L-spaces and left-orderability

Cameron McA. Gordon
(joint with Steve Boyer and Liam Watson)

Geometry and Topology Down Under

Melbourne, July 2011

Left Orderability

A group $G \neq 1$ is *left-orderable* (LO) if \exists strict total order < on G such that $g < h \Rightarrow fg < fh \ \forall f \in G$

- \mathbb{R} is LO
- $G LO, 1 \neq H < G \Rightarrow H LO$
- $G \ni g \neq 1$) finite order $\Rightarrow G$ not LO
- G locally indicable $\Rightarrow G$ LO
- $G, H \perp O \Rightarrow G * H \perp O \text{ (Vinogradov, 1949)}$
- G (countable) LO $\Leftrightarrow \exists$ embedding $G \subset \text{Homeo}_+(\mathbb{R})$
- braid group B_n is LO (Dehornoy, 1994)

• *M* compact, orientable, prime 3-manifold (poss. with boundary)

Then
$$\pi_1(M)$$
 is LO $\Leftrightarrow \pi_1(M)$ has an LO quotient (Boyer-Rolfsen-Wiest, 2005)

Hence
$$\beta_1(M) > 0 \Rightarrow \pi_1(M)$$
 LO

So interesting case is when

$$M$$
 is a \mathbb{Q} -homology 3-sphere (QHS)

Suppose M has a co-orientable taut foliation \mathcal{F}

 $\pi_1(M)$ acts on leaf space \mathcal{L} of universal covering of M

If $\mathcal{L}\cong\mathbb{R}$ (\mathcal{F} is \mathbb{R} -covered) then we get non-trivial homomorphism

$$\pi_1(M) \to \operatorname{Homeo}_+(\mathbb{R})$$
 : $\pi_1(M)$ is LO

Theorem (BRW, 2005)

M a Seifert fibered QHS. Then $\pi_1(M)$ is $LO \Leftrightarrow M$ has base orbifold $S^2(a_1, \ldots, a_n)$ and admits a horizontal foliation.

Theorem (Calegari-Dunfield, 2003)

M a prime, atoroidal QHS with a co-orientable taut foliation, \widetilde{M} the universal abelian cover of M. Then $\pi_1(\widetilde{M})$ is LO.

Thurston's universal circle construction gives

$$\rho: \pi_1(M) \subset \operatorname{Homeo}_+(S^1)$$

Central extension

$$1 \to \mathbb{Z} \to \widetilde{\text{Homeo}}_+(S^1) \to \text{Homeo}_+(S^1) \to 1$$

Restriction of ρ to $\pi_1(\widetilde{M})$ lifts to $\widetilde{\text{Homeo}}_+(S^1) \subset \text{Homeo}_+(\mathbb{R})$

Heegaard Floer Homology (Ozsváth-Szabó)

M a QHS

 $\widehat{HF}(M)$: finite dimensional \mathbb{Z}_2 -vector space

$$\dim \widehat{HF}(M) \geq |H_1(M)|$$

M is an *L*-space if equality holds

E.g. lens spaces are *L*-spaces

Is there a "topological" characterization of *L*-spaces?

Conjecture

M a prime QHS. Then

M is an L-space $\Leftrightarrow \pi_1(M)$ is not LO

1 U P 1 OP P 1 = P 1 = P 2 P 2 P

E.g.

$$\pi_1(M)$$
 finite $\stackrel{\frown}{\swarrow}$ m is an L -space $\pi_1(M)$ not LO

Theorem (OS, 2004)

If M is an L-space then M does not admit a co-orientable taut foliation.

