Seifert Fibered Dehn Filling

Cameron McA. Gordon (joint with Steve Boyer and Xingru Zhang)

Simons Center, Stony Brook
December 2012

M compact 3-manifold, ∂M a torus, int M complete hyperbolic

M compact 3-manifold, ∂M a torus, int M complete hyperbolic α a slope on ∂M ; $M(\alpha) = \alpha$ -Dehn filling on M

M compact 3-manifold, ∂M a torus, int M complete hyperbolic α a slope on ∂M ; $M(\alpha) = \alpha$ -Dehn filling on M α is exceptional if $M(\alpha)$ is non-hyperbolic

M compact 3-manifold, ∂M a torus, int M complete hyperbolic α a slope on ∂M ; $M(\alpha) = \alpha$ -Dehn filling on M α is exceptional if $M(\alpha)$ is non-hyperbolic

Goal: Classify all $(M; \alpha, \beta)$ with α, β exceptional, $\alpha \neq \beta$

M compact 3-manifold, ∂M a torus, int M complete hyperbolic α a slope on ∂M ; $M(\alpha) = \alpha$ -Dehn filling on M α is exceptional if $M(\alpha)$ is non-hyperbolic

Goal: Classify all $(M; \alpha, \beta)$ with α, β exceptional, $\alpha \neq \beta$

E.g. $M(\alpha) = S^3$, $M(\beta)$ a lens space (Berge Conjecture)

M compact 3-manifold, ∂M a torus, int M complete hyperbolic α a slope on ∂M ; $M(\alpha) = \alpha$ -Dehn filling on M α is exceptional if $M(\alpha)$ is non-hyperbolic

Goal: Classify all $(M; \alpha, \beta)$ with α, β exceptional, $\alpha \neq \beta$

E.g. $M(\alpha) = S^3$, $M(\beta)$ a lens space (Berge Conjecture)

Example.
$$M = S^3 - \stackrel{\text{o}}{N}$$
 (figure eight knot)

$$M(1/0) = S^3$$

$$M(0) = T^2$$
-bundle over S^1

$$M(\pm 1), M(\pm 2), M(\pm 3)$$
 small Seifert; orbifold $S^2(a,b,c), a,b,c>1$

 $M(\pm 4)$ toroidal

For all M, # exceptional slopes for $M \le 10$, and α, β exceptional $\implies \Delta(\alpha, \beta) \le 8$.

For all M, # exceptional slopes for $M \le 10$, and α, β exceptional $\Longrightarrow \Delta(\alpha, \beta) \le 8$.

 $\alpha \text{ exceptional} \Longrightarrow M(\alpha) \text{ either}$

• reducible

For all M, # exceptional slopes for $M \le 10$, and α, β exceptional $\Longrightarrow \Delta(\alpha, \beta) \le 8$.

- reducible
- toroidal

For all M, # exceptional slopes for $M \le 10$, and α, β exceptional $\Longrightarrow \Delta(\alpha, \beta) \le 8$.

- reducible
- toroidal
- S^3

For all M, # exceptional slopes for $M \leq 10$, and α, β exceptional $\Longrightarrow \Delta(\alpha, \beta) \leq 8$.

- reducible
- toroidal
- S^3
- lens space

For all M, # exceptional slopes for $M \leq 10$, and α, β exceptional $\Longrightarrow \Delta(\alpha, \beta) \leq 8$.

- reducible
- toroidal
- S^3
- lens space
- small Seifert

For all M, # exceptional slopes for $M \leq 10$, and α, β exceptional $\Longrightarrow \Delta(\alpha, \beta) \leq 8$.

 $\alpha \text{ exceptional} \Longrightarrow M(\alpha) \text{ either}$

- reducible
- toroidal
- S^3
- lens space
- small Seifert

Least well understood: small Seifert

Wh = Whitehead link exterior

$$Wh(1) = M_1$$
 = figure eight exterior
 $Wh(-5) = M_2$ = figure eight sister
 $Wh(2) = M_3$, $Wh(-5/2) = M_4$

Wh = Whitehead link exterior

$$Wh(1) = M_1$$
 = figure eight exterior
 $Wh(-5) = M_2$ = figure eight sister
 $Wh(2) = M_3$, $Wh(-5/2) = M_4$

