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Lecture 6
Basic Probability

Probability spaces

A mathematical setup behind a probabilistic model consists of a sam-
ple space Ω, a family of events and a probability P. One thinks of
Ω as being the set of all possible outcomes of a given random phe-
nomenon, and the occurrence of a particular elementary outcome
ω ∈ Ω as depending on factors whose behavior is not fully known
to the modeler. The family F is taken to be some collection of sub-
sets of Ω, and for each A ∈ F , the number P[A] is interpreted as
the likelihood that some ω ∈ A occurs. Using the basic intuition that
P[A ∪ B] = P[A] + P[B], whenever A and B are disjoint (mutually
exclusive) events, we conclude P should have all the properties of a
finitely-additive measure. Moreover, a natural choice of normalization
dictates that the likelihood of the certain event Ω be equal to 1. A reg-
ularity assumption1 is often made and P is required to be σ-additive. 1 Whether it is harmless or not leads to

a very interesting philosophical discus-
sion, but you will not get to read about
it in these notes

All in all, we can single out probability spaces as a sub-class of mea-
sure spaces:

Definition 6.1. A probability space is a triple (Ω,F , P), where Ω is a
non-empty set, F is a σ-algebra on Ω and P is a probability measure
on F .

In many (but certainly not all) aspects, probability theory is a part
of measure theory. For historical reasons and because of a different
interpretation, some of the terminology/notation changes when one
talks about measure-theoretic concepts in probability. Here is a list of
what is different, and what stays the same:

1. We will always assume - often without explicit mention - that a
probability space (Ω,F , P) is given and fixed.

2. Continuity of measure is called continuity of probability, and, un-
like the general case, does not require and additional assumptions
in the case of a decreasing sequence (that is, of course, because
P[Ω] = 1 < ∞.)
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3. A measurable function from Ω to R is called a random variable2. 2 Random variables are usually denoted
by capital letters such as X, Y Z, etc.Typically, the sample space Ω is too large for analysis, so we often

focus our attention to families of real-valued functions3 X on Ω. 3 If we interpret the knowledge of ω ∈ Ω
as the information about the true state
of all parts of the model, X(ω) will typ-
ically correspond to a single numerical
aspect ofi it.

This way, X−1([a, b]) is the set of all elementary outcomes ω ∈ Ω
with for which X(ω) ∈ [a, b]. If we want to be able to compute the
probability P[X−1([a, b])], the set X−1([a, b]) better be an event, i.e.,
X−1([a, b]) ∈ F . Hence the measurability requirement.

Sometimes, it will be more convenient for random variables to
take values in the extended set R̄ of real numbers. In that case we
talk about extended random variables or R̄-valued random vari-
ables.

4. We use the measure-theoretic notation L0,L0
+,L0(R̄), etc. to denote

the set of all random variables, non-negative random variables, ex-
tended random variables, etc.

5. Let (S,S) be a measurable space. An (F ,S)-measurable map X :
Ω→ S is called a random element (of S).

Random variables are random elements, but there are other im-
portant examples. If (S,S) = (Rn,B(Rn)), we talk about random
vectors. More generally, if S = RN and S = ∏n B(R), the map
X : Ω → S is called a discrete-time stochastic process. Sometimes,
the object of interest is a set (the area covered by a wildfire, e.g.)
and then S is a collection of subsets of Rn. There are many more
examples.

6. The class of null-sets in F still plays the same role as it did in mea-
sure theory, but now we use the acronym a.s. (which stands for
almost surely) instead of the measure-theoretic a.e.

7. The Lebesgue integral with respect to the probability P is now
called expectation and is denoted by E, so that we write

E[X] instead of
∫

X dP, or
∫

Ω
X(ω)P[dω].

For p ∈ [1, ∞], the Lp spaces are defined just like before, and have
the property that Lq ⊆ Lp, when p ≤ q.

8. The notion of a.e.-convergence is now re-baptized as a.s. conver-
gence, while convergence in measure is now called convergence in
probability. We write Xn

a.s.→ X if the sequence {Xn}n∈N of random

variables converges to a random variable X, a.s. Similarly, Xn
P→ X

refers to convergence in probability. The notion of convergence in

Lp, for p ∈ [1, ∞] is exactly the same as before. We write Xn
Lp
→ X if

{Xn}n∈N converges to X in Lp.

9. Since the constant random variable X(ω) = M, for ω ∈ Ω is
integrable, a special case of the dominated convergence theorem,
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known as the bounded convergence theorem holds in probability
spaces:

Theorem 6.2 (Bounded convergence). Let {Xn}n∈N be a sequence of
random variables such that there exists M ≥ 0 such that |Xn| ≤ M, a.s.,
and Xn → X, a.s., then

E[Xn]→ E[X].

