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Course: M362K Intro to Stochastic Processes
Term: Fall 2014

Instructor: Gordan Zitkovic

Lecture 4
The Simple Random Walk

We have defined and constructed a random walk {Xn}n∈N0 in the
previous lecture. Our next task is to study some of its mathematical
properties. Let us give a definition of a slightly more general creature.

Definition 4.1. A sequence {Xn}n∈N0 of random variables is called a
simple random walk (with parameter p ∈ (0, 1)) if

1. X0 = 0,

2. Xn+1 − Xn is independent of (X0, X1, . . . , Xn) for all n ∈N, and

3. the random variable Xn+1 − Xn has the following distribution(
−1 1
q p

)

where, as usual, q = 1− p.

If p = 1
2 , the random walk is called symmetric.

The adjective simple comes from the fact that the size of each step
is fixed (equal to 1) and it is only the direction that is random1. 1 One can study more general random

walks where each step comes from an
arbitrary prescribed probability distribu-
tion.Proposition 4.2. Let {Xn}n∈N0 be a simple random walk with parameter p.

For n ≥ 1 the distribution of the random variable Xn is discrete with support
{−n,−n + 2, . . . , n− 2, n}, and probabilities pl = P[Xn = l] given by

pl =

(
n

l+n
2

)
p(n+l)/2q(n−l)/2, (4.1)

for l = −n,−n + 2, . . . , n− 2, n.

Proof. Xn is composed of n independent steps ξk = Xk − Xk−1, k =

1, . . . , n, each of which goes either up or down. In order to reach level
l in those n steps, the number u of up-steps and the number d of
downsteps must satisfy u− d = l (and u + d = n). Therefore, u = n+l

2
and d = n−l

2 . The number of ways we can choose these u up-steps
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from the total of n is ( n
n+l

2
), which, with the fact the probability of any

trajectory with exactly u up-steps is puqn−u, gives the probability (4.1)
above. Equivalently, we could have noticed that the random variable
n+Xn

2 has the binomial b(n, p)-distribution.

The proof of Proposition 4.2 uses the simple idea already hinted at
in the previous lecture: view the random walk as a random trajectory
in some space of trajectories, and, compute the required probability
by simply counting the number of trajectories in the subset (event)
you are interested in, and adding them all together, weighted by their
probabilities. To prepare the ground for the future results, let C be the
set of all possible trajectories:

C = {(x0, x1, . . . , xn) : x0 = 0, xk+1 − xk = ±1, k ≤ n− 1}.

You can think of the first n steps of a random walk simply as a proba-
bility distribution on the state-space C.
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Figure 1: The superposition of
all trajectories in C for n = 4 and
a particular one - (0, 1, 0, 1, 2) - in
red.

Now we know how to compute the probabilities related to the posi-
tion of the random walk {Xn}n∈N0 at a fixed future time n. A mathe-
matically more interesting question can be posed about the maximum
of the random walk on {0, 1, . . . , n}. More precisely, for n ∈ N0 we
define its running maximum process {Mn}n∈N0 by

Mn = max(X0, . . . , Xn), for n ∈N0.

A nice expression for the pmf of Mn is available for the case of sym-
metric simple random walks.

Proposition 4.3. Let {Xn}n∈N0 be a symmetric simple random walk. Then
M0 = 0 and for n ≥ 1, the support of Mn is {0, 1, . . . , n} and its probability
mass function is given by

pl = P[Mn = l] = P[Xn = l] + P[Xn = l + 1]

=

(
n

b n+l+1
2 c

)
2−n, for l = 0, . . . , n.

Proof. Let us first pick a level l ∈ {0, 1, . . . , n} and compute the auxil-
liary probability ql = P[Mn ≥ l] by counting the number of trajectories
whose maximal level reached is at least l. Indeed, the symmetry as-
sumption ensures that all trajectories are equally likely. More precisely,
let Al ⊂ C0(n) be given by

Al = {(x0, x1, . . . , xn) ∈ C : max
k=0,...,n

xk ≥ l}

= {(x0, x1, . . . , xn) ∈ C : xk ≥ l, for at least one k ∈ {0, . . . , n}}.

Then P[Mn ≥ l] = 1
2n #Al , where #A denotes the number of elements

in the set A. When l = 0, we clearly have P[Mn ≥ 0] = 1, since X0 = 0.
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To count the number of elements in Al , we use the following clever
observation (known as the reflection principle):

Claim 4.4. For l ∈N, we have

#Al = 2#{(x0, x1, . . . , xn) : xn > l}+ #{(x0, x1, . . . , xn) : xn = l}.

