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Lecture 22
Girsanov’s Theorem

An example

Consider a finite Gaussian random walk

Xn =
n

∑
k=1

ξk, n = 0, . . . , N,

where ξk are independent N(0, 1) random variables. The random vec-
tor (X1, . . . , XN) is then, itself, Gaussian, and admits the density

f (x1, . . . , xN) = CNe
− 1

2

(
x2

1+(x2−x1)
2+···+(xN−xN−1)

2
)

with respect to the Lebesgue measure on RN , for some CN > 0.

Let us now repeat the whole construction, with the n-th step hav-
ing the N(µn, 1)-distribution, for some µ1, . . . , µN ∈ R. The result-
ing, Gaussian, distribution still admits a density with respect to the
Lebesgue measure, and it is given by

f̃ (x1, . . . , xN) = CNe
− 1

2

(
(x1−µ1)

2+(x2−x1−µ2)
2+···+(xN−xN−1−µN)2

)
.

The two densities are everywhere positive, so the two Gaussian mea-
sures are equivalent to each other and the Radon-Nikodym derivative
turns out to be

dQ
dP

= f̃ (X1,...,XN)
f (X1,...,XN)

= e
−
(

µ1X1−µ2(X2−X1)−···−µN(XN−XN−1)

)
+ 1

2

(
µ2

1+µ2+···+µ2
N

)
= e∑N

k=1 µk(Xk−Xk−1)−
1
2 ∑N

k=1 µ2
k .

Equivalent measure changes

Let Q be a probability measure on F , equivalent to P, i.e., ∀ A ∈ F ,
P[A] = 0 if and only if Q[A] = 0. Its Radon-Nikodym derivative
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Z = dQ
dP

is a non-negative random variable in L1 with E[Z] = 1. The
uniformly-integrable martingale

Zt = E[Z|Ft], t ≥ 0,

is called the density of Q with respect to P (note that we can - and
do - assume that {Zt}t∈[0,∞) is càdlàg). We will often use the shortcut
Q-(local, semi-, etc.) martingale for a process which is a (local, semi-,
etc.) martingale for (Ω,F ,Ft, Q).

Proposition 22.1. Let {Xt}t∈[0,∞) be a càdlàg and adapted process. Then X
is a Q-local martingale if and only if the product {ZtXt}t∈[0,∞) is a càdlàg
P-local martingale.

Before we give a proof, here is a simple and useful lemma. Since
the measures involved are equivalent, we are free to use the phrase
“almost surely” without explicit mention of the probability.

Lemma 22.2. Let (Ω,H, P) be a probability space, and let G ⊆ H be a sub-
σ-algebra of H. Givan a probability measure Q on H, equivalent to P, let
Z = dQ

dP
be its Radon-Nikodym derivative with respect to P. For a random

variable X ∈ L1(F , Q) we have XZ ∈ L1(P) and

EQ[X|G] = 1
E[Z|G]E[XZ|G], a.s.

where EQ[·|G] denotes the conditional expectation on (Ω,H, Q).

Proof. First of all, note that the Radon-Nikodym theorem implies that
XZ ∈ L1(P) and that the set {E[Z|G] = 0} has Q-probability (and,
therefore P-probability) 0. Indeed,

Q[E[Z|G] = 0] = EQ[1{E[Z|G]=0}] = E[Z1{E[Z|G]=0}]

= E[E[Z1{E[Z|G]=0}|G]]

Therefore, the expression on the right-hand side is well-defined almost
surely, and is clearly G-measurable. Next, we pick A ∈ G, observe that

EQ[1A
1

E[Z|G]E[XZ|G]] = E[Z1A
1

E[Z|G]E[XZ|G]]

= E[E[Z|G]1A
1

E[Z|G]E[XZ|G]]

= E[E[ZX1A|G]] = EQ[X1A],

and remember the definition of conditional expectation.

Proof of Proposition 22.1. Suppose, first, that X is a Q-martingale. Then
EQ[Xt|Fs] = Xs, Q-a.s. By the tower property of conditional expecta-
tion, the random variable Zt is the Radon-Nikodym derivative of (the

Last Updated: May 5, 2015



Lecture 22: Girsanov’s Theorem 3 of 8

restriction of) Q with respect to (the restriction of) P on the probability
space (Ω,Ft, P) (prove this yourself!). Therefore, we can use Lemma
22.2 with Ft playing the role of H and Fs the role G, and rewrite the
Q-martingale property of X as

1
Zs

E[XtZt|Fs] = Xs, Q− a.s., i.e. E[XtZt|Fs] = ZsXs, P− a.s.(22.1)

We leave the other direction, as well as the case of a local martingale
to the reader.