10. The relationship between various forms of convergence can now be
represented diagramatically as

L∞

||

��
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""

Lp

}}
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P

where 1 ≤ p ≤ q < ∞ and an arrow A → B means that A implies
B, but that B does not imply A in general.

Distributions of random variables, vectors and elements

As we have already mentioned, Ω typically too big to be of direct use.
Luckily, if we are only interested in a single random variable, all the
useful probabilistic information about it is contained in the probabili-
ties of the form4 P[X ∈ B], for B ∈ B(R). 4 It is standard to write P[X ∈ B] in-

stead of the more precise P[{X ∈ B}]
or P[{ω ∈ Ω : X(ω) ∈ B}]. Similarly,
we will write P[Xn ∈ Bn, i.o] instead of
P[{Xn ∈ Bn} i.o.] and P[Xn ∈ Bn, ev.]
instead of P[{Xn ∈ Bn} ev.]

The map B 7→ P[X ∈ B] is, however, nothing but the push-forward
of the measure P by the map X onto B(R):

Definition 6.3. The distribution of the random variable X is the prob-
ability measure µX on B(R), defined by

µX(B) = P[X−1(B)],

that is the push-forward of the measure P by the map X.

In addition to be able to recover the information about various prob-
abilities related to X from µX , one can evaluate any possible integral
involving a function of X by integrating that function against µX (com-
pare the statement to Problem 5.10):

Problem 6.1. Let g : R → R be a Borel function. Then g ◦ X ∈
L0−1(Ω,F , P) if and only if g ∈ L0−1(R,B(R), µX) and, in that case,

E[g(X)] =
∫

g dµX .
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In particular,

E[X] =
∫

R
xµX(dx).

Taken in isolation from everything else, two random variables X
and Y for which µX = µY are the same from the probabilistic point
of view. In that case we say that X and Y are equally distributed

and write X
(d)
= Y. On the other hand, if we are interested in their

relationship with a third random variable Z, it can happen that X and
Y have the same distribution, but that their relationship to Z is very
different. It is the notion of joint distribution that sorts such things
out. For a random vector X = (X1, . . . , Xn), the measure µX on B(Rn)

given by
µX(B) = P[X ∈ B],

is called the distribution of the random vector X. Clearly, the measure
µX contains the information about the distributions of the individual
components X1, . . . , Xn, because

µX1(A) = P[X1 ∈ A] = P[X1 ∈ A, X2 ∈ R, . . . , Xn ∈ R]

= µX(A×R× · · · ×R).

When X1, . . . , Xn are viewed as components in the random vector X,
their distributions are sometimes referred to as marginal distribu-
tions.

Example 6.4. Let Ω = {1, 2, 3, 4}, F = 2Ω, with P characterized by
P[{ω}] = 1

4 , for ω = 1, . . . , 4. The map X : Ω → R, given by X(1) =
X(3) = 0, X(2) = X(4) = 1, is a random variable and its distribution
is the measure 1

2 δ0 +
1
2 δ1 on B(R) (check that formally!), where δa

denotes the Dirac measure on B(R), concentrated on {a}.
Similarly, the maps Y : Ω → R and Z : Ω → R, given by Y(1) =

Y(2) = 0, Y(3) = Y(4) = 1, and Z(ω) = 1− X(ω) are random vari-
ables with the same distribution as X. The joint distributions of the
random vectors (X, Y) and (X, Z) are very different, though. The pair
(X, Y) takes 4 different values (0, 0), (0, 1), (1, 0), (1, 1), each with prob-
ability 1

4 , so that the distribution of (X, Y) is given by

µ(X,Y) =
1
4

(
δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)

)
.

On the other hand, it is impossible for X and Z to take the same value
at the same time. In fact, there are only two values that the pair (X, Z)
can take - (0, 1) and (1, 0). They happen with probability 1

2 each, so

µ(X,Z) =
1
2

(
δ(0,1) + δ(1,0)

)
.

We will see later that the difference between (X, Y) and (X, Z) is best
understood if we analyze the way the component random variables
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depend on each other. In the first case, even if the value of X is re-
vealed, Y can still take the values 0 or 1 with equal probabilities. In
the second case, as soon as we know X, we know Z.

More generally, if X : Ω → S, is a random element with values in
the measurable space (S,S), the distribution of X is the measure µX

on S , defined by µX(B) = P[X ∈ B] = P[X−1(B)], for B ∈ S .
Sometimes it is easier to work with a real-valued function FX de-

fined by
FX(x) = P[X ≤ x],

which we call the (cumulative) distribution function (cdf for short),
of the random variable5 X. The following properties of FX are easily 5 A notion of a (cumulative) distribution

function can be defined for random vec-
tors, too, but it is not used as often as
the single-component case, so we do not
write about it here.

derived by using continuity of probability from above and from below:

Proposition 6.5. Let X be a random variable, and let FX be its distribution
function. Then,

1. FX is non-decreasing and takes values in [0, 1],

2. FX is right continuous,

3. limx→∞ FX(x) = 1 and limx→−∞ FX(x) = 0.