Proof Claim 4.4. We start by defining a bijective transformation which
maps trajectories into trajectories. For a trajectory (x0, x1, . . . , xn) ∈
Al , let k(l) = k(l, (x0, x1, . . . , xn)) be the smallest value of the index
k such that xk ≥ l. In the stochastic-process-theory parlance, k(l) is
the first hitting time of the set {l, l + 1, . . . }. We know that k(l) is
well-defined (since we are only applying it to trajectories in Al) and
that it takes values in the set {1, . . . , n}. With k(l) at our disposal, let
(y0, y1, . . . , yn) ∈ C be a trajectory obtained from (x0, x1, . . . , xn) by the
following procedure:

1. do nothing until you get to k(l):

• y0 = x0,

• y1 = x1, . . .

• yk(l) = xk(l).

2. use the flipped values for the coin-tosses from k(l) onwards:

• yk(l)+1 − yk(l) = −(xk(l)+1 − xk(l)),

• yk(l)+2 − yk(l)+1 = −(xk(l)+2 − xk(l)+1), . . .

• yn − yn−1 = −(xn − xn−1).
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Figure 2: A trajectory (blue) and
its image (red) under Φ.

The picture on the right shows two trajectories: a blue one and its
reflection in red, with n = 15, l = 4 and k(l) = 8. Graphically,
(y0, . . . , yn) looks like (x0, . . . , xn) until it hits the level l, and then
follows its reflection around the level l so that yk − l = l − xk, for
k ≥ k(l). If k(l) = n, then (x0, x1, . . . , xn) = (y0, y1, . . . , yn). It is clear
that (y0, y1, . . . , yn) is in C. Let us denote this transformation by

Φ : Al → C, Φ(x0, x1, . . . , xn) = (y0, y1, . . . , yn)

and call it the reflection map. The first important property of the re-
flexion map is that it is its own inverse: apply Φ to any (y0, y1, . . . , yn)

in Al , and you will get the original (x0, x1, . . . , xn). In other words
Φ ◦Φ = Id, i.e. Φ is an involution. It follows immediately that Φ is a
bijection from Al onto Al .

To get to the second important property of Φ, let us split the set Al

into three parts according to the value of xn:

1. A>
l = {(x0, x1, . . . , xn) ∈ Al : xn > l},
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2. A=
l = {(x0, x1, . . . , xn) ∈ Al : xn = l}, and

3. A<
l = {(x0, x1, . . . , xn) ∈ Al : xn < l},

So that

Φ(A>
l ) = A<

l , Φ(A<
l ) = A>

l , and Φ(A=
l ) = A=

l .

We should note that, in the definition of A>
l and A=

l , the a priori
stipulation that (x0, x1, . . . , xn) ∈ Al is unncessary. Indeed, if xn ≥ l,
you must already be in Al . Therefore, by the bijectivity of Φ, we have

#A<
l = #A>

l = #{(x0, x1, . . . , xn) : xn > l},

and so

#Al = 2#{(x0, x1, . . . , xn) : xn > l}+ #{(x0, x1, . . . , xn) : xn = l},

just as we claimed.

Now that we know that Claim 4.4 holds, we can easily rewrite it as
follows:

P[Mn ≥ l] = P[Xn = l] + 2 ∑
j>l

P[Xn = j]

= ∑
j>l

P[Xn = j] + ∑
j≥l

P[Xn = j].

Finally, we subtract P[Mn ≥ l + 1] from P[Mn ≥ l] to get the expres-
sion for P[Mn = l]:

P[Mn = l] = P[Xn = l + 1] + P[Xn = l].

It remains to note that only one of the probabilities P[Xn = l + 1] and
P[Xn = l] is non-zero, the first one if n and l have different parity and
the second one otherwise. In either case the non-zero probability is
given by (

n
b n+l+1

2 c

)
2−n.

Let us use the reflection principle to solve a classical problem in
combinatorics.

Example 4.5 (The Ballot Problem). Suppose that two candidates, Daisy
and Oscar, are running for office, and n ∈ N voters cast their ballots.
Votes are counted by the same official, one by one, until all n of them
have been processed2. After each ballot is opened, the official records 2 like in the old days.

the number of votes each candidate has received so far. At the end, the
official announces that Daisy has won by a margin of m > 0 votes, i.e.,
that Daisy got (n + m)/2 votes and Oscar the remaining (n − m)/2
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votes. What is the probability that at no time during the counting has
Oscar been in the lead?

We assume that the order in which the official counts the votes
is completely independent of the actual votes, and that each voter
chooses Daisy with probability p ∈ (0, 1) and Oscar with probabil-
ity q = 1− p. For k ≤ n, let Xk be the number of votes received by
Daisy minus the number of votes received by Oscar in the first k bal-
lots. When the k + 1-st vote is counted, Xk either increases by 1 (if the
vote was for Daisy), or decreases by 1 otherwise. The votes are inde-
pendent of each other and X0 = 0, so Xk, 0 ≤ k ≤ n is (the beginning
of) a simple random walk. The probability of an up-step is p ∈ (0, 1),
so this random walk is not necessarily symmetric. The ballot problem
can now be restated as follows:

What is the probability that Xk ≥ 0 for all k ∈ {0, . . . , n}, given that
Xn = m?