 M_1, M_2, M_3, M_4 have pairs of toroidal fillings $M_i(\alpha_i), M_i(\beta_i),$ $1 \le i \le 4$, with $\Delta(\alpha_i, \beta_i) = 8, 8, 7, 6$, respectively (Hodgson-Weeks)

Wh = Whitehead link exterior

$$Wh(1) = M_1$$
 = figure eight exterior $Wh(-5) = M_2$ = figure eight sister $Wh(2) = M_3$, $Wh(-5/2) = M_4$

 M_1, M_2, M_3, M_4 have pairs of toroidal fillings $M_i(\alpha_i), M_i(\beta_i),$ $1 \le i \le 4$, with $\Delta(\alpha_i, \beta_i) = 8, 8, 7, 6$, respectively (Hodgson-Weeks)

Conjecture 1

 M_1, M_2, M_3, M_4 are the only hyperbolic 3-manifolds with exceptional slopes α, β where $\Delta(\alpha, \beta) \geq 6$.

(1) Known to be true unless $M(\alpha)$ is small Seifert

- (1) Known to be true unless $M(\alpha)$ is small Seifert
- (2) There are only finitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) \geq 6$ (Agol, 2008)

- (1) Known to be true unless $M(\alpha)$ is small Seifert
- (2) There are only finitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) \geq 6$ (Agol, 2008)
- (3) There are infinitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) = 5$

- (1) Known to be true unless $M(\alpha)$ is small Seifert
- (2) There are only finitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) \geq 6$ (Agol, 2008)
- (3) There are infinitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) = 5$

Remains to do: $M(\alpha)$ small Seifert and $M(\beta)$

- reducible (almost done, Boyer-Culler-Shalen-Zhang, 2008)
- toroidal
- Seifert

- (1) Known to be true unless $M(\alpha)$ is small Seifert
- (2) There are only finitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) \geq 6$ (Agol, 2008)
- (3) There are infinitely many M with exceptional slopes α, β , $\Delta(\alpha, \beta) = 5$

Remains to do: $M(\alpha)$ small Seifert and $M(\beta)$

- reducible (almost done, Boyer-Culler-Shalen-Zhang, 2008)
- toroidal
- Seifert

Consider case $M(\alpha)$ small Seifert, $M(\beta)$ toroidal

Conjecture 1 becomes

Conjecture 2

M hyperbolic with slopes α, β such that $M(\alpha)$ is small Seifert, $M(\beta)$ is toroidal, and $\Delta(\alpha, \beta) \geq 6$. Then M is the figure eight knot exterior.

Conjecture 1 becomes

Conjecture 2

M hyperbolic with slopes α, β such that $M(\alpha)$ is small Seifert, $M(\beta)$ is toroidal, and $\Delta(\alpha, \beta) \geq 6$. Then M is the figure eight knot exterior.

 $T \subset M(\beta)$ incompressible torus with $m = |T \cap \partial M|$ minimal $(m \ge 1)$ $T \cap M = F$ = essential m-punctured torus $\subset M$ with ∂ -slope β

Conjecture 1 becomes

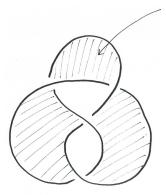
Conjecture 2

M hyperbolic with slopes α, β such that $M(\alpha)$ is small Seifert, $M(\beta)$ is toroidal, and $\Delta(\alpha, \beta) \geq 6$. Then M is the figure eight knot exterior.

 $T \subset M(\beta)$ incompressible torus with $m = |T \cap \partial M|$ minimal $(m \ge 1)$ $T \cap M = F$ = essential m-punctured torus $\subset M$ with ∂ -slope β

Theorem (Boyer-G-Zhang)

Conjecture 2 is true unless $m \ge 3$ and M is an F-bundle or F-semi-bundle.



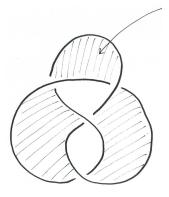
once-punctured Klein bottle

 $\subset M_1$, ∂ -slope 4

 \longmapsto Klein bottle $B \subset M_1(4)$

torus $T = \partial N(B) \subset M_1(4)$

m = 2



once-punctured Klein bottle

 $\subset M_1$, ∂ -slope 4

 \longmapsto Klein bottle $B \subset M_1(4)$

torus $T = \partial N(B) \subset M_1(4)$

m=2

$$M_1(4) = N(B) \cup_T D^2(2,3)$$

$$\parallel D^2(2,2)$$

Assume $M(\alpha)$ small Seifert, $M(\beta)$ toroidal, $\Delta(\alpha, \beta) \geq 6$.

