASH, 474
h-box method, 14–15	Flux function, 480
wave propagation, 14	aligned schemes, 492
Exponential reformulation method, 115–116	in numerical experiments, 496–500, 496f, 500f
F	Flux splitting scheme, 367, 391, 495-496
•	Flux tensor, 64-65
Faraday equation, 395	Flux-transfer transformations
Fast vortex transport, 76–78, 77t	Green's function, 557–558
Favre-averaged (FANS) equations, 308 FEFLO, 284	transfer property, 555–556
FEM. See Finite element method (FEM)	Fokker–Planck–Landau equation, 113–114
Filtered variable, 211–212	collision operator, 113–114
Final adapted mesh, 289–290, 289 <i>f</i> , 291 <i>t</i>	Forward UQ. See Computational uncertainty
Finite difference method (FDM), 366–367, 564	propagation
astrophysics, 469–470	Free surface flows, 362–363
Finite-difference numerical homogenization	mathematical model, 363–364
method	Frontal approach, 268, 270f, 285
short-time wave propagation, 567–569	Front tracking scheme, 496
Finite element exterior calculus (FEEC),	Functional viscosity matrix methods, 145–148
394–395, 397–398	Chebyshev polynomials, 147 intermediate matrix, 145
Finite element heterogeneous multiscale	local Lax–Friedrichs method, 145–146
method (FE-HMM)	path-conservative numerical schemes,
FE-HMM-L, 569-574	145–148
short-time wave propagation, 565-566	polynomial viscosity matrix (PVM), 147, 147 <i>t</i>
Finite element method (FEM), 394-396, 442,	Roe method, 145
564	well-balanced schemes, 157–158
Finite-element numerical homogenization	
method, 565–566	6
Finite volume (FV) discretization scheme,	G
390–393	GADGET, 473
advantages, 393	Galaxies, 466
essentially non-oscillatory (ENO) schemes,	Gas-dynamic equations, 63–64
391	Gas dynamics and spatial discretizations,
Gauss theorem, 390–391	305–308 Causa law, 387, 305
Maxwell equations, 390 numerical flux, 391	Gauss law, 387, 395 Gauss–Legendre quadrature formula, 148
· · · · · · · · · · · · · · · · · · ·	Gauss–Legendre quadrature formula, 148 Gauss–Lobatto quadrature oints, 90
predictor–corrector formulation, 392–393 Runge–Kutta schemes, 392–393	Gauss–Lobatto quadrature offits, 90 Gauss–quadrature rules, 371
vector-valued functions, 392	Gauss–Seidel methods, 314–315
Finite volume method (FVM), 213–214,	Gauss theorem, 390–391
365–366, 451	Generalized hydrostatic reconstruction (GHR),
astrophysics, 470–471	158–160
dual time stepping, 11	Generalized polynomial chaos (gPC)
explicit time-dependent solution techniques,	expansion, 123, 516
13–17	entropy variables, 518–520

