TOPOLOGICAL K-THEORY AND BOTT PERIODICITY

GEORGE TORRES

Abstract. This paper will derive the essential ideas of complex topological K-theory, with the aim of understanding and proving the Bott periodicity theorem.

1. Preliminaries

We begin with a few review concepts about vector bundles that will be necessary to construct topological K-theory. Let X be a compact, connected Hausdorff space. Recall that a vector bundle $p : E \to X$ is a surjection of topological spaces such that $p^{-1}(x)$ is has the structure of a vector space for every $x \in X$ with the additional local triviality property. Namely, for every $x \in X$, there exists an open neighborhood $U \subset X$ of x such that $p^{-1}(U) \cong U \times V$ for some vector space V. A vector bundle E is called trivial if $E \cong X \times V$.

Standard operations on vector spaces are also valid on vector bundles, such as direct sum and tensoring. We denote $\text{Vect}_k(X)$ to be the set of isomorphism classes of complex k dimensional vector bundles on X. The idea of K theory is to make this into a group.

Proposition 1.1. For any vector bundle $p : E \to X$, there exists a bundle $p' : E' \to X$ such that $E \oplus E'$ is trivial.

Proof. Take a partition of unity on a (finite) trivializing cover on X to build maps $g_i : E \to V$ that are linear injections over each trivial neighborhood. Then set $g : E \to V^\oplus N$ by $g = (g_i)$ and consider the map $f : E \to X \times V^\oplus N$ given by (p, g). Then $p : E \to X$ is a sub-bundle of the trivial bundle $X \times V^\oplus N$, and so we can take $p' : E' \to X$ to be the orthogonal complement (with respect to a choice of inner product). See Hatcher [1] §1.1 for more detail.

In the presence of a nondegenerate inner product, it is also true that any short exact sequence $0 \to E_1 \to E_2 \to E_3 \to 0$ of vector bundles splits. This is because $E_2 \cong E_1 \oplus E_3$ always, but we can also identify $E_3 \cong E_2/E_1 \cong E_1^\perp$, so $E_2 \cong E_1 \oplus E_3$.

Definition 1.2. Given a vector bundle $p : E \to X$ and a map $f : Y \to X$, the pullback of the bundle $p : E \to X$ is:

$$f^*E := \{(v, y) \in E \times Y \mid p(v) = f(y)\}$$

with map $q : f^*E \to Y$ given by projection onto the second component.

An important fact about pullbacks is that the respect homotopy equivalences. That is, if $f, g : Y \to X$ are homotopic, then f^*E and g^*E are isomorphic as vector bundles. As a result, there is a one-to-one correspondence between $\text{Vect}_k(X)$ and $\text{Vect}_k(Y)$ whenever X and Y are homotopically equivalent.

Date: April 29, 2017.
2. Complex K-theory

We now consider vector bundles whose fibers are complex vector spaces, with the goal of proving the Bott Periodicity Theorem.

Definition 2.1. Let M be a commutative monoid. The Grothendieck group \overline{M} associated to M is the left adjoint to the forgetful functor $\mathcal{F}: \text{AbGrp} \Rightarrow \text{Mon}$. More concretely, the Grothendieck group is an abelian group structure given by direct sum. There are also distinguished elements $[\text{“smallest” abelian group containing } N]$, which are the k dimensional trivial bundles. We define K-theory as follows. Define an equivalence relation \sim on $\text{Vect}(X)$ by:

$$E_1 \sim E_2 \iff \exists \mathcal{E}_k \text{ such that } E_1 \oplus \mathcal{E}_k \cong E_2 \oplus \mathcal{E}_k$$

If $E_1 \sim E_2$, we call E_1 and E_2 stably isomorphic. Now, consider $\text{Vect}(X) \times \text{Vect}(X)$ with equivalence relation \sim:

$$(E_1, F_1) \sim (E_2, F_2) \iff E_1 \oplus F_1 \sim E_2 \oplus F_2$$

Example 2.2. The Grothendieck group of the natural numbers is the integers: $\mathbb{N} \cong \mathbb{Z}$. Indeed, the “smallest” abelian group containing \mathbb{N} is \mathbb{Z}.