Proposition 22.3. Suppose that the density process {Zt}t∈[0,∞) is continu-
ous. Let X be a continuous semimartingale under P with decomposition X =

X0 + M + A. Then X is also a Q-semimartingale, and its Q-semimartingale
decomposition is given by X = X0 + N + B, where

N = M− F, B = A + F where Ft =
∫ t

0

1
Zt

d〈M, Z〉.

Proof. The process F is clearly well-defined, continuous, adapted and
of finite variation, so it will be enough to show that M − F is a Q-
local martingale. Using Proposition 22.1, we only need to show that
Y = Z(M− F) is a P-local martingale. By Itô’s formula (integration-
by-parts), the finite-variation part of Y is given by

−
∫ t

0
Zu dFu + 〈Z, M〉t,

and it is easily seen to vanish using the associative property of Stieltjes
integration.

One of the most important applications of the above result is to the
case of a Brownian motion.

A cloud of simulated Brownian paths
on [0, 3]

The same cloud with darker-colored
paths corresponding to higher values of
the Radon-Nikodym derivative Z3.

Theorem 22.4 (Girsanov; Cameron and Martin). Suppose that the filtra-
tion {Ft}t∈[0,∞) is the usual augmentation of the natural filtration generated
by a Brownian motion {Bt}t∈[0,∞).

1. Let Q ∼ P be a probability measure on F and let {Zt}t∈[0,∞) be the
corresponding density process, i.e., Zt = E[ dQ

dP
|Ft]. Then, here exists a

predictable process {θt}t∈[0,∞) in L(B) such that Z = E(
∫ ·

0 θu dBu) and

Bt −
∫ t

0
θu du is a Q-Brownian motion.

2. Conversely, let {θt}t∈[0,∞) ∈ L(B) have the property that the process
Z = E(

∫ ·
0 θu dBu) is a uniformly-integrable martingale with Z∞ > 0,

a.s. For any probability measure Q ∼ P such that E[ dQ
dP
|F∞] = Z∞,

Bt −
∫ t

0
θu du, t ≥ 0,

is a Q-Brownian motion.
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Proof.

1. We start with an application of the martingale representation the-
orem (Proposition 21.16). It implies that there exists a process
ρ ∈ L(B) such that

Zt = 1 +
∫ t

0
ρu dBu.

Since Z is continuous and bounded away from zero on each seg-
ment, the process {θt}t∈[0,∞), given by θt = ρt/Zt is in L(B) and we
have

Zt = 1 +
∫ t

0
ZuθudBu.

Hence, Z = E(
∫ ·

0 θu dBu). Proposition 22.3 states that B is a Q-
semimartingale with decomposition B = (B − F) + F, where the
continuous FV-process F is given by

Ft =
∫ t

0

1
Zu
〈B, Z〉u =

∫ t

0

1
Zu

Zuθu du =
∫ t

0
θu du.

In particular, B− F is a Q-local martingale. On the other hand, its
quadratic variation (as a limit in P-, and therefore in Q-probability)
is that of B, so, by Lévy’s characterization, B− F is a Q-Brownian
motion.

2. We only need to realize that any measure Q ∼ P with E[ dQ
dP
|F∞] =

Z∞ will have Z as its density process. The rest follows from (1).

Even though we stated it on [0, ∞), most of applications of the
Girsanov’s theorem are on finite intervals [0, T], with T > 0. The
reason is that the condition that E(

∫ ·
0 θu dBu) be uniformly integrable

on the entire [0, ∞) is either hard to check or even not satisfied for most
practically relevant θ. The simplest conceivable example θt = µ, for
all t ≥ 0 and µ ∈ R \ {0} gives rise to the exponential martingale

Zt = eµBt− 1
2 µ2t, which is not uniformly integrable on [0, ∞) (why?). On

any finite horizon [0, T], the (deterministic) process µ1{t≤T} satisfies
the conditions of Girsanov’s theorem, and there exists a probability
measure Pµ,T on FT with the property that B̂t = Bt − µt is a Pµ,T