Geometric estimate, for surfaces, 277–278	Hyperbolic correction, 388–389
Ghost points	Hyperbolic nets, 436–437, 437 <i>f</i>
high-order interior schemes, 24	discontinuous Galerkin method, 451–460
inflow boundary conditions, 28–29	from 3D to 1D net problem, 439
moving boundary treatment, 39, 39f	3D vs. 1D net problem, 442–443, 442f
outflow boundary conditions, 29–30	dynamic coupling conditions, 441
Glimm's Random Choice method, 59	finite volume methods, 451
GMRES, 334, 343 <i>f</i>	kinematic coupling conditions, 441
Godunov fluxes, 492 Godunov method, 142	nonlinear wave equation net problem,
*	443–446, 444 <i>f</i> weak formulation, 444–446, 445 <i>f</i>
dimensional splitting, 58 relative errors, 134, 135 <i>t</i>	one dimensional, 437–439
	vascular stent net problem, 439–443
Godunov solver, 354–356	•
Godunov's theorem, 84	Hyperbolic networks, 436–437 blood flow, 448–450
Goldstein–Taylor model, 122–123 Gravity, 468	data flow on telecommunication
•	networks, 447–448
Grazing collision limit, 413–414 Grid-free method, 472–473	discontinuous Galerkin method,
Grid-free method, 472–473	451–460
Н	finite volume methods, 451
Harmonic coordinate transformations, 551–556	of irrigation channels, 448
h-box method, 25	models for vehicular traffic, 446-447
•	one dimensional, 436–437
HCUSP, 307	
Helm-Helmholtz decomposition, 556	1
Higher order schemes, 148, 151, 404, 405	Immersed boundary method (IBM), 24
Higher-order schemes, 148–151, 494–495 reconstruction of states, 148–151	Immersed interface method, 24
	Implicit–explicit (IMEX) scheme, 109
Higher order temporal accuracy, 510	1 1
Higher order temporal accuracy, 510 High-field limit, 119–120	Incomplete lower-upper (ILU), 337 Cuthill–McKee ordering, 340
High-order well-balanced schemes	Schur parallel preconditioner, 340
MUSCL reconstruction, 163, 164–165 <i>f</i>	Incompressible limit, 205–207
1d stationary problem, 163–166	Inexact Newton method, 335–336
quadrature formula, 163	Inflow side, 70–71
•	
reconstruction operator, 161	Inf-sup criterion, 219–220
shallow water system, 161	Initial surface mesh, 288, 288f, 293f
stationary solutions, 161–162	Interface connection, 489–490 Interface entropy condition, 489
High-performance computing, 473	Interface pressures, 66
Homogeneous equations, numerical methods discontinuous Galerkin (DG) methods,	•
367–368	Intergalactic medium, 466
finite difference methods, 366–367	Interior entropy condition, 487–488 Intermediate matrix, 145
finite volume methods, 365–366	Interpolation error, 274–275
	control, 276–277
residual distribution (RD) schemes, 368	
Hydrostatic pressure, 378 Hydrostatic reconstruction, 369–370	direct sonic boom simulation, 289–290 Interstellar medium (ISM), 467
Hyperbolic and kinetic equations	Inverse Lax—Wendroff procedure (ILW)
**	
exponential reformulation, 115–116 micro–macro decomposition, 117–118	Cartesian embedded boundary method, 26–27
penalization, 111–114	fifth-order ILW, 42–48
Hyperbolic conservation, 437	for inflow boundary conditions, 28–29
one dimensional, 437–438	interior schemes, 27
one difficusional, 737-730	matror senemes, 47