For X as above, the set of isomorphism classes of vector bundles $\text{Vect}(X)$ has a natural monoid structure given by direct sum. There are also distinguished elements $[\mathcal{E}_k]$, which are the k dimensional trivial bundles. We define $K(X) := \text{Vect}(X)$, the Grothendieck group of $\text{Vect}(X)$. We can give an explicit characterization of $K(X)$ as follows. Define an equivalence relation \sim_s on $\text{Vect}(X)$ by:

$$E_1 \sim_s E_2 \iff \exists \mathcal{E}_k \text{ such that } E_1 \oplus \mathcal{E}_k \cong E_2 \oplus \mathcal{E}_k$$

If $E_1 \sim_s E_2$, we call E_1 and E_2 stably isomorphic. Now, consider $\text{Vect}(X) \times \text{Vect}(X)$ with equivalence relation \sim:

$$(E_1, F_1) \sim (E_2, F_2) \iff E_1 \oplus F_1 \sim_s E_2 \oplus F_2$$

Proposition 2.3. The relations \sim_s and \sim are indeed equivalence relations.

Proof. Symmetry and reflexivity are obvious for both, so we verify transitivity. Suppose $E \sim_s F \sim_s G$. Then there are k and ℓ such that:

$$E \oplus \mathcal{E}_k \cong F \oplus \mathcal{E}_k$$

$$F \oplus \mathcal{E}_\ell \cong G \oplus \mathcal{E}_\ell$$

Then:

$$E \oplus F \oplus \mathcal{E}_{k+\ell} \cong F \oplus G \oplus \mathcal{E}_{k+\ell}$$

Let F' be a trivializing bundle for F, such that $F \oplus F' \cong \mathcal{E}_j$. Then adding F' to both sides shows $E \sim_s G$. The same can be done to show transitivity of \sim. \square

There is an abelian group structure on $K(X) = \text{Vect}(X) \times \text{Vect}(X)/\sim$, with addition given by $(E_1, E_2) + (F_1, F_2) = (E_1 \oplus F_1, E_2 \oplus F_2)$ and identity $0 := (\mathcal{E}_0, \mathcal{E}_0) \sim (E, E)$. Subtraction can be achieved by adding reversed components:

$$(E, F) - (E, F) := (E, F) + (F, E) = (E \oplus F, F \oplus E) \sim (\mathcal{E}_0, \mathcal{E}_0)$$

Then we claim:

Proposition 2.4. $K(X) \cong K(X)$.

Proof. First we note that $K(X)$ is isomorphic to a quotient of the free \mathbb{Z} module with generators $[E] \in \text{Vect}(X)$ via the identification $(E, F) \leftrightarrow [E] - [F]$ subject to the relation \sim above. Using this characterization, we will show that $K(X)$ satisfies the universal property of the Grothendieck group, which is sufficient to show $K(X) \cong K(X)$. We define the map $i : \text{Vect}(X) \to K(X)$ by $[E] \mapsto [E] - \mathcal{E}_0$.
Let \(f : \text{Vect}(X) \to A \) be a monoid homomorphism, and define \(g : K(X) \to A \) by \([E] - [F] \mapsto f(E)\).
Since \(i \) is a monoid injection, \(g \) is unique. Since \(f = gi \), we have found the desired map. \(\square \)

Example 2.5. Let \(X = * \) be a point. Then all bundles are trivial, and \(\text{Vect}(X) = \{[\mathcal{E}_k]\}_{k \in \mathbb{N}} \cong \mathbb{N}. \)
We saw earlier that \(\overline{\mathbb{N}} \cong \mathbb{Z} \), so \(K(*) \cong \mathbb{Z}. \)

Not only is \(K(X) \) a group for any compact \(X \), but \(K(-) \) has the structure of a functor. To see this, let \(f : X \to Y \) be a morphism of topological spaces. Then there is an induced map \(f^* : \text{Vect}(Y) \to \text{Vect}(X) \) given by taking pullbacks, which descends to a map \(K(Y) \to K(X) \). It is easy to verify that this satisfies all of the necessary functor axioms.