The case when µX is absolutely continuous with respect to the
Lebesgue measure is especially important:

Definition 6.6. A random variable X with the property that µX � λ,
where λ is the Lebesgue measure on B(R), is said to be absolutely
continuous.

In that case, any Radon-Nikodym derivative dµX
dλ is called the prob-

ability density function (pdf) of X, and is denoted by fX . Similarly,
a random vector X = (X1, . . . , Xn) is said to be absolutely continu-
ous if µX � λ, where λ is the Lebesgue measure on B(Rn), and the
Radon-Nikodym derivative dµX

dλ , denoted by fX is called the probabil-
ity density function (pdf) of X.

Problem 6.2.

1. Let X = (X1, . . . , Xn) be an absolutely-continuous random vector.
Show that Xk is absolutely continuous, and that its pdf is given by

fXk (x) =
∫

R
. . .
∫

R︸ ︷︷ ︸
n− 1 integrals

f (ξ1, . . . , ξk−1, x, ξk+1, . . . , ξn) dξ1 . . . dξk−1 dξk+1 . . . dξn.

Note: As is should, fXk (x) is defined only for almost all x ∈ R; that is because fX is

defined only up to null sets in B(Rn).
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2. Let X be an absolutely-continuous random variable. Show that the
random vector (X, X) is not absolutely continuous, even though
both of its components are .

Problem 6.3. Let X = (X1, . . . , Xn) be an absolutely-continuous ran-
dom vector with density fX . For a Borel function g : Rn → R such
that g fX ∈ L0−1(Rn,B(Rn), λ), show that g(X) ∈ L0−1(Ω,F , P) and
that

E[g(X)] =
∫

g fX dλ =
∫

R
. . .
∫

R
g(ξ1, . . . , ξn) fX(ξ1, . . . , ξn) dξ1 . . . dξn.

Definition 6.7. A random variable X is said to be discrete if there
exists a countable set B ∈ B(R) such that µX(B) = 1.

Problem 6.4. Show that a sum of two discrete random variables is
discrete, but that a sum of two absolutely-continuous random variables
does not need to be absolutely continuous.

Definition 6.8. A distribution which has no atoms and is singular with
respect to the Lebesgue measure is called singular.

-0.5 0.5 1.0 1.5
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0.4

0.6
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1.0

Figure 1: The CDF of the Cantor distri-
bution.

Example 6.9. According to Problem 5.12, there exists a measure µ on
[0, 1], with the following properties

1. µ has no atoms, i.e., µ({x}) = 0, for all x ∈ [0, 1],

2. µ and λ (the Lebesgue measure) are mutually singular

3. µ is supported by the Cantor set.

We set (Ω,F , P) = ([0, 1],B([0, 1]), µ), and define the random variable
X : Ω → R, by X(ω) = ω. It is clear that the distribution µX of X has
the property that

µX(B) = µ(B ∩ [0, 1]),

Thus, X is a random variable with a singular distribution.

Independence

The point at which probability departs from measure theory is when
independence is introduced. As seen in Example 6.4, two random
variables can “depend” on each other in different ways. One extreme
(the case of X and Y) corresponds to the case when the dependence is
very weak - the distribution of Y stays the same when the value of X
is revealed:

Last Updated: November 17, 2013



Lecture 6: Basic Probability 7 of 17

Definition 6.10. Two random variables X and Y are said to be inde-
pendent if

P[{X ∈ A} ∩ {Y ∈ B}] = P[X ∈ A]×P[Y ∈ B] for all A, B ∈ B(R).

It turns out that independence of random variables is a special case
of the more-general notion of independence between families of sets.

Definition 6.11. Families A1, . . . ,An of elements in F are said to be

1. independent if

P[Ai1 ∩ Ai2 ∩ · · · ∩ Aik ] = P[Ai1 ]×P[Ai2 ]× · · · ×P[Aik ], (6.1)

for all k = 1, . . . , n, 1 ≤ i1 < i2 < · · · < ik ≤ n, and all Ail ∈ Ail ,
l = 1, . . . , k,

2. pairwise independent if

P[Ai1 ∩ Ai2 ] = P[Ai1 ]×P[Ai2 ],

for all 1 ≤ i1 < i2 ≤ n, and all Ai1 ∈ Ai1 , Ai2 ∈ Ai2 .