The first step towards understanding the solution is the realization that
the exact value of p does not matter. Indeed, we are interested in the
conditional probability P[F|G] = P[F ∩ G]/P[G], where F denotes the
family of all trajectories that always stay non-negative and G the family
of those that reach m at time n. Each trajectory in G has (n + m)/2 up-
steps and (n − m)/2 down-steps, so its probability weight is always
equal to p(n+m)/2q(n−m)/2. Therefore,

P[F|G] =
P[F ∩ G]

P[G]
=

#(F ∩ G) p(n+m)/2q(n−m)/2

#G p(n+m)/2q(n−m)/2
=

#(F ∩ G)

#G
. (4.2)

We already know how to count the number of paths in G - it is equal
to ( n

(n+m)/2) - so “all” that remains to be done is to count the number
of paths in G ∩ F.

The paths in G ∩ F form a portion of all the paths in G which don’t
hit the level l = −1, so that #(G ∩ F) = #G − #H, where H is the set
of all paths which finish at m, but cross (or, at least, touch) the level
l = −1 in the process. Can we use the reflection principle to find #H?
Yes, we do. In fact, you can convince yourself that the reflection of any
path in H around the level l = −1 after its first hitting time of that
level poduces a path that starts at 0 and ends at −m− 2. Conversely,
the same procedure applied to such a path yields a path in H. The
number of paths from 0 to −m − 2 is easy to count - it is equal to
( n
(n+m)/2+1). Putting everything together, we get

P[F|G] =
(n

k)− ( n
k+1)

(n
k)

=
2k + 1− n

k + 1
, where k =

n + m
2

.

The last equality follows from the definition of binomial coefficients
(n

k) =
n!

k!(n−k)! .
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The Ballot problem has a long history (going back to at least 1887)
and has spurred a lot of research in combinatorics and probability. In
fact, people still write research papers on some of its generalizations.
When posed outside the context of probability, it is often phrased as
“in how many ways can the counting be performed . . . ” (the difference
being only in the normalizing factor (n

k) appearing in (4.2) above). A
special case m = 0 seems to be even more popular - the number of
2n-step paths from 0 to 0 never going below zero is called the Catalan
number3 and equals to 3 See Problem 4.6 for more information

about Catalan numbers.

Cn =
1

n + 1

(
2n
n

)
. (4.3)

PROBLEMS

Problem 4.1. Let {Xn}n∈N0 be a symmetric simple random walk. Com-
pute the following

1. P[X2n = 0], n ∈N0,

2. P[Xn = X2n], n ∈N0,

3. P[ |X1X2X3| = 2],

4. P[X7 + X12 = X1 + X16].

Solution: Let ξk = Xk − Xk−1, k ∈N.

1. P[X2n = 0] = 2−n(2n
n ).

2. P[Xn = X2n] = P[ξn+1 + ξn+2 + · · ·+ ξ2n = 0] =

0, n is odd,

2−n/2( n
n/2), n is even.

3. |X1X2X3| = 2 only in the following two cases: X1 = 1, X2 = 2, X3 =

1 or X1 = −1, X2 = −2, X3 = −1. The probability of each trajectory
is 1

8 , so P[|X1X2X3| = 2] = 1
4 .

4. We write the event {X1 + X12 = X7 + X16} in terms of ξs:

{X7 +X12 = X1 +X16} = {ξ2 + ξ3 + · · ·+ ξ7 = ξ13 + ξ14 + ξ15 + ξ16}.

All ξs are independent, have the same distribution and ξk has the
same distribution as −ξk. Thus,

P[ξ2 + ξ3 + · · ·+ ξ7 = ξ13 + ξ14 + ξ15 + ξ16]

= P[ξ2 + ξ3 + · · ·+ ξ7 − ξ13 − ξ14 − ξ15 − ξ16 = 0]

= P[ξ1 + ξ2 + · · ·+ ξ10 = 0] = 2−10
(

10
5

)
.
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Problem 4.2. Let {Xn}n∈N0 be a simple symmetric random walk. Which
of the following processes are simple random walks?

1. {2Xn}n∈N0 ?

2. {X2
n}n∈N0 ?

3. {−Xn}n∈N0 ?

4. {Yn}n∈N0 , where Yn = X5+n − X5 ?

How about the case p 6= 1
2 ?