Brownian motion on [0, T]. It is clear, furthermore, that for T1 < T2,
Pµ,T1 coincides with the restriction of Pµ,T2 onto FT1 . Our life would
be easier if this consistency property could be extended all the way up
to F∞. It can be shown that this can, indeed, be done in the canonical
setting, but not in same equivalence class. Indeed, suppose that there
exists a probability measure Pµ on F∞, equivalent to P, such that Pµ,
restricted to FT , coincides with Pµ,T , for each T > 0. Let {Zt}t∈[0,∞)

be the density process of Pµ with respect to P. It follows that

ZT = exp(µBT − 1
2 µ2T), for all T > 0.
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Since µ 6= 0, we have Bt − 1
2 µT → −∞, a.s., as T → ∞ and, so,

Z∞ = limT→∞ ZT = 0, a.s. On the other hand, Z∞ is the Radon-
Nikodym derivative of Pµ with respect to P on F∞, and we conclude
that Pµ must be singular with respect to P. Here is slightly different
perspective on the fact that P and Pµ must be mutually singular: for
the event A ∈ F∞, given by

A =
{

lim
t→∞

Bt
t = 0

}
,

we have P[A] = 1, by the Law of Large Numbers for the Brownian
motion. On the other hand, with B̂t being a Pµ Brownian motion, we
have

Pµ[A] = Pµ[ lim
t→∞

Bt
t = 0] = Pµ[ lim

t→∞
B̂t
t = −µ] = 0,

because B̂t/t → 0, Pµ-a.s. Not everything is lost, though, as we can
still use employ Girsanov’s theorem in many practical situations. Here
is one (where we take P[X ∈ dx] = f (x) dx to mean that f (x) is the
density of the distribution of X.)

Example 22.5 (Hitting times of the Brownian motion with drift). De-
fine τa = inf{t ≥ 0 : Bt = a} for a > 0. By the formula derived in a
homework, we have

P[τa ∈ dt] = |a|√
2πt3 e−

a2

2t dt.

For T ≥ 0, (the restriction of) P and Pµ,T are equivalent on FT with
the Radon-Nikodym derivative

dPµ,T

dP
= exp(µBT − 1

2 µ2T).

The optional sampling theorem (justified by the uniform integrability
of the martingale exp(µBt − 1

2 µ2t) on [0, T]) and the fact that {τa ≤
T} ∈ Fτa∧T ⊆ FT imply that

E[exp(µBT − 1
2 µ2T)|Fτa∧T ] = exp(µBτa∧T − 1

2 µ2(τa ∧ T)).

Therefore,

Pµ,T [τa ≤ T] = Eµ,T [1{τa≤T}] = E[exp(µBT − 1
2 µ2T)1{τa≤T}]

= E[exp(µBτa∧T − 1
2 µ2(τa ∧ T))1{τa≤T}]

= E[exp(µBτa − 1
2 µ2τa)1{τa≤T}]

= E[exp(µa− 1
2 µ2τa)1{τa≤T}] =

∫ T

0
eµa− 1

2 µ2t
P[τa ∈ dt]

=
∫ T

0
eµa− 1

2 µ2t |a|√
2πt3 e−

a2

2t dt.
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On the other hand, {Bt − µt}t∈[0,T] is a Brownian motion under Pµ,T ,
so

Pµ,T [τa ≤ T] = P[τ̂a ≤ T],

where τ̂a is the first hitting time of the level a of the Brownian motion
with drift µ. It follows immediately that the “density” of τ̂a is given by

P[τ̂a ∈ dt] = |a|√
2πt3 e−

(a−µt)2

2t dt.

We quote the word “density” because, if one tries to integrate it over
all t ≥ 0, one gets

P[τ̂a < ∞] =
∫ ∞

0

|a|√
2πt3 e−

(a−µt)2

2t dt = exp(µa− |µa|).

In words, if µ and a have the same sign, the Brownian motion with
drift µ will hit a sooner or later. On the other hand, if they differ in
sign, the probability that it will never get there is strictly positive and
equal to e2µa.