moving boundary treatment, for compressible inviscid flows, 38–42 numerical boundary conditions, for static geometry one-dimensional scalar conservation laws, 28–33 two-dimensional euler equations, 34–38 Inrigation channels, hyperbolic networks of, 448	Linear stability, 31 Linear transport equation, 118–119, 181 Lituya Bay mega-tsunami, 533–534, 534f Local coordinate system, 34, 34f Localized orthogonal decomposition (LOD) ε-independent error estimate, 559 fine scale discretization errors, 560 optimal error estimates, 560 regularity-independent estimate, 559 time-discretizations, 560–561 Local Lax–Friedrichs method, 145–146
Jacobian-Free Newton–Krylov methods, 336–337 Jacobian matrix, 35, 363–364 systems of equations, 72 Jameson–Schmidt–Turkel (JST) scheme, 308 Jin–Xin relaxation model, 105–107 Jones–Wilkins–Lee (JWL), 355–356 Journal of Computational Physics, 54 Jump condition, 167	Log-Euclidean framework, 273–274 Long-time wave propagation Boussinesq-type equation, 569–570 computational complexity, 574 dispersive effects, 573–574 fast Fourier transform algorithm, 573–574 finite difference approximation, 573–574 generalized FD-HMM scheme, 569–570 numerical homogenization methods, wave
Kapila multiphase model, 168 Kelvin–Helmholtz problem, 534–536, 535f Kinetic evolution models, 404–405	equations, 572–574 Low-order coupling methods, 48–49 LU decomposition methods, 313–314 LWR model. See Lighthill–Whitham–Richard (LWR) model
Kinetic flux vector splitting (KFVS) scheme, 108–109 Knudsen number, 107–108 k-point correlation marginal, 537	M Mach number, 204, 228 acoustic limit, 207–208
L Lagrange extrapolation, 25–26 for outflow boundary conditions, 29–30 Lagrange interpolation polynomials, 89–90	in subcritical flow, 55–56, 56 <i>f</i> Magnetohydrodynamics (MHD), 474 discretization, 397–398 model, 396–397
Lagrange multiplier method, 388–389, 425–426 Lagrangian-type method, 178 Landau-Fokker-Plank equation, 410–411	Mantel integral, 67–68 Mass conservation, 215 Material waves, 351 Mathematical model, 363–364 Maxwellian function, 115–116
Latitude-longitude mesh, 379 Lax-Friedrich flux, 27, 83–84, 95, 366 Lax-Friedrichs scheme, 495 Lax-Oleinik entropy, 486 Lax-Wendroff theorem, 352, 372–373	Maxwell's equations, 469 Boris correction, 387–388 Cartesian grids, 389–390 discontinuous Galerkin (DG) schemes, 393–394
Lebesgue constant, 89 Legendre Gauss-Lobatto quadrature rule, 376 Level set methods, 279, 355 Lighthill-Whitham-Richards (LWR) model, 446, 482–483	finite element methods, 394–396 FV schemes, 390–393 hyperbolic correction, 388–389 model, 386–387 Measure-valued solution, 536–537
Linear advection equation, 62, 63f Linearity-preserving (LP), 71	Menter SST models, 308 Mesh-free particle method, 178

Mesh generation, 1–2	systems of equations, 72
algorithm, 5–6	unsteady problems, 72–73
Cart3D, 5–7	wave models, 73
Cartesian mesh generator, 5, 7, 8f	Multilevel Monte Carlo (MLMC) method
geometry, 5	efficient implementation, 528
triangulation, 8	error and complexity analysis, 527-528
Metric-based mesh adaptation	MLMC-FVM algorithm, 526-527
boundary layers metric, 278–280	parallelization, 528
error estimates, 274–276	Multiphase flows, in porous media, 481-482
geometric estimate, for surfaces, 277-278	Multiple low MACH number
interpolation error, 276–277	acoustic-incompressible interactions,
metric tensors in, 271-272	208–213
robustness and performance, 272-274	acoustic limit, 207-208
Metric tensors, 271–272	diagnosis, 215-217
Micro-macro decomposition, 117-118	finite volume schemes, 213-214
Mimetic differencing, 64–65	incompressible limit, 205-207
Minmod function, 71–72	remedies, 217–221
MLMC-FVM algorithm, 526-527	Multiscale finite element method (MsFEM),
Momentum conservation, 215–216	553–555
Momentum equation, 218	Multiscale methods, heterogeneous media
Momentum interpolation method, 218–219	Aubin-Nitsche duality argument, 546-548
Monte Carlo method	computational complexity, 548
error and complexity analysis, 525-526	finite element space, 546–548
probability space, 524	finite element spaces, 546–548
Moving boundary treatment, for compressible	higher order spatial approximations,
inviscid flows	546–548
Cartesian mesh, 38–39	leap-frog method, 548
fifth-order boundary treatment, 39, 39 <i>f</i> , 42	multiscale coefficient, 546–548
ghost points, 39, 39f	oscillatory hyperbolic problems, 546–548
newly emerging points, 39, 39f	MUSCL method, 163, 164–165 <i>f</i> , 307
no-penetration boundary condition, 38–39	niesez memou, roz, roż roży, zor
Moving water equilibrium, 372–374	
Multidimensional effects, 356–358	N
Multidimensional physics, 69	Naive explicit scheme, 105–106
Multidimensional problems, 495	NASA Common Research Model, 343, 344f
Multidimensional Riemann problems, 63, 64 <i>f</i>	Navier–Stokes equations, 121–122, 196,
Multidimensional system	304–308, 363, 448–449
balance laws with a discontinuous flux, 499	dimensional upwinding, 60–61
conservation laws with source term, 498	N-body method, 472
Multidimensional upwinding	Newton-Krylov methods
bicharacteristic methods, 67–68	additional considerations and algorithm
CIR scheme, 65	parameters, 340–342
corners, 64–65	globalization, 338–339
corner transport methods, 62–64	GMRES, 334, 343 <i>f</i>
dimensional splitting, 58–60	implicit methods, 335
dimensional upwinding, 60–61	inexact, 335–336
edges, 64–65	Jacobian-free, 336–337
oblique wave methods, 61–62	NASA common research model, 343, 344 <i>f</i>
Poisson formulas, 75–78	nonsymmetric linear systems, 334
residual distribution	parallelization, 337–338
elliptic–hyperbolic splitting, 73–75	parallel scaling algorithm, 343, 344 <i>f</i>
NN scheme, 71–72	preconditioning, 337–338
N scheme, 70–71	pseudo-transient continuation, 334
13 SCHEINE, 70-71	pocudo transferit continuation, 337