So Conjecture \Rightarrow : if M has a co-orientable taut foliation then $\pi_1(M)$ is LO (virtually true by Calegari-Dunfield) M ZHS graph manifold admits a taut foliation, horizontal in each Seifert piece. Hence M not an L-space, $\pi_1(M)$ LO (Boileau-Boyer, 2011)

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

Base orbifold is either

$$S^2(a_1, \ldots, a_n)$$
:

 M an L -space $\Leftrightarrow M$ does not admit a horizontal foliation (Lisca-Stipsicz, 2007)

 $\Leftrightarrow \pi_1(M)$ not LO (BRW, 2005)

(also observed by Peters)

$$P^2(a_1,...,a_n)$$
: $\pi_1(M)$ not LO (BRW, 2005)

Show M is an L-space by inductive surgery argument using:

N compact, orientable 3-manifold, ∂N a torus; $\alpha, \beta \subset \partial N$, $\alpha \cdot \beta = 1$, such that

$$|H_1(N(\alpha+\beta))| = |H_1(N(\alpha))| + |H_1(N(\beta))|$$

Then
$$N(\alpha), N(\beta)$$
 L-spaces $\Rightarrow N(\alpha + \beta)$ *L*-space (*) (OS, 2005)

(uses \widehat{HF} surgery exact sequence of a triad)

(B) Sol manifolds

N = twisted I-bundle/Klein bottle

N has two Seifert structures:

base Möbius band; fiber φ_0

base $D^2(2,2)$; fiber φ_1

 $\varphi_0 \cdot \varphi_1 = 1 \text{ on } \partial N$

 $f: \partial N \to \partial N$ homeomorphism, $M = N \cup_f N$

Assume *M* a QHS $(f(\varphi_0) \neq \pm \varphi_0)$

M Seifert $\Leftrightarrow f(\varphi_i) = \pm \varphi_j$ (some $i, j \in \{0, 1\}$)

Otherwise, M is a Sol manifold

Theorem

M is an L-space

$$f_* = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 $(c \neq 0)$ with respect to basis φ_0, φ_1

- (1) True if $f_* = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix}$ $f(\varphi_1) = \varphi_0$, so M Seifert
- (2) True if $f_* = \begin{bmatrix} a & b \\ 1 & d \end{bmatrix} = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix} (t_0)_*^d$

where $t_0: \partial N \to \partial N$ is Dehn twist along φ_0

Write
$$W(f) = N \cup_f N$$

Bordered \widehat{HF} calculation shows $\widehat{HF}(W(f)) \cong \widehat{HF}(W(f \circ t_0))$ So reduced to case (1)

(3) In general, induct on |c|: do surgery on suitable simple closed curves $\subset \partial N$ and use (*)

(C) Dehn surgery

Theorem (OS, 2005)

 K a hyperbolic alternating knot. Then $\mathit{K}(r)$ is not an $\mathit{L}\text{-space}\ \forall\ r\in \mathit{Q}$

Theorem (Roberts, 1995)

K an alternating knot.

- (1) If K is not special alternating then K(r) has a taut foliation $\forall r \in Q$.
- (2) If K is special alternating then K(r) has a taut foliation either $\forall r > 0 \text{ or } \forall r < 0$.

K(1/q) is a ZHS \therefore foliation is co-orientable

$$K(1/q)$$
 atoroidal \therefore $\pi_1(K(1/q)) \subset \operatorname{Homeo}_+(S^1)$

$$H^2(\pi_1(K(1/q))) = 0$$
; so lifts to $\pi_1(K(1/q)) \subset \operatorname{Homeo}_+(\mathbb{R})$

$$\therefore \quad \pi_1(K(1/q)) \text{ is LO} \quad (\forall \ q \neq 0 \text{ in (1)}, \forall \ q > 0 \text{ or } \forall \ q < 0 \text{ in (2)})$$

Theorem

Let K be the figure eight knot. Then $\pi_1(K(r))$ is LO for -4 < r < 4.

Uses representations
$$\rho: \pi_1(S^3 \setminus K) \to PSL_2(\mathbb{R})$$

(Also true for $r = \pm 4$ (Clay-Lidman-Watson, 2011))

(D) 2-fold branched covers

L a link in S^3

 $\Sigma(L)$ =2-fold branched cover of L

Theorem (OS, 2005)

If L is a non-split alternating link then $\Sigma(L)$ is an L-space.