Problem 6.5.

1. Show, by means of an example, that the notion of independence
would change if we asked for the product condition (6.1) to hold
only for k = n and i1 = 1, . . . , ik = n.

2. Show that, however, if Ω ∈ Ai, for all i = 1, . . . , n, it is enough to
test (6.1) for k = n and i1 = 1, . . . , ik = n to conclude independence
of Ai, i = 1, . . . , n.

Problem 6.6. Show that random variables X and Y are independent if
and only if the σ-algebras σ(X) and σ(Y) are independent.

Definition 6.12. Random variables X1, . . . , Xn are said to be inde-
pendent if the σ-algebras σ(X1), . . . , σ(Xn) are independent. Events
A1, . . . , An are called independent if the families Ai = {Ai}, i =

1, . . . , n, are independent.

When only two families of sets are compared, there is no difference
between pairwise independence and independence. For 3 or more, the
difference is non-trivial:

Example 6.13. Let X1, X2, X3 be independent random variables, each
with the coin-toss distribution, i.e., P[Xi = 1] = P[Xi = −1] = 1

2 , for

Last Updated: November 17, 2013



Lecture 6: Basic Probability 8 of 17

i = 1, 2, 3. It is not hard to construct a probability space where such
random variables may be defined explicitly: let Ω = {1, 2, 3, 4, 5, 6, 7, 8},
F = 2Ω, and let P be characterized by P[{ω}] = 1

8 , for all ω ∈ Ω. De-
fine

Xi(ω) =

1, ω ∈ Ωi

−1, otherwise

where Ω1 = {1, 3, 5, 7}, Ω2 = {2, 3, 6, 7} and Ω3 = {5, 6, 7, 8}. It is easy
to check that X1, X2 and X3 are independent (Xi is the “i-th bit” in the
binary representation of ω).

With X1, X2 and X3 defined, we set

Y1 = X2X3, Y2 = X1X3 and Y3 = X1X2,

so that Yi has a coin-toss distribution, for each i = 1, 2, 3. Let us show
that Y1 and Y2 (and then, by symmetry, Y1 and Y3, as well as Y2 and
Y3) are independent:

P[Y1 = 1, Y2 = 1] = P[X2 = X3, X1 = X3] = P[X1 = X2 = X3]

= P[X1 = X2 = X3 = 1] + P[X1 = X2 = X3 = −1]

= 1
8 + 1

8 = 1
4 = P[Y1 = 1]×P[Y2 = 1].

We don’t need to check the other possibilities, such as Y1 = 1, Y2 = −1,
to conclude that Y1 and Y2 are independent (see Problem 6.7 below).

On the other hand, Y1, Y2 and Y3 are not independent:

P[Y1 = 1, Y2 = 1, Y3 = 1] = P[X2 = X3, X1 = X3, X1 = X2]

= P[X1 = X2 = X3] =
1
4

6= 1
8 = P[Y1 = 1]×P[Y2 = 1]×P[Y3 = 1].

Problem 6.7. Show that if A1, . . . , An are independent, then so are the
families Ai = {Ai, Ac

i }, i = 1, . . . , n.

A more general statement is also true (and very useful):

Proposition 6.14. Let Pi, i = 1, . . . , n be independent π-systems. Then, the
σ-algebras σ(Pi), i = 1, . . . , n are also independent.

Proof. Let F1 denote the set of all C ∈ F such that

P[C ∩ Ai2 ∩ · · · ∩ Aik ] = P[C]×P[Ai2 ]× · · · ×P[Aik ],

for all k = 2, . . . , n, 1 < i2 < · · · < ik ≤ n, and all Ail ∈ Pil , l = 2, . . . , k.
It is easy to see that F1 is a λ-system which contains the π-system
P1, and so, by the π-λ Theorem, it also contains σ(P1). Consequently
σ(P1),P2, . . .Pn are independent families.
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A re-play of the whole procedure, but now with families P2, σ(P1),
P3, . . .Pn, yields that the families σ(P1), σ(P2),P3, . . .Pn are also in-
dependent. Following the same pattern allows us to conclude after n
steps that σ(P1), σ(P2), . . . σ(Pn) are independent.

Remark 6.15. All notions of independence above extend to infinite fam-
ilies of objects (random variables, families of sets) by requiring that
every finite sub-family be independent.

The result of Proposition 6.14 can be used to help us check indepen-
dence of random variables:

Problem 6.8. Let X1, . . . , Xn be random variables.

1. Show that X1, . . . , Xn are independent if and only if

µX = µX1 ⊗ · · · ⊗ µXn ,

where X = (X1, . . . , Xn).