Assume $M(\alpha)$ small Seifert, $M(\beta)$ toroidal, $\Delta(\alpha, \beta) \geq 6$.

(A) Use Characteristic Submanifold theory; this applies unless *M* is an *F*-bundle or *F*-semi-bundle

Assume $M(\alpha)$ small Seifert, $M(\beta)$ toroidal, $\Delta(\alpha,\beta) \geq 6$.

(A) Use Characteristic Submanifold theory; this applies unless M is an F-bundle or F-semi-bundle

 $m \ge 3$: gives contradiction

Assume $M(\alpha)$ small Seifert, $M(\beta)$ toroidal, $\Delta(\alpha, \beta) \geq 6$.

(A) Use Characteristic Submanifold theory; this applies unless *M* is an *F*-bundle or *F*-semi-bundle

 $m \ge 3$: gives contradiction

m = 1 or 2: gives a lot of topological information

Assume $M(\alpha)$ small Seifert, $M(\beta)$ toroidal, $\Delta(\alpha, \beta) \geq 6$.

(A) Use Characteristic Submanifold theory; this applies unless *M* is an *F*-bundle or *F*-semi-bundle

 $m \ge 3$: gives contradiction

m = 1 or 2: gives a lot of topological information

e.g. if T is separating (so m = 2), get

$$M(\beta) = D^2(p_1, q_1) \cup_T D^2(p_2, q_2)$$

(B)
$$m = 1$$
 or 2 \exists involution $\tau : M \to M$

(B)
$$m = 1$$
 or 2 \exists involution $\tau : M \to M$

E.g. suppose F separates M (so m = 2); $M = X^+ \cup_F X^-$

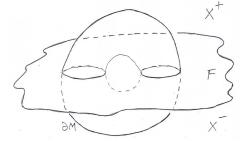
(B)
$$m = 1$$
 or 2 \exists involution $\tau : M \to M$

E.g. suppose F separates M (so m=2); $M=X^+ \cup_F X^-$

$$S^+ = \partial X^+$$

If S^+ incompressible in X^+

then S^+ incompressible in M



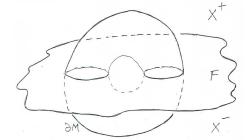
(B)
$$m = 1$$
 or 2 \exists involution $\tau : M \to M$

E.g. suppose F separates M (so m = 2); $M = X^+ \cup_F X^-$

$$S^+ = \partial X^+$$

If S^+ incompressible in X^+

then S^+ incompressible in M



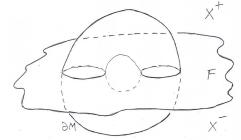
But S^+ compresses in $M(\alpha)$ and $M(\beta)$

E.g. suppose *F* separates *M* (so m = 2); $M = X^+ \cup_F X^-$

$$S^+ = \partial X^+$$

If S^+ incompressible in X^+

then S^+ incompressible in M



But S^+ compresses in $M(\alpha)$ and $M(\beta)$

$$\Delta(\alpha, \beta) \leq 1$$
; contradiction

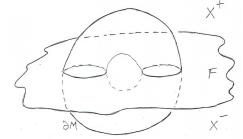
(B)
$$m = 1$$
 or 2 \exists involution $\tau : M \to M$

E.g. suppose F separates M (so m=2); $M=X^+ \cup_F X^-$

$$S^+ = \partial X^+$$

If S^+ incompressible in X^+

then S^+ incompressible in M



But S^+ compresses in $M(\alpha)$ and $M(\beta)$

- $\Delta(\alpha, \beta) \leq 1$; contradiction
- $\therefore X^+$ is a genus 2 handlebody

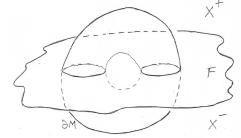
(B)
$$m = 1$$
 or 2 \exists involution $\tau : M \to M$

E.g. suppose F separates M (so m=2); $M=X^+ \cup_F X^-$

$$S^+ = \partial X^+$$

If S^+ incompressible in X^+

then S^+ incompressible in M



But S^+ compresses in $M(\alpha)$ and $M(\beta)$

- $\therefore \Delta(\alpha, \beta) \leq 1$; contradiction
- $\therefore X^+$ is a genus 2 handlebody