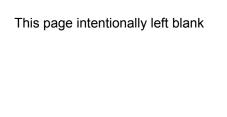
Spalart–Allmaras one-equation turbulence model, 342	positivity-preserving methods, 374–377 well-balanced methods, 368–374
steady and unsteady flows, 332	
NIRVANA, 474	O
NN scheme, 71–72	Oblique wave methods, 61-62
Nonbarotropic flows, 209	ODE system, 178
Nonflat bottom topography, 368–369	Ohm's law, 396–397
Nonlinear equation, of state, 355–356	One-dimensional scalar conservation laws,
Nonlinear hyperbolic conservation laws	496–497
dual problem, 249–250	with discontinuous flux, 497-498, 497f
formal adjoint problem, 249	with flux function, 496–497, 496f
Fréchet derivative, 248	smooth solutions
Galerkin orthogonality property, 247–248, 250	inverse Lax-Wendroff procedure, for
250	inflow boundary conditions, 28-29
mean-value linearization, 248	Lagrange Extrapolation, for outflow
one-dimensional scalar hyperbolic equation,	boundary conditions, 29-30
249 PDE problem, 247–248	linear stability, 31
Nonlinear wave equation net problem,	simplified inverse Lax-Wendroff
443–446, 444 <i>f</i>	procedure, 30–31
discontinuous Galerkin method for, 452–454	solutions containing discontinuities,
weak formulation, 444–446, 445f	31–33
Nonstandard discretization, 370	well-posedness theory for, 501
Nonstiff convection, 108	One dimensional sweeps, 356
Nonsymmetric linear systems, 334	Onera M6 model, 266–267
Nonuniqueness, 486	Operator splitting, 60, 76–78
No-penetration boundary condition, 37	Optimal entropy connection, 496–498
1	Oscillations, 224, 486
for inviscia flows, 38–39	
for inviscid flows, 38–39 N scheme, 70–71	Osher–Solomon scheme, 148
N scheme, 70–71	Osher–Solomon scheme, 148
N scheme, 70–71 Numerical extrema, 82–83	
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94	Osher–Solomon scheme, 148
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492	Osher–Solomon scheme, 148 P Parallelization, 473
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94	P Parallelization, 473 Parallel scaling algorithm, 343, 344f
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494	Osher–Solomon scheme, 148 P Parallelization, 473
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234,
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique,
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods astrophysics	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194 Particle method, 178–179, 181–190
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods astrophysics discontinuous Galerkin method, 471–472	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194 Particle method, 178–179, 181–190 particle approximation of initial data, 182
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods astrophysics discontinuous Galerkin method, 471–472 finite difference methods, 469–470	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194 Particle method, 178–179, 181–190 particle approximation of initial data, 182 particle function approximation, 186–190
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods astrophysics discontinuous Galerkin method, 471–472 finite difference methods, 469–470 finite volume methods, 470–471	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194 Particle method, 178–179, 181–190 particle approximation of initial data, 182 particle function approximation, 186–190 accuracy, 188–189
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods astrophysics discontinuous Galerkin method, 471–472 finite difference methods, 469–470 finite volume methods, 470–471 grid-free method, 472–473	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194 Particle method, 178–179, 181–190 particle approximation of initial data, 182 particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190
N scheme, 70–71 Numerical extrema, 82–83 Numerical fluxes, 93–94 aligned schemes, 491–492 higher-order schemes, 494 staggered schemes, 493 Numerical homogenization method asymptotic expansion, 564 long-time wave propagation, 569–574 short-time wave propagation FD-HMM, 567–569 FE-HMM, 565–566 Numerical illustrations cell-centred triangular meshes, 224–226 quadrangular Cartesian grids, 221–222 vertex-centred triangular meshes, 223–224, 226–227 Numerical methods astrophysics discontinuous Galerkin method, 471–472 finite difference methods, 469–470 finite volume methods, 470–471	P Parallelization, 473 Parallel scaling algorithm, 343, 344f Parametric representation, 267, 268f Parametrized flux limiter, 95 Partial differential equations (PDEs), 26, 234, 264–265 metric-based error estimates, 275 shallow water fluids, 132–133 Particle distortion, remeshing for, 190–194 Particle function approximation, 186–190 accuracy, 188–189 efficiency, 189–190 smooth vs. discontinuous solutions, 189 Particle merger, local redistribution technique, 193–194 Particle method, 178–179, 181–190 particle approximation of initial data, 182 particle function approximation, 186–190 accuracy, 188–189