2. Show that X1, . . . , Xn are independent if and only if Note: The family {{Xi ≤ x} : x ∈ R}
does not include Ω, so that part (2) of
Problem 6.5 cannot be applied directly.P[X1 ≤ x1, . . . , Xn ≤ xn] = P[X1 ≤ x1]× · · · ×P[Xn ≤ xn],

for all x1, . . . , xn ∈ R.

3. Suppose that the random vector X = (X1, . . . , Xn) is absolutely con-
tinuous. Then X1, . . . , Xn are independent if and only if

fX(x1, . . . , xn) = fX1(x1)× · · · × fXn(xn), λ-a.e.,

where λ denotes the Lebesgue measure on B(Rn).

4. Suppose that X1, . . . Xn are discrete with P[Xk ∈ Ck] = 1, for count-
able subsets C1, . . . , Cn of R. Show that X1, . . . , Xn are independent
if and only if

P[X1 = x1, . . . , Xn = xn] = P[X1 = x1]× · · · ×P[Xn = xn],

for all xi ∈ Ci, i = 1, . . . , n.

Problem 6.9. Let X1, . . . , Xn be independent random variables. Show
that the random vector X = (X1, . . . , Xn) is absolutely continuous if
and only if each Xi, i = 1, . . . , n is an absolutely-continuous random
variable.
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The usefulness of Proposition 6.14 is not exhausted, yet.

Problem 6.10.

1. Let Fij i = 1, . . . , n, j = 1, . . . , mi, be an independent collection of Hint: ∪j=1,...,miFij generates Gi , but is not
quite a π-system.σ-algebras on Ω. Show that the σ-algebras G1, . . . ,Gn, where Gi =

σ(Fi1, . . . ,Fimi ), are independent.

2. Let Xij i = 1, . . . , n, j = 1, . . . , mi, be an independent random vari-
ables, and let fi : Rmi → R, i = 1, . . . , n, be Borel functions. Then
the random variables Yi = fi(Xi 1, . . . , Xi mi ), i = 1, . . . , n are inde-
pendent.

Problem 6.11.

1. Let X1, . . . , Xn be random variables. Show that X1, . . . , Xn are inde- Hint: Approximate!

pendent if and only if

n

∏
i=1

E[ fi(Xi)] = E[
n

∏
i=1

fi(Xi)],

for all n-tuples ( f1, . . . , fn) of bounded continuous real functions.

2. Let {Xi
n}n∈N, i = 1, . . . , m be sequences of random variables such

that X1
n, . . . , Xm

n are independent for each n ∈ N. If Xi
n

a.s.→ Xi,
i = 1, . . . , m, for some X1, . . . , Xm ∈ L0, show that X1, . . . , Xm are
independent.

The idea “independent means multiply” applies not only to proba-
bilities, but also to random variables:

Proposition 6.16. Let X, Y be independent random variables, and let h :
R2 → [0, ∞) be a measurable function. Then

E[h(X, Y)] =
∫

R

(∫
R

h(x, y) µX(dx)
)

µY(dy).

Proof. By independence and part 1. of Problem 6.8, the distribution of
the random vector (X, Y) is given by µX ⊗ µY, where µX is the distri-
bution of X and µY is the distribution of µY. Using Fubini’s theorem,
we get

E[h(X, Y)] =
∫

h dµ(X,Y) =
∫

R

(∫
R

h(x, y) µX(dx)
)

µY(dy).

Proposition 6.17. Let X1, X2, . . . , Xn be independent random variables with
Xi ∈ L1, for i = 1, . . . , n. Then

1. ∏n
i=1 Xi = X1 · · ·Xn ∈ L1, and
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2. E[X1 · · ·Xn] = E[X1] . . . E[Xn].

The product formula 2. remains true if we assume that Xi ∈ L0
+ (instead of

L1), for i = 1, . . . , n.

Proof. Using the fact that X1 and X2 · · ·Xn are independent random
variables (use part 2. of Problem 6.10), we can assume without loss of
generality that n = 2.

Focusing first on the case X1, X2 ∈ L0
+, we apply Proposition 6.16

with h(x, y) = xy to conclude that

E[X1X2] =
∫

R

(∫
R

x1x2 µX1(dx1)

)
µX2(dx2)

=
∫

R
x2E[X1] µX2(dx2) = E[X1]E[X2].

For the case X1, X2 ∈ L1, we split X1X2 = X+
1 X+

2 − X+
1 X−2 − X−1 X+

2 +

X−1 X−2 and apply the above conclusion to the 4 pairs X+
1 X+

2 , X+
1 X−2 ,

X−1 X+
2 and X−1 X−2 .