(uses (*);

Theorem

If L is a non-split alternating link then $\pi_1(\Sigma(L))$ is not LO.

(Also proofs by Greene, Ito)

Define group $\pi(D)$:

generators
$$a_1, \ldots, a_n \longleftrightarrow$$
 arcs of D

relations \longleftrightarrow crossings of D

$$a_j^{-1}a_ia_j^{-1}a_k$$

Theorem (Wada, 1992)

$$\pi(D) \cong \pi_1(\Sigma(L)) * \mathbb{Z}$$

$$\pi(D) \text{ LO} \iff \pi_1(\Sigma(L)) \text{ LO}$$

(if $L \neq \text{unknot}$)

$$a_j^{-1}a_ia_j^{-1}a_k = 1 \iff a_j^{-1}a_i = a_k^{-1}a_j$$

$$a_i < a_j \iff a_j^{-1}a_i < 1$$

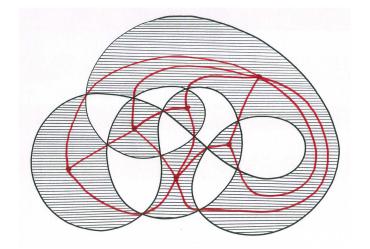
: at each crossing either

$$a_i < a_j < a_k$$

or $a_i > a_j > a_k$
or $a_i = a_j = a_k$

vertices \longleftrightarrow *B*-regions

Shade complementary regions of D alternately Black/White Define graph $\Gamma(D) \subset S^2$:



Assume D connected, alternating

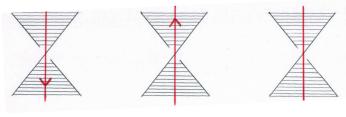
We want to show $\pi_1(\Sigma(L))$ not LO

True if L = unknot; so assume $L \neq \text{unknot}$

Then
$$\pi_1(\Sigma(L))$$
 LO \Leftrightarrow $\pi(D)$ LO

So assume $\pi(D)$ LO

Orient edges of $\Gamma(D)$



$$a_i < a_i < a_k$$

$$a_i > a_i > a_k$$

$$a_i = a_i = a_k$$

Γ a connected, **semi-oriented** graph $\subset S^2$

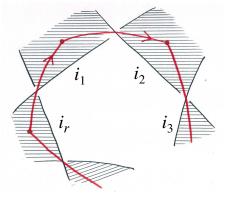


where, in each case, there is at least one oriented edge

Lemma

Let $\Gamma \subset S^2$ be a connected semi-oriented graph with at least one oriented edge. Then Γ has a sink, source or cycle.

Let
$$\Gamma = \Gamma(D)$$

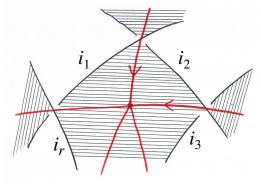


$$a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_r} \leq a_{i_1}$$

$$\therefore$$
 $a_1 = a_2 = \cdots = a_r$

a contradiction, since at least one oriented edge

sink:



$$a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_r} \leq a_{i_1}$$

$$\therefore$$
 $a_1 = a_2 = \cdots = a_r$

a contradiction, since at least one oriented edge

Similarly for a source

$$a_{i_1} \ge a_{i_2} \ge \cdots \ge a_{i_r} \ge a_{i_1}$$
, contradiction

- \therefore by Lemma, all edges of $\Gamma(D)$ are unoriented
- \therefore (since *D* connected) $a_1 = a_2 = \cdots = a_n$

$$\therefore \quad \pi(D) \cong \mathbb{Z}$$

$$\therefore$$
 $\pi_1(\Sigma(K)) = 1$

 \therefore L = unknot, contradiction

L quasi-alternating $\implies \Sigma(L)$ an L-space

Question

Does L quasi-alternating $\implies \pi_1(\Sigma(L))$ not LO?

HAPPY BIRTHDAY, HYAM!