Particle weights redistribution, 191–193	Postprocessing reconstruction, 374–375
convolution, 191–192	Preconditioned dissipation, 217–218 Predictor–corrector formulation, 392–393
interpolation, 192–193 Path-conservative methods, 369–370	
Path-conservative numerical schemes,	Pressure contour, 45, 46–47f
138–142	Pressure extractions, 289–290, 292 <i>f</i> Pressure fluctuations, 209–212, 222, 222–223 <i>f</i>
convergence and choice, 166–169	cell-centred triangular meshes,
entropy conservative methods, 148	224–225, 225 <i>f</i>
entropy-stable methods, 148	isolines, 226, 227 <i>f</i>
functional viscosity matrix methods,	vertex-centred triangular meshes, 226–227,
145–148	227f
Godunov method, 142	Primitive variables, 37
Osher–Solomon scheme, 148	Pseudo-transient continuation, 334
Roe methods, 144–145	
simple Riemann solvers, 142–144	Q
PDE-ODE coupling conditions	Quadrangular cartesian grids, 221–222
moving bottleneck simulation approaches,	Quadratic surface model, 277–278
457–460, 460 <i>f</i>	Quasi-neutral limit, in plasmas, 120–121
toll-gates and flux constraints, 456–457	Quasi-neutral regime, 120
Penalization method	
BGK operator, 111–112, 114	R
first-order IMEX discretization, 112	
Fokker–Planck–Landau equation, 113–114	RAMSES, 474
gas dynamics, 113–114	Random entropy solutions, 514–515
linear/simpler operator, 113–114	Rankine–Hugoniot conditions, 45, 139, 486
for nonlinear Boltzmann equation, 111–112	Rational viscosity matrix (RVM) methods, 148
nonlinear hyperbolic system, 113	Raviart–Thomas elements, 394–395
physical viscosity, 113–114	Real gas effects
stiff relaxation, 113–114	gases, mixture of, 353–355
Petrov–Galerkin problem, 558	nonlinear equation, of state, 355–356 Reconstruction operator, 149
Piecewise linear reconstruction, 494	Reconstruction polynomial, 82–83
PLUTO, 474 Point insertion, 280, 282, 281f	Residual averaging, 321–323
Point insertion, 280–282, 281 <i>f</i> Point smoothing, 282–283	Residual distribution
Point values, 86	elliptic–hyperbolic splitting, 73–75
Poisson equation, 387–388	NN scheme, 71–72
Poisson formulas, 75–78	N scheme, 70–71
Euler equations, application to, 76–78	systems of equations, 72
Polymer flooding model, 495–496	to unsteady problems, 72–73
Polynomial approximation, 393–394	wave models, 73
Polynomial reconstruction, 358–359	Residual distribution (RD) scheme, 55–56, 368
Polynomial viscosity matrix (PVM), 147, 147 <i>t</i>	Reynolds-averaged (RANS) equations, 308
Positivity-preserving methods, 470–471	Riccati equation, 320
mesh adaption technique, 374–375	Riemann invariants, 105–106
SWEs, 374–375	Riemann problem (RP), 142, 153, 364, 446-447
Posteriori error estimation	aligned schemes, 492
classification, 243	staggered schemes, 493-494
error representation formula, 243–244	Riemann solvers, 470–471
indicator, 246–247	accuracy effects, 358-360
linear advection, 246f	multidimensional effects, 356–358
numerical scheme, 243–244	real gas effects
Type I, 244	gases, mixture of, 353-355
Type II, 245–246	nonlinear equation, of state, 355-356