Problem 6.12 (Conditions for “independent-means-multiply”). Propo- Hint: Build your example so that
E[(XY)+] = E[(XY)−] = ∞. Use
([0, 1],B([0, 1]), λ) and take Y(ω) =
1[0,1/2](ω)− 1(1/2,0](ω). Then show that
any random variable X with the prop-
erty that X(ω) = X(1− ω) is indepen-
dent of Y.

sition 6.17 states that for independent X and Y, we have

E[XY] = E[X]E[Y], (6.2)

whenever both X, Y ∈ L1 or both X, Y ∈ L0
+. Give an example which

shows that (6.2) is no longer necessarily true in general if X ∈ L0
+ and

Y ∈ L1.

Problem 6.13. Two random variables X, Y are said to be uncorre-
lated, if X, Y ∈ L2 and Cov(X, Y) = 0, where Cov(X, Y) = E[(X −
E[X])(Y−E[Y])].

1. Show that for X, Y ∈ L2, the expression for Cov(X, Y) is well de-
fined.

2. Show that independent random variables in L2 are uncorrelated.

3. Show that there exist uncorrelated random variables which are not
independent.

Sums of independent random variables and convolution

Proposition 6.18. Let X and Y be independent random variables, and let
Z = X + Y be their sum. Then the distribution µZ of Z has the following
representation:

µZ(B) =
∫

R
µX(B− y) µY(dy), for B ∈ B(R),

where B− y = {b− y : b ∈ B}.
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Proof. We can view Z as a function f (x, y) = x + y applied to the
random vector (X, Y), and so, we have E[g(Z)] = E[h(X, Y)], where
h(x, y) = g(x + y). In particular, for g(z) = 1B(z), Proposition 6.16

implies that

µZ(B) = E[g(Z)] =
∫

R

∫
R

1{x+y∈B} µX(dx) µY(dy) =

=
∫

R

(∫
R

1{x∈B−y}µX(dx)
)

µY(dy) =
∫

R
µX(B− y) µY(dy).

One often sees the expression∫
R

f (x) dF(x),

as notation for the integral
∫

f dµ, where F(x) = µ((−∞, x)]. The
reason for this is that such integrals - called the Lebesgue-Stieltjes
integrals - have a theory parallel to that of the Riemann integral and
the correspondence between dF(x) and dµ is parallel to the correspon-
dence between dx and dλ.

Corollary 6.19. Let X, Y be independent random variables, and let Z be their
sum. Then

FZ(z) =
∫

R
FX(z− y) dFY(y).

Definition 6.20. Let µ1 and µ2 be two probability measures on B(R).
The convolution of µ1 and µ2 is the probability measure µ1 ∗ µ2 on
B(R), given by

(µ1 ∗ µ2)(B) =
∫

R
µ1(B− ξ) µ2(dξ), for B ∈ B(R),

where B− ξ = {x− ξ : x ∈ B} ∈ B(R).

Problem 6.14. Show that ∗ is a commutative and associative operation Hint: Use Proposition 6.18

on the set of all probability measures on B(R).

It is interesting to see how convolution relates to absolute continu-
ity. To simplify the notation, we write

∫
A f (x) dx instead of (the more

precise)
∫

A f (x) λ(dx) for the (Lebesgue) integral with respect to the

Lebesgue measure on R. When A = [a, b] ∈ R̄, we write
∫ b

a f (x) dx.

Proposition 6.21. Let X and Y be independent random variables, and sup-
pose that X is absolutely continuous. Then their sum Z = X + Y is also
absolutely continuous and its density fZ is given by

fZ(z) =
∫

R
fX(z− y) µY(dy).
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Proof. Define f (z) =
∫

R
fX(z − y) µY(dy), for some density fX of X

(remember, the density function is defined only λ-a.e.). The function
f is measurable (why?) so it will be enough (why?) to show that

P
[

Z ∈ [a, b]
]
=
∫
[a,b]

f (z) dz, for all −∞ < a < b < ∞. (6.2)

We start with the right-hand side of (6.2) and use Fubini’s theorem to
obtain ∫

[a,b]
f (z) dz =

∫
R

1[a,b](z)
(∫

R
fX(z− y) µY(dy)

)
dz

=
∫

R

(∫
R

1[a,b](z) fX(z− y) dz
)

µY(dy)
(6.3)

By the translation-invariance property of the Lebesgue measure, we
have∫

R
1[a,b](z) fX(z− y) dz =

∫
R

1[a−y,b−y](z) fX(z) dz

= P
[

X ∈ [a− y, b− y]
]
= µX

(
[a, b]− y

)
.

Therefore, by (6.3) and Proposition 6.18, we have∫
[a,b]

f (z) dz =
∫

R
µX

(
[a, b]− y

)
µY(dy)

= µZ

(
[a, b]

)
= P

[
Z ∈ [a, b]

]
.