We can also define the reduced \((K(X) \oplus \mathbb{Z}) \) by specifying a basepoint \(i : * \to X \). It is defined as the kernel of the induced map \(i^* : K(X) \to K(*) \cong \mathbb{Z}. \) Explicitly, since \(X \) is connected, \(i^* \) acts by sending \(E \) to \(\pi_1 \) rank, extending linearly to all of \(K(X) \). The kernel is generated by elements of the form \(F - E \), where \(F \) and \(E \) have the same rank. The contraction map \(g : X \to * \) induces a split short exact sequence:

\[
0 \longrightarrow \tilde{K}(X) \longrightarrow K(X) \longrightarrow \mathbb{Z} \longrightarrow 0
\]

Thus \(K(X) \cong \tilde{K}(X) \oplus \mathbb{Z}. \)

Remark 2.6. There is an alternative definition of \(\tilde{K}(X) \) that is perhaps easier to work with. Two bundles \(E, F \in \text{Vect}(X) \) are called stably equivalent if there are trivial bundles \(\mathcal{E}_k, \mathcal{E}_t \) such that \(E \oplus \mathcal{E}_k \cong F \oplus \mathcal{E}_t \). Then \(\tilde{K}(X) \) can be defined as \(\text{Vect}(X) \) modulo stable equivalence. It is not hard to verify that these definitions are compatible.

2.1. Ring Structure of K-groups

The tensor operation on \(\text{Vect}(X) \) extends to a multiplicative structure on \(K(X) \) as follows. For elements \((E_1, F_1)\) and \((E_2, F_2)\), their product is:

\[
(E_1, F_1) \cdot (E_2, F_2) = ((E_1 \otimes E_2) \oplus (F_1 \otimes F_2), (F_1 \otimes E_2) \oplus (E_1 \otimes F_2))
\]

This is consistent with the familiar rule:

\[
(e_1 - f_1)(e_2 - f_2) = (e_1e_2 + f_1f_2) - (f_1e_2 + e_1f_2)
\]
Under this definition, the trivial line bundle \(\mathcal{E}_1 \) is the unit in \(K(X) \). All of the unital ring axioms are easy to check, so that \(K(X) \) is a commutative ring with unit. We then have \(K(-) \) and \(\tilde{K}(-) \) as functors from the homotopy category of compact, Hausdorff spaces to rings.

Definition 2.7. The canonical (or tautological) bundle \(H^k \) on \(\mathbb{CP}^k \) is the bundle with total space \(E = \{(\ell, z) \in \mathbb{CP}^k \times \mathbb{C}^{k+1} | z \in \ell\} \) and map \(p : E \to \mathbb{CP}^k \) given by projecting onto the first component.

Proposition 2.8. Let \(H = H^1 \) be the canonical bundle on \(\mathbb{CP}^1 = S^2 \). Then \((H, \mathcal{E}_1)^2 = 0 \).

Proof. The key idea is to use the classification of vector bundles on spheres. That is, there is a bijection between homotopy classes of maps \(S^{k-1} \to GL_n(\mathbb{C}) \) (called clutching functions) and vector bundles of rank \(n \) on \(S^k \). This bijection in explained and proved in §1.2 of [1]. For our purposes, we will use the fact that the bundles \(H \oplus H \) and \((H \oplus H) \oplus \mathcal{E}_1 \) have clutching functions:

\[
f(z) = \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix}, \quad g(z) = \begin{pmatrix} z^2 & 0 \\ 0 & 1 \end{pmatrix}
\]
We claim that these are homotopic in $GL_2(\mathbb{C})$. To see this, note that the identity and the component-reversing map are homotopic via:

$$F(t) = \frac{1}{2} \begin{pmatrix} e^{i\pi t} + 1 & 1 - e^{i\pi t} \\ 1 - e^{i\pi t} & e^{i\pi t} + 1 \end{pmatrix}$$