Similarly X^- is a genus 2 handlebody

 \therefore \exists involution $\tau: M \to M$, such that $\tau \mid \partial M$ is the elliptic involution

42

$$au$$
 extends to $au_{lpha}: M(lpha) o M(lpha)$

$$au_{eta}:M(eta) o M(eta)$$

$$au$$
 extends to $au_{lpha}:M(lpha) o M(lpha) \ au_{eta}:M(eta) o M(eta)$ Study quotients $(M,\mathrm{Fix}(au))/ au \ au \ au(M(lpha),\mathrm{Fix}(au_{lpha}))/ au_{lpha} \ au \ au$

$$au$$
 extends to $au_lpha:M(lpha) o M(lpha) \ au_eta:M(eta) o M(eta)$

Study quotients
$$(M, \operatorname{Fix}(\tau))/ au$$
 $(M(\alpha), \operatorname{Fix}(au_{lpha}))/ au_{lpha}$ $(M(eta), \operatorname{Fix}(au_{eta}))/ au_{eta}$

Gives

F non-separating: impossible

$$au$$
 extends to $au_{\alpha}: M(\alpha) \to M(\alpha)$

$$\tau_{\beta}: M(\beta) \to M(\beta)$$

Study quotients
$$(M, Fix(\tau))/\tau$$

$$(M(\alpha), \operatorname{Fix}(\tau_{\alpha}))/\tau_{\alpha}$$

$$(M(\beta), \operatorname{Fix}(\tau_{\beta}))/\tau_{\beta}$$

Gives

F non-separating: impossible

F separating : M = Dehn filling on 4 ∂ -components of the 5-chain link exterior.

$$au$$
 extends to $au_{\alpha}: M(\alpha) \to M(\alpha)$

$$\tau_{\beta}: M(\beta) \to M(\beta)$$

Study quotients
$$(M, Fix(\tau))/\tau$$

$$(M(\alpha), \operatorname{Fix}(\tau_{\alpha}))/\tau_{\alpha}$$

$$(M(\beta), \operatorname{Fix}(\tau_{\beta}))/\tau_{\beta}$$

Gives

F non-separating: impossible

F separating : M = Dehn filling on 4 ∂ -components of the 5-chain link exterior.

Roukema (2011)
$$\Longrightarrow$$

M =figure eight exterior



Assume $\pi_1(M(\alpha))$ infinite $(1/a + 1/b + 1/c \le 1)$

Idea of proof of (A) (follows [BCSZ])
Assume $\pi_1(M(\alpha))$ infinite $(1/a + 1/b + 1/c \le 1)$ $\exists f: T^2 \to M(\alpha) = M \cup V_{\alpha}$, with

$$\exists f: T^2 \to M(\alpha) = M \cup V_\alpha, \text{ with } f_*: \pi_1(T^2) \to \pi_1(M(\alpha)) \text{ injective}$$

Assume
$$\pi_1(\mathbf{M}(\alpha))$$
 infinite $(1/a + 1/b + 1/c \le 1)$

$$\exists \quad f: T^2 \to M(\alpha) = M \cup V_{\alpha} \text{ , with}$$

$$f_*: \pi_1(T^2) \to \pi_1(M(\alpha)) \text{ injective}$$

Homotop f so that

(1) $f \mid f^{-1}(V_{\alpha})$ is a homeomorphism onto a disjoint union of meridian disks of V_{α}

Assume
$$\pi_1(M(\alpha))$$
 infinite $(1/a + 1/b + 1/c \le 1)$

$$\exists \quad f: T^2 \to M(\alpha) = M \cup V_{\alpha} \text{ , with }$$

$$f_*: \pi_1(T^2) \to \pi_1(M(\alpha)) \text{ injective }$$

Homotop f so that

- (1) $f \mid f^{-1}(V_{\alpha})$ is a homeomorphism onto a disjoint union of meridian disks of V_{α}
- (2) $f \mid f^{-1}(M)$ is transverse to F

Assume
$$\pi_1(M(\alpha))$$
 infinite $(1/a + 1/b + 1/c \le 1)$

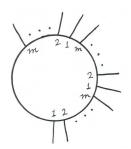
$$\exists \quad f: T^2 \to M(\alpha) = M \cup V_{\alpha} \text{ , with}$$

$$f_*: \pi_1(T^2) \to \pi_1(M(\alpha)) \text{