Definition 6.22. The convolution of functions f and g in L1(R) is the
function f ∗ g ∈ L1(R) given by

( f ∗ g)(z) =
∫

R
f (z− x)g(x) dx.

Problem 6.15.

1. Use the reasoning from the proof of Proposition 6.21 to show that
the convolution is well-defined operation on L1(R).

2. Show that if X and Y are independent random variables and X is
absolutely-continuous, then X + Y is also absolutely continuous.

Do independent random variables exist?

We leave the most basic of the questions about independence for last:
do independent random variable exist? We need a definition and two
auxiliary results, first.

Definition 6.23. A random variable X is said to be uniformly dis-
tributed on (a, b), for a < b ∈ R, if it is absolutely continuous with
density

fX(x) = 1
b−a 1(a,b)(x).
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Our first result states a uniform random variable on (0, 1) can be
transformed deterministically into any a random variable of prescribed
distribution (cdf).

Proposition 6.24. Let µ be a measure on B(R) with µ(R) = 1. Then, there Note: this proposition is a basis for a
technique used to simulate random vari-
ables. There are efficient algorithms for
producing simulated values which re-
semble the uniform distribution in (0, 1)
(so-called pseudo-random numbers). If
a simulated value drawn with distribu-
tion µ is needed, one can simply ap-
ply the function Hµ to a pseudo-random
number.

exists a function Hµ : (0, 1) → R such that the distribution of the random
variable X = Hµ(U) is µ, whenever U is a uniform random variable on
(0, 1).

Proof. Let

Figure 2: The right-continuous inverse
Hµ (blue) of the CDF F (black)

F be the cdf corresponding to µ, i.e.,

F(x) = µ((−∞, x]).

The function F is non-decreasing, so it “almost” has an inverse: define

Hµ(y) = inf{x ∈ R : F(x) ≥ y}.

Since limx→∞ F(x) = 1 and limx→−∞ F(x) = 0, Hµ(y) is well-defined
and finite for all y ∈ (0, 1). Moreover, thanks to right-continuity and
non-decrease of F, we have

Hµ(y) ≤ x ⇔ y ≤ F(x), for all x ∈ R, y ∈ (0, 1).

Therefore

P[Hµ(U) ≤ x] = P[U ≤ F(x)] = F(x), for all x ∈ R,

and the statement of the Proposition follows.

Our next auxiliary result tells us how to construct a sequence of
independent uniforms:

Proposition 6.25. There exists a probability space (Ω,F , P), and on it a
sequence {Xn}n∈N of random variables such that

1. Xn has the uniform distribution on (0, 1), for each n ∈N, and

2. the sequence {Xn}n∈N is independent.

Proof. Set (Ω,F , P) = ({−1, 1}N,S , µC) - the coin-toss space with the
product σ-algebra and the coin-toss measure. Let a : N×N → N be
a bijection, i.e., (aij)i,j∈N is an arrangement of all natural numbers into
a double array. For i, j ∈N, we define the map ξij : Ω→ {−1, 1}, by

ξij(s) = saij ,

i.e., ξij is the natural projection onto the aij-th coordinate. It is straight-
forward to show that, under P, the collection (ξij)i,j∈N is independent;
indeed, it is enough to check the equality

P[ξi1 j1 = 1, . . . , ξin jn = 1] = P[ξi1 j1 = 1]× · · · ×P[ξin jn = 1],
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for all n ∈N and all different (i1, j1), . . . , (in, jn) ∈N×N.
At this point, we recycle the idea we used to construct the Lebesgue

measure to construct an independent copy of a uniformly-distributed
random variable from each row of (ξij)i,j∈N. We set

Xi =
∞

∑
j=1

(
1+ξij

2

)
2−j, i ∈N. (6.4)

By second parts of Problems 6.10 and 6.11, we conclude that the se-
quence {Xi}i∈N is independent. Moreover, thanks to (6.4), Xi is uni-
form on (0, 1), for each i ∈N.

Proposition 6.26. Let {µn}n∈N be a sequence of probability measures on
B(R). Then, there exists a probability space (Ω,F , P), and a sequence
{Xn}n∈N of random variables defined there such that

1. µXn = µn, and

2. {Xn}n∈N is independent.

Proof. Start with the sequence of Proposition 6.25 and apply the func-
tion Hµn to Xn for each n ∈ N, where Hµn is as in the proof of Propo-
sition 6.24.

An important special case covered by Proposition 6.26 is the follow-
ing:

Definition 6.27. A sequence {Xn}n∈N of random variables is said to
be independent and identically distributed (iid) if {Xn}n∈N is inde-
pendent and all Xn have the same distribution.