Solution:

1. No - the distribution of X1 has support {−2, 2} and not {−1, 1}.

2. No - X2
1 = 1, and not ±1 with equal probabilities.

3. Yes - check the definition.

4. Yes - check the definition.

The answers are the same if p 6= 1
2 , but, in 3., −Xn comes with proba-

bility 1− p.

Problem 4.3. Let {Xn}n∈N0 be a simple symmetric random walk. Given
n ∈ N, what is the probability that X does not visit 0 during the time
interval 1, . . . , n.

Solution: Let us denote the required probability by pn, i.e.,

pn = P[X1 6= 0, X2 6= 0, . . . , Xn 6= 0].

For n = 1, p1 = 1, since X1 is either 1 or −1. For n > 1, let ξ1 be the
first increment ξ1 = X1 − X0 = X1. If ξ1 = −1, we need to compute
that probability that a random walk of length n − 1, starting at −1,
does not hit 0. This probability is, in turn, the same as the probability
that a random walk of length n− 1, starting from 0, never hits 1. By
the symmetry of the increments, the same reasoning works for the case
ξ1 = 1. Therefore,

pn = P[X1 ≤ 0, X2 ≤ 0, . . . , Xn−1 ≤ 0] = P[Mn−1 = 0],

where Mn = max{X0, . . . , Xn}. By Proposition 4.3, this probability is
given by

pn = 2−n+1
(

n− 1
bn/2c

)
.
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Problem 4.4. (30pts) A fair coin is tossed repeatedly and the record of
the outcomes is kept. Tossing stops the moment the total number of
heads obtained so far exceeds the total number of tails by 3. For exam-
ple, a possible sequence of tosses could look like HHTTTHHTHHTHH.
What is the probability that the length of such a sequence is at most
10?

Solution: Let Xn, n ∈ N0 be the number of heads minus the number
of tails obtained so far. Then, {Xn}n∈N0 is a simple symmetric random
walk, and we stop tossing the coin when X hits 3 for the first time. This
will happen during the first 10 tosses, if and only if M10 ≥ 3, where
Mn denotes the (running) maximum of X. According to the reflection
principle,

P[M10 ≥ 3] = P[X10 ≥ 3] + P[X10 ≥ 4]

= 2(P[X10 = 4] + P[X10 = 6] + P[X10 = 8] + P[X10 = 10])

= 2−9
[(

10
3

)
+

(
10
2

)
+

(
10
1

)
+

(
10
0

)] [
=

11
32

]
.

Problem 4.5. Let {Xn}n∈N0 be a simple random walk with P[X1 =

1] = p ∈ (0, 1). Define

Yn = 1
n

n

∑
k=1

Xk, for n ∈N.

Compute E[Yn] and Var[Yn], for n ∈N.

Hint: You can use the following formulas:

n

∑
j=1

j =
n(n + 1)

2
,

n

∑
j=1

j2 =
n(n + 1)(2n + 1)

6

without proof.

Solution: Let us first represent Yn in terms of the sequence {ξn}n∈N:

Yn =
1
n

n

∑
k=1

Xk =
1
n

(
ξ1 + (ξ1 + ξ2) + · · ·+ (ξ1 + ξ2 + · · ·+ ξn)

)
=

1
n

n

∑
k=1

(n− k + 1)ξk

Remembering that E[ξk] = p− q and that Var[ξk] = 1− (2p− 1)2 =

4pq, we have

E[Yn] =
1
n

n

∑
k=1

(n− k + 1)E[ξ j] =
p−q

n

n

∑
k=1

(n− k + 1)

= p−q
n

n

∑
k=1

k = (p− q)
n + 1

2
.
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By the independence of {ξn}n∈N we have

Var[Yn] =
1
n2

n

∑
k=1

Var[(n− k + 1)ξk] =
1
n2

n

∑
k=1

(n− k + 1)2 Var[ξk]

=
1
n2

n

∑
k=1

k2 Var[ξk] =
4pq
n2

n(n + 1)(2n + 1)
6

=
2
3

pq
(n + 1)(2n + 1)

n
.

Problem 4.6 (Optional). Let Cn denote the n-th Catalan number (de-
fined in (4.3)).

1. Use the reflection principle to show that Cn is the number of paths
(x0, . . . , x2n) ∈ C such that xk ≥ 0, for all k ∈ {0, 1, . . . , 2n} and
x2n = 0.

2. Prove the Segner’s recurrence formula Cn+1 = ∑n
i=0 CiCn−i. Hint: Don’t

compute - just think about paths.

3. Show that Cn is the number of ways that the vertices of a regular 2n-
gon can be paired so that the line segments joining paired vertices
do not intersect.

4. Prove that

Cn =

(
2n
n

)
−
(

2n
n + 1

)
,

both algebraically (using the formula for the binomial coefficient)
and combinatorially (by counting).
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