Kazamaki’s and Novikov’s criteria

The message of the second part of Theorem 22.4 is that, given a “drift”
process {θt}t∈[0,∞), we can turn a Brownian motion into a Brownian
motion with drift θ, provided, essentially, that a certain exponential
martingale is a UI martingale. Even though useful sufficient condi-
tions for martingality of stochastic integrals are known, the situation
is much less pleasant in the case of stochastic exponentials. The most
well-known criterion is the one of Novikov. Novikov’s criterion is, in
turn, implied by a slightly stronger criterion of Kazamaki. We start
with an auxiliary integrability result. In addition to the role it plays in
the proof of Kazamaki’s criterion, it is useful when one needs E(M) to
be a little more than just a martingale.

Lemma 22.6. Let E(M) be the stochastic exponential of M ∈ Mloc,c
0 . If

sup
τ∈Sb

E[eaMτ ] < ∞,

for some constant a > 1
2 , where the supremum is taken over the set Sb of all

finite-valued stopping times τ, then E(M) is an Lp-bounded martingale for
p = 4a2

4a−1 ∈ (1, ∞).

Proof. We pick a finite stopping time τ and start from the following
identity, which is valid for all constants p, s > 0:

E(M)
p
τ = E(

√
p/sM)s

τe(p−√ps)Mτ .
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For 1 > s > 0, we can use Hölder’s inequality (note that 1/s and
1/(1− s) are conjugate exponents), to obtain

E[E(M)p] ≤ (E[E(
√

p/sMτ)])
s(E[exp( p−√ps

1−s Mτ)])
1−s.(22.2)

The first term of the product is the s-th power of the expectation a
positive local martingale (and, therefore, supermartingale) sampled at
a finite stopping time. By the optional sampling theorem it is always
finite (actually, it is less then 1). As for the second term, one can easily
check that the expression p−√ps

1−s attains its minimum in s over (0, 1) for
s = 2p− 1− 2

√
p2 − p, and that this minimum value equals to f (p),

where f (p) = 1
2

√
p√

2p−1−2
√

p2−p
. If we pick p = 4a2

4a−1 , then f (p) = a

and both terms on the right hand side of (22.2) are bounded, uniformly
in τ, so that E(M) is in fact a martingale and bounded in Lp (why
did we have to consider all stopping times τ, and only deterministic
times?).

Proposition 22.7 (Kazamaki’s criterion). Suppose that for M ∈ Mloc,c
0

we have
sup
τ∈Sb

E[e
1
2 Mτ ] < ∞,

where the supremum is taken over the set Sb of all finite-valued stopping
times, then E(M) is a uniformly integrable martingale.

Proof. Note, first, that the function x 7→ exp( 1
2 x) is a test function of

uniform integrability, so that the local martingale M is a uniformly
integrable martingale and admits the last element M∞. For the contin-
uous martingale cM, where 0 < c < 1 is an arbitrary constant, Lemma
22.6 and the assumption imply that the local martingale E(cM) is, in
fact, a martingale bounded in Lp, for p = 1

2c−c2 . In particular, it is
uniformly integrable. Therefore,

E(cM)t = exp(cMt − 1
2 c2〈M〉t) = E(M)c2

t ec(1−c)Mt .(22.3)

By letting t→ ∞ in (22.3), we conclude that E(M) has the last element
E(M)∞, and that the equality in (22.3) holds at t = ∞, as well. By
Hölder’s inequality with conjugate exponents 1/c2 and 1/(1− c2), we
have

1 = E[E(cM)∞] ≤ E[E(M)∞]c
2
E[exp( c

1+c M∞)]1−c2
.

Jensen’s inequality implies that E[exp( c
1+c M∞)] ≤ E[exp( 1

2 M∞)]
2c

1+c ,
and so

1 ≤ E[E(M)∞]c
2
E[exp( 1

2 M∞)]2c(1−c).

We let c → 1 to get E[E(M)∞] ≥ 1, which, together with the non-
negative supermartingale property of E(M) implies that E(M) is a
uniformly-integrable martingale.
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Theorem 22.8 (Novikov’s criterion). If M ∈ Mloc,c
0 is such that

E[e
1
2 〈M〉∞ ] < ∞,

then E(M) is a uniformly integrable martingale.

Proof. Since e
1
2 Mτ = E(M)

1
2 e

1
4 〈M〉τ , the Cauchy-Schwarz inequality

implies that

E[e
1
2 Mτ ] = E[E(M)τ ]

1/2E[e
1
2 〈M〉τ ]1/2 ≤ E[e

1
2 〈M〉∞ ],

and Kazamaki’s criterion can be applied.
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