Rieper fix, 220–221	Short-time wave propagation
Rieper scheme, 226	FD-HMM, 567–569
Rock permeability, 481–482	FE-HMM, 565–566
Roe linearization, 144	macroscopic computational domain, 564
Roe matrix, 156–157, 328–329	periodic oscillatory tensors, 564
Roe methods, 213–214, 217–218, 226	Simple Riemann solvers (SRS), 142-144
path-conservative numerical schemes,	well-balanced property for, 154-156
144–145	Simplified inverse Lax-Wendroff procedure,
well-balanced schemes, 156-157	30–31
Roe-Turkel scheme, 217-220	Simplified limiter, 90–91
Runge-Kutta discontinuous Galerkin (RKDG)	Singularmapping technique, 493
method, 83	SLH, 475
Runge-Kutta (RK) method, 115-116, 311,	Slope limiter procedure, 368, 370–371
377, 392–393, 451–452	Smoothed particle hydrodynamics (SPH)
Runge-Kutta (RK) time discretization, 455	method, 473
Rusanov scheme, 357	Smoothing procedure, 284
	Smoothness indicators, 32–33
	Source terms, 67, 468
S	Spalart–Allmaras model, 308, 341
Saint-Venant equations. See Shallow water	Spalart–Allmaras one-equation turbulence
equations (SWEs)	model, 342
Saint-Venant system of equation, 448	Spatial scales, 466
Scalar conservation law, 82, 93–94	Spectral element methods, 394, 564
Second-order finite volume method, 471	Sputtering yield, 483
Second-order hyperbolic problems.	SSBJ design, Dassault Aviation, 288, 288f
See Multiscale methods, heterogeneous	SSP high-order time discretizations, 91–92
media	Staggered schemes, 493–494
Shallow water equations (SWEs)	Standard explicit numerical method, 122
difficulties, 362–363	Static geometry
mathematical model, 363-364	numerical boundary conditions for, 28–38
numerical methods	two-dimensional Euler equations in, 34–38
homogeneous equations, 364–368	Stationary solutions, 133
positivity-preserving methods, 374–377	high-order well-balanced schemes, 161–162
well-balanced methods, 368–374	perturbation of, 135, 136–137 <i>f</i>
roles, 362–363	point values, 151
shallow water	well-balanced methods for, 160–161
flows, channels with irregular geometry,	Steady-state solution techniques, 12–13
377–378	Stiff collision, 108
on sphere, 378–379	Stiff relaxation, 113–114, 119
two-layer equations, 379–380	Stochastic AP schemes, 122–123
Shallow water-related models	Stochastic collocation methods, 511
channels with irregular geometry, 377–378	standard collocation method, 520–521
on sphere, 378–379	stochastic finite volume method, 521–524
two-layer shallow water equations,	Stochastic finite volume method, 521–524
379–380	Stochastic Galerkin (sG) methods, 511,
Shallow water system	517–518
C-property, 134	finite-dimensional noise assumption, 515
functional viscosity matrix methods, 145	generalized polynomial chaos (gPC), 516
hydrostatic reconstruction technique,	Strain-rate tensor, 73
160–161	Strang splitting, 109–110
Roe methods, 157	Strong stability preserving (SSP) Runge–Kutta
stationary solution, 160	method, 91–94
Shockwave, 61	Superfluous dissipation, 59–60, 60 <i>f</i>

