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What Is a Voting System?

We’ll first declare a list of alternatives to choose between.

A voting system, informally, should:

Take as Input:

A personal preference list of the
alternatives for each person.

Return as Output:

Return a societal preference list
of the alternatives.

Tom Gannon (University of Texas at Austin) Arrow’s Impossibility Theorem December 1, 2020 2 / 16



Example: Who should be math club president?

Alternatives: {Ryan, Shannon}
Voters: The people in this Zoom call

First Past the Post: Order the societal preference list by how many
times the person appeared as the top preference.

‘Weighted FPTP’: Same as above, but the current president’s vote
counts for 2 votes.

Last Past the Post: Order the societal preference list by how many
times the person appeared as the bottom preference.

Dictatorship: Declare the societal preference list is identical to
Tom’s personal preference list.

Tom Gannon (University of Texas at Austin) Arrow’s Impossibility Theorem December 1, 2020 3 / 16



Properties of Voting Systems: Pareto

Definition

If, when every person puts in the same personal preference list, the voting
system returns that list as the societal preference list, we say a voting
system satisfies the Pareto condition.

Examples: First Past the Post, ‘Weighted FPTP’, Dictatorship

Non-example: Last Past the Post
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Example: Who should get the Florida electoral votes?

Alternatives: {George W. Bush, Al Gore, Ralph Nader}
Voters: Eligible Florida residents

Candidate Number of Votes

George W. Bush 2,912,790
Al Gore 2,912,253
Ralph Nader 97,488

Table: Florida 2000 Election Results for FPTP Voting

Instant Runoff Voting - Voters rank all preferences. Declare person
who got the least number of votes last on the preference list, and
‘repeat’.

Could this have changed the results of the 2000 election?
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Properties of Voting Systems: IIA

Definition

We say that a voting system is independent of irrelevant alternatives
if...

Informally, for every pair of alternatives x , y we can know the relative
position of x and y on the societal preference list just from knowing
the relative position of x and y on all of the individual’s preference
lists.
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Question

Is there a voting system which satisfies both the pareto condition and
is independent of irrelevant alternatives?

Answer: Yes, a dictatorship!

Okay, are there any others?
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Arrow’s Impossibility Theorem

Theorem (Arrow’s Impossibility Theorem)

Assume that V is a voting system with more than two alternatives which
satisfies the Pareto condition and is independent of irrelevant alternatives.
Then V is a dictatorship.

Corollary

There are no voting systems with more than two alternatives which satisfy
the Pareto condition, independence of irrelevant alternatives, and are not a
dictatorship.

Break. (Questions?)
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Warm Up: No Ties

Proposition

Assume we have a voting system with more than two alternatives which
satisfies Pareto and IIA. Then the voting system can produce no ties.

Proof:

If
Left Side of Room Right Side of Room

a > b b > a
7→ a = b,

then
Left Side of Room Right Side of Room

a > c > b c > b > a
7→ c > b = a,

and
Left Side of Room Right Side of Room

a > b > c b > c > a
7→ a = b > c .

By IIA,
Left Side of Room Right Side of Room

a > c c > a
7→ c > a and a > c .

A contradiction. �
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Dictating Sets

Definition

We say a subset S of voters are a dictating set if, whenever everyone in S
puts the same personal preference list into the voting system, that list is
the societal preference list, regardless of what anyone else votes.

Example: The set of all voters is a dictating set.

Note: If S is a set with one element, then S is a dictating set if and
only if the person in S is a dictator.
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Definitions: Monotonicity and Forcing
Simplifying Assumption: We will assume our voting system is monotonic:

Definition

A voting system is monotonic if for all alternatives a, b, the following
property holds:

If
Left Side of Room Everyone Else

a > b b > a
7→ a > b

and some people in the ‘everyone else’ part switch their vote to a > b then
the societal preference list still has a > b.

Idea: Assumption allows us to focus on worst case scenario.

Definition

Given two alternatives a, b we say that a subset S of voters can force
a > b if

People in S Everyone Else

a > b ?
7→ a > b.
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Outline of Proof

Theorem will follow directly from these two claims:

Forcing Lemma

If a subset of voters X can force a > b and we partition X = L tM, then
for any alternative c , either L can force a > c or M can force c > b.

Proposition

If X can force some element a over some element b, then X can force any
element over any other element, i.e. X is a dictating set.
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Forcing Lemma

Forcing Lemma

If a subset of voters X can force a > b and we partition X = L tM, then
for any alternative c , either L can force a > c or M can force c > b.

Proof : We know
L M Everyone Else

a > b > c c > a > b b > c > a
7→ a > b (but

don’t know where c lies).

Either the output is c > a > b or a > c .

If the output is c > a > b, then M can force c > b.

If the output has a > c, then L can force a > c .

Question: Can we gain any more information from this proof when
M = ∅? When L = ∅?

Tom Gannon (University of Texas at Austin) Arrow’s Impossibility Theorem December 1, 2020 13 / 16



Corollary of Forcing Lemma

Forcing Lemma For ∅
If a subset X can force a > b for two distinct alternatives a, b, then X can
force a > c and c > b for any third alternative c (meaning different from
a and b).

Corollary

If a subset X can force a > b for two distinct alternatives a, b, then X can
force b > a.

X can force a > b =⇒
Forcing a>b

X can force a > c.

X can force a > c =⇒
Forcing a>c

X can force b > c .

X can force b > c =⇒
Forcing b>c

X can force b > a.
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Any Set That Can Force Something is a Dictator

Corollary/Exercise

Use the forcing lemma to show that if X can force a > b then for any
distinct alternatives c , d , X can force c > d .

This proves our proposition!

Proposition

Any subset of people that can force a > b for some alternatives a, b is a
dictating set.
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Review

We showed

Proposition

Any subset of people that can force a > b for some alternatives a, b is a
dictating set.

and

Forcing Lemma

If a subset of voters X can force a > b and we partition X = L tM, then
for any third alternative c (meaning different from a and b), either L can
force a > c or M can force c > b.

which proves Arrow’s impossibility theorem! �
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