Corollary 6.28. Given a probability measure µ on R, there exist a probability
space supporting an iid sequence {Xn}n∈N such that µXn = µ.

Additional Problems

Problem 6.16 (The standard normal distribution). An absolutely con-
tinuous random variable X is said to have the standard normal distri-
bution - denoted by X ∼ N(0, 1) - if it admits a density of the form

f (x) =
1√
2π

exp(−x2/2), x ∈ R

For a r.v. with such a distribution we write X ∼ N(0, 1).

1. Show that
∫

R
f (x) dx = 1. Hint: Consider the double integral∫

R2 f (x) f (y) dx dy and pass to polar co-
ordinates.2. For X ∼ N(0, 1), show that E[|X|n] < ∞ for all n ∈ N. Then

compute the nth moment E[Xn], for n ∈N.
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3. A random variable with the same distribution as X2, where X ∼
N(0, 1), is said to have the χ2-distribution. Find an explicit expres-
sion for the density of the χ2-distribution.

4. Let Y have the χ2-distribution. Show that there exists a constant Note: For a random variable Y ∈ L0
+, the

quantity E[exp(λY)] is called the expo-
nential moment of order λ.

λ0 > 0 such that E[exp(λY)] < ∞ for λ < λ0 and E[exp(λY)] =
+∞ for λ ≥ λ0.

5. Let α0 > 0 be a fixed, but arbitrary constant. Find an example of Hint: This is not the same situation as
in 4. - this time the critical case α0 is
included in a different alternative. Try
X = exp(Y), where P[Y ∈N] = 1.

a random variable X ≥ 0 with the property that E[Xα] < ∞ for
α ≤ α0 and E[Xα] = +∞ for α > α0.

Problem 6.17 (The “memory-less” property of the exponential distri-
bution). A random variable is said to have exponential distribution
with parameter λ > 0 - denoted by X ∼ Exp(λ) - if its distribution
function FX is given by

FX(x) = 0 for x < 0, and FX(x) = 1− exp(−λx), for x ≥ 0.

1. Compute E[Xα], for α ∈ (−1, ∞). Combine your result with the
result of part 3. of Problem 6.16 to show that

Γ( 1
2 ) =

√
π,

where Γ is the Gamma function.

2. Remember that the conditional probability P[A|B] of A, given B, for
A, B ∈ F , P[B] > 0 is given by

P[A|B] = P[A ∩ B]/P[B].

Compute P[X ≥ x2|X ≥ x1], for x2 > x1 > 0 and compare it to
P[X ≥ (x2 − x1)].

conversely, suppose that y is a random variable with the property Note: This can be interpreted as follows:
the knowledge that the bulb stayed func-
tional until x1 does not change the prob-
ability that it will not explode in the
next x2 − x1 units of time; bulbs have no
memory.

that P[Y > 0] = 1 and P[Y > y] > 0 for all y > 0. Assume further
that

P[Y ≥ y2|Y ≥ y1] = P[Y ≥ y2 − y1], for all y2 > y1 > 0. (6.5)

Show that Y ∼ Exp(λ) for some λ > 0. Hint: You can use the following fact: let
φ : (0, ∞) → R be a Borel-measurable
function such that φ(y) + φ(z) = φ(y +
z) for all y, z > 0. Then there exists a
constant µ ∈ R such that φ(y) = µy for
all y > 0.

Problem 6.18 (Some extensions of the Borel-Cantelli Lemma).

1. Let {Xn}n∈N be a sequence in L0
+. Show that there exists a sequence

of positive constants {cn}n∈N with the property that

Xn

cn
→ 0, a.s.

Hint: Use the Borel-Cantelli lemma.
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2. (The first) Borel-Cantelli lemma states that ∑n∈N P[An] < ∞ implies
P[An, i.o.] = 0. There are simple examples showing that the con-
verse does not hold in general. Show that it does hold if the events
{An}n∈N are assumed to be independent. More precisely, show Hint: Use the inequality (1− x) ≤ e−x ,

x ∈ R.that, for an independent sequence {An}n∈N, we have

∑
n∈N

P[An] = ∞ implies P[An, i.o.] = 1.

This is often known as the second Borel-Cantelli lemma.

3. Let {An}n∈N be a sequence of events.

(a) Show that (lim sup An) ∩ (lim sup Ac
n) ⊆ lim sup(An ∩ Ac

n+1).

(b) If lim infn→∞ P[An] = 0 and ∑n P[An ∩ Ac
n+1] < ∞, show that

P[lim sup
n

An] = 0.

4. Let {Xn}n∈N be an iid sequence in L0. Show that

E[|X1|] < ∞ if and only if P[|Xn| ≥ n, i.o.] = 0.
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