We can then use this homotopy to switch a factor of z along the diagonal to get $f \sim g$. That is:

$$t \mapsto \begin{pmatrix} 1 & 0 \\ 0 & z \end{pmatrix} F(t) \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix} F(t)$$

is a homotopy of f and g. Then the bundles representing f and g, namely $H \oplus H$ and $(H \otimes H) \oplus E_1$, must be isomorphic. Then:

$$H \oplus H \cong (H \otimes H) \oplus E_1 \Rightarrow ((H \otimes H) \oplus E, H \oplus H) = 0$$

$$\iff ((H \otimes H) \oplus (E \oplus E_1), (H \otimes E_1) \oplus (H \otimes E_1)) = 0$$

$$\iff (H, E_1) \cdot (H, E_1) = 0$$

This allows us to identify $\mathbb{Z}[H]/(H - 1)^2$ with a subring of $K(S^2)$. In fact, that subring is exactly $\tilde{K}(S^2)$. This is a special case of the Fundamental Product Theorem:

Theorem 2.9. For any Hausdorff space X, the rings $K(X) \otimes \mathbb{Z}[H]/(H - 1)^2$ and $K(X \times S^2)$ are isomorphic.

Remark 2.10. It is easy to write down what the map should be, but not easy to prove it is an isomorphism. For any X, Y, there is a natural map (called the external product) $\mu : K(X) \otimes K(Y) \to K(X \times Y)$ given by $\mu(x \otimes y) = \pi_1(x) \cdot \pi_2(y)$, where π_1 and π_2 are the projections from $X \times Y$. If $i : \mathbb{Z}[H]/(H - 1)^2 \to K(S^2)$ is the inclusion, then composing μ and $1 \otimes i$ gives the desired map. See §2.2 of [1] for a proof that this is an isomorphism.

3. **Bott Periodicity**

The Bott periodicity theorem (for the complex vector bundle case) states that the K–theory of spheres is periodic with period 2. To prove this, we will need to know some basic information about how $K(\cdot)$ and $\tilde{K}(\cdot)$ behave under exact sequences of spaces.

Proposition 3.1. Let X be a compact Hausdorff space, and let $A \subset X$ be closed. Denote $i : A \to X$ to be the inclusion and $q : X \to X/A$ to be the quotient by A. Then the induced sequence:

$$\tilde{K}(X/A) \xrightarrow{i^*} \tilde{K}(X) \xrightarrow{q^*} \tilde{K}(A)$$

is exact.

Proof. To show $i^* q^* = 0$, we note that the composition $q i : A \to X/A$ sends A to the point A/A. For any bundle $E \in \text{Vect}(X/A)$ the pullback $(q i)^* (E)$ is the pullback in the diagram:

$$\begin{array}{ccc}
E \times_{X/A} A & \longrightarrow & E \\
\downarrow & & \downarrow \\
A & \xrightarrow{q i} & X/A
\end{array}$$

But since $q i$ is a constant map, we have $E \times_{X/A} A \cong p^{-1}(A/A) \times A$, which is a trivial bundle. Therefore $i^* q^* (E) = (q i)^* (E)$ is trivial, and therefore equivalent to the zero element of $\tilde{K}(A)$.

1The straight line homotopy is singular at $t = 1/2$, so we use this instead
To show that \(\ker(i^*) \subseteq \text{im}(q^*) \), suppose that \(E \in \text{Vect}(X) \) is stably trivial over \(A \); that is, when restricted to \(A \), we have \(E \oplus E_k \cong E \) for some \(k \in \mathbb{Z} \). Since \((E, E_0) \sim (E \oplus E_k, E_k)\) in \(\text{Vect}(X) \), we may assume that \(E \) is actually trivial over \(A \). Let \(\phi : p^{-1}(A) \to \mathbb{C}^\ell \times A \) be a trivialization and let \(E' = E/\phi \) be the space formed by identifying \(\phi^{-1}(a, v) \) and \(\phi^{-1}(b, v) \) for all \(a, b \in A \). Then there is a natural map \(p' : E' \to X/A \); we claim that \(E' \to X/A \) is a vector bundle over \(X/A \). Since every point in \(X/A \) outside of \(A/A \) has a natural trivializing neighborhood inherited from the bundle \(p : E \to X \), we only need to check that \(A/A \) has a trivializing neighborhood. Take trivializing open sets \(\{ U_i \} \) covering \(A \subset X \); since \(p : E \to A \) is trivial over \(A \), we can construct a trivialization on \(\bigcup U_i \) using partitions of unity. Therefore there is an open neighborhood \(U = \bigcup U_i \) of \(A \) over which \(E \) is trivial, and therefore \(U/\phi \) is a trivializing neighborhood of \(A/A \). Therefore \(E' \in \text{Vect}(X/A) \).