Supersonic flow, business jet, 269–270	numerical methods, 509–510
Surface integrals, 394	random entropy solutions, 514–515
Surface mesh generation, 266–267, 267f	random fields
Surface metric, 277–278	concrete representations, 512–514
Surface remeshing, 277–278	covariance function, 513
Swanson–Turkel–Rossow implementation, 327	E-valued random variable, 511
	Karhunen–Loeve expansion, 513–514
т	random Kelvin–Helmholtz problem,
T	534–536, 535 <i>f</i>
Temporal scales, 466–467	sG methods, 517–518
Thermodynamic pressure, 206–207	finite-dimensional noise assumption, 515
Time advancing scheme, 221	generalized polynomial chaos (gPC), 516
Time-dependent coefficients, 495	statistical solutions, 537–538
Time-marching methods	stochastic collocation methods
acceleration methods, 318–323	standard collocation method, 520–521
alternative approach, 304–305	stochastic finite volume method, 521–524
implicit schemes, 312–318	uncertain Orszag–Tang Vortex, 530–533,
model problem, 308–309	531–532 <i>f</i>
multigrid methods, 323–327	water flooding, 510
multistage schemes, 309–312	Uniform propagation
RANS equations, 327–332	L ² k Integrability, 430
Total variation bounded (TVB) limiter, 83, 368	lower bounds, 429
Total variation diminishing (TVD), 82	numerical moments bounds, 429
Transpire flow, 482–483	Semidiscrete H _k Sobolev Regularity, 430
Transonic flow, Onera-M6 wing, 286–288, 287f	stability condition, 428–429
Trapezium rule, 68	Unit mesh, 270, 280
Travelling wave, 167	Unsplit methods, 60–61
Two-dimensional Euler equations, in static	Unsteady problems, 72–73 Unstructured mesh
geometry, 34–38	adaptation
fifth-order boundary treatment, 35 ghost point, 38	boundary layers metric, 278–280
ILW procedure, 36–37	error estimates, 274–276
Jacobian matrix, 35	geometric estimate, for surfaces, 277–278
local coordinate system, 34, 34 <i>f</i>	interpolation error, 276–277
no-penetration boundary condition, 37	metric tensors in, 271–272
primitive variables, 37	robustness and performance, 272–274
Two-layer shallow water equations, 379–380	anisotropic meshes
Two layer sharlow water equations, 377 300	insertion and collapse, 280–282
	unsteady simulations, 282–283
U	generation
Uncertainty quantification (UQ), 501	surface mesh, 266–267
challenges, 511	volume mesh, 267–269
compressible Euler Equations, 529–530	numerical illustrations
entropy measure-valued solution, 536–537	adaptive loop, 284–285
Lituya Bay mega-tsunami, 533-534, 534f	blast prediction, 294–296
Monte Carlo method	boundary layer shock interaction,
error and complexity analysis, 525-526	290–294
probability space, 524	direct sonic boom simulation, 288–290
Multilevel Monte Carlo (MLMC) method	double mach reflection, 294–296
efficient implementation, 528	transonic flow around M6 wing, 286-288
error and complexity analysis, 527–528	wing-body configuration, 285
MLMC-FVM algorithm, 526-527	Upstream mobility flux scheme, 496–498,
parallelization, 528	496–497 <i>f</i>