Finally, we claim that \(E = q^*(E/\phi) \). To see this, we note that \(q^*(E/\phi) \) is, by definition, the pullback:

\[
\begin{array}{ccc}
q^*(E/\phi) & \longrightarrow & E' \\
\downarrow & & \downarrow p' \\
X & \longrightarrow & X/A
\end{array}
\]

It is easy to check that \(E \) satisfies the universal property of the pullback, so that \(E \cong q^*(E/\phi) \). Therefore \(E \in \text{im}(q^*) \).

Corollary 3.2. For a sequence \(A \to X \to X/A \) as above, there is an induced long exact sequence:

\[
\cdots \longrightarrow \widetilde{K}(S^nX) \longrightarrow \widetilde{K}(SA) \longrightarrow \widetilde{K}(X/A) \longrightarrow \widetilde{K}(X) \longrightarrow \widetilde{K}(A)
\]

Where \(S^nX \) denotes the \(n \)-fold suspension of \(X \).

Proof. For any space \(Y \), let \(CY \) denote the cone on \(Y \). Consider the following sequence of inclusions:

\[
A \hookrightarrow X \hookrightarrow X \cup CA \hookrightarrow (X \cup CA) \cup CX \hookrightarrow \cdots
\]

Where at each step we glue a cone on the previous object to the current object. We note that \(X \cup CA \) is homotopy equivalent to \(X/A \) via collapsing \(CA \). Similarly, \((X \cup CA) \cup CX \) is homotopy equivalent to \((X \cup CA)/X \cong SA\), and so on. Since \(\widetilde{K}(X) \cong \widetilde{K}(Y) \) for \(X \) and \(Y \) homotopic, we have an induced sequence of maps:

\[
\begin{array}{cccc}
\cdots & \longrightarrow & \widetilde{K}((X \cup CA) \cup CX) & \longrightarrow \\
\downarrow & & \downarrow & \cong \\
\cdots & \longrightarrow & \widetilde{K}(SA) & \longrightarrow \\
\downarrow & & \downarrow & \cong \\
\cdots & \longrightarrow & \widetilde{K}(X/A) & \longrightarrow \\
\downarrow & & \downarrow & \cong \\
\cdots & \longrightarrow & \widetilde{K}(X) & \longrightarrow \\
\downarrow & & \downarrow & \\
\cdots & \longrightarrow & \widetilde{K}(A) & \longrightarrow \\
\end{array}
\]

Further, this is exact by applying the previous proposition at each point in the sequence.

Remark 3.3. At this point, things smell very cohomological. For any positive integer \(n \), if we define \(\widetilde{K}^{-n}(X) := \widetilde{K}(S^nX) \), it is possible to show that \(\widetilde{K}^{-n}(\cdot) \) gives rise to a cohomology theory. We have already shown the existence of the long exact sequence, and the remaining axioms are not too hard to check.

Proposition 3.4. The reduced \(K \)-theory of a product \(X \times Y \) decomposes as:

\[
\widetilde{K}(X \times Y) \cong \widetilde{K}(X \wedge Y) \oplus \widetilde{K}(X) \oplus \widetilde{K}(Y)
\]
Proof. Consider the long exact sequence induced by the sequence \(X \vee Y \to X \times Y \to X \land Y \). Note that, if \(\Sigma(-) \) denotes taking the reduced suspension, we have \(\Sigma(X \vee Y) = \Sigma X \vee \Sigma Y \). Therefore, since \(\Sigma Z \) is homotopy equivalent to \(S Z \), we have:

\[
\widetilde{K}(S^n(X \vee Y)) \cong \widetilde{K}(\Sigma^n(X \vee Y)) \cong \widetilde{K}(\Sigma^n X \vee \Sigma^n Y) \cong \widetilde{K}(\Sigma^n X) \oplus \widetilde{K}(\Sigma^n Y)
\]

Where the last isomorphism comes from the restrictions to \(\Sigma^n X \) and \(\Sigma^n Y \). Then the long exact sequence becomes:

\[
\cdots \to \widetilde{K}(S(X \times Y)) \xrightarrow{j_1} \widetilde{K}(SX) \oplus \widetilde{K}(SY) \to \widetilde{K}(X \wedge Y) \to \widetilde{K}(X \times Y) \xrightarrow{j_0} \widetilde{K}(X) \oplus \widetilde{K}(Y)
\]

We claim the maps \(j_0 \) and \(j_1 \) are surjections. Let \((a, b) \in \widetilde{K}(X) \oplus \widetilde{K}(Y)\) and define \(\sigma_0(a, b) = \pi_1(a) + \pi_2(b)\), where \(\pi_1\) and \(\pi_2\) are the component projections on \(X \times Y\). Then:

\[
j_0(\sigma(a, b)) = j_0(\pi_1(a)) + j_0(\pi_2(b)) = (a, 0) + (0, b) = (a, b)
\]

Therefore \(j_0\) is surjective. Similarly, define \(\sigma_1(a, b) = (S\pi_1)^*(a) + (S\pi_2)^*(b)\). By the same reasoning \(j_1\) is also surjective. In particular, the last three terms comprise a short exact sequence which is split by \(\sigma_0\). The desired result follows from the splitting lemma.

We can now construct the reduced version of the external product \(\mu : K(X) \otimes K(Y) \to K(X \times Y)\) from Remark 2.10. Recall that \(K(Z) \cong \widetilde{K}(Z) \oplus \mathbb{Z}\), hence by the previous proposition we have:

\[
K(X \times Y) \cong \widetilde{K}(X \wedge Y) \oplus \widetilde{K}(X) \oplus \widetilde{K}(Y) \oplus \mathbb{Z}
\]

Similarly:

\[
K(X) \otimes K(Y) \cong (\widetilde{K}(X) \oplus \mathbb{Z}) \otimes (\widetilde{K}(Y) \oplus \mathbb{Z})
\]

\[
= \widetilde{K}(X) \otimes \widetilde{K}(Y) \oplus \widetilde{K}(X) \otimes \widetilde{K}(Y) \oplus \mathbb{Z}
\]

Therefore restricting \(\mu\) to the \(\widetilde{K}(X) \otimes \widetilde{K}(Y)\) component gives us a map to \(\widetilde{K}(X \wedge Y)\), which one can check is well-defined and unique. We call this the reduced external product \(\tilde{\mu} : \widetilde{K}(X) \otimes \widetilde{K}(Y) \to \widetilde{K}(X \wedge Y)\). We denote \(\tilde{\mu}(a \otimes b) = a \ast b\).

Theorem 3.5. (Bott Periodicity) For \(X\) a compact Hausdorff space, there is an isomorphism \(\widetilde{K}(X) \to \widetilde{K}(S^2 X)\).

Proof. Recall that \(\widetilde{K}(S^2)\) is isomorphic to \(\mathbb{Z}\) with generator \((H - 1)\). Therefore there is a natural isomorphism:

\[
\widetilde{K}(X) \xrightarrow{\cong} \widetilde{K}(S^2) \otimes \widetilde{K}(X)
\]

\[
a \longmapsto (H - 1) \otimes a
\]

We can then take the reduced external product \(\tilde{\mu}((H - 1) \otimes a) \in \widetilde{K}(S^2 \wedge X) \cong \widetilde{K}(S^2X)\). By Theorem 2.9, the map \(\mu\) (and therefore \(\tilde{\mu}\)) is an isomorphism. Thus \(a \mapsto (H - 1) \ast a\) is an isomorphism of \(\widetilde{K}(X)\) and \(\widetilde{K}(S^2 X)\).

\[
\square
\]

References