Upwind schemes	harmonic coordinate transformations,
multiple low MACH number	551–553
acoustic-incompressible interactions,	LOD, 558–561
208–213	MsFEM, limited global information,
acoustic limit, 207–208	553–555
diagnosis, 215–217	operator upscaling, 551
finite volume schemes, 213-214	semidiscrete approximation, 550
incompressible limit, 205-207	in heterogeneous media with scale
remedies, 217–221	separation
numerical illustrations	long-time wave propagation, 569–574
cell-centred triangular meshes, 224-226	short-time wave propagation, 564–569
quadrangular Cartesian grids, 221–222	homogenization of, 549
vertex-centred triangular meshes,	Wave models, 73
223–224, 226–227	Wave propagation
relative errors, 134, 134 <i>t</i>	in heterogeneous media, 484
101dt1ve 611013, 154, 1541	in outer solar atmosphere, 485
	two-dimensional solar upper atmosphere,
V	499, 500 <i>f</i>
Vanishing diffusion limit, 167	Weak formulation, 393
Variable local time stepping, 318–319	Weak solution, 487
Vascular stent net problem, 439–443	
Vector processing, 473	Weighted average flux (WAF) method, 148
Vector-valued functions, 392	Weighted essentially nonoscillatory
Velocity difference, 61	(WENO) method, 25–26, 32–33, 83,
Velocity divergence, 76	86, 365–367
Velocity waves, 208	Weighted particle method, 179, 195–196
Vertex-based formula, 65–66	Well-balanced HLL scheme, 155–156
Vertex-centred triangular meshes, 223–224,	Well-balanced methods, 151–166
226–227, 227 <i>f</i>	functional viscosity matrix methods,
Vertex fluxes, 65	157–158
Viscosity-free methods, 168	generalized hydrostatic reconstruction
Viscous profile, 167	(GHR), 158–160
Vlasov equation, 179	high-order, 161–166
Vlasov-Maxwell solvers, 387	HLL scheme, 155–156
	for moving water, 372–374
Vlasov–Poisson–Fokker–Planck system, 119–120	Roe method, 156–157
	for SRSs, 154-156
Volume mesh generation, 267–269	for still water, 369–371
Vorticity, business jet, 269–270	subset of stationary solutions, 160-161
	Well-posedness theory, 501
W	Wing-body configuration, 285, 286f
Wave equation	WOLF, 284
in heterogeneous media without scale	
separation	Υ
engineering applications, 549–550	•
flux-transfer transformations, 555–558	Yee scheme, 389
G-convergence and perturbation	Yin–Yang mesh, 379
arguments, 561–563	
global fine scale computations, 553	7
global fine scale quadrature rules, 553	Zero relaxation limit, 105–106
groom time scare quadrature rules, 333	Zero remantion mint, 103–100



HANDBOOK OF NUMERICAL ANALYSIS

Series Editors

Q. Du, R. Glowinski, M. Hintermüller, E. Süli

Handbook of Numerical Methods for Hyperbolic Problems

Applied and Modern Issues

Volume Editors Rémi Abgrall and Chi-Wang Shu

Hyperbolic partial differential equations arise in numerous applications, the most important of these being fluid dynamics, including specific flows, such as multiphase flows, magneto-hydrodynamics and water waves. Other application areas include electromagnetism, kinetic theory, astrophysics, and traffic flow models and networks.

Solutions to hyperbolic partial differential equations often exhibit discontinuities, which makes their mathematical analysis and numerical approximation difficult. Over the last few decades, a large body of literature has emerged on the design, analysis and application of various numerical algorithms for the approximate solution of hyperbolic equations. This is the second of two volumes in which experts in different types of algorithms provide concise summaries in order to acquaint the reader with a range of numerical techniques, in a variety of different situations, and survey their relative advantages and limitations. While the first volume addresses basic and fundamental questions concerning numerical methods for hyperbolic problems, this second volume focuses on more applied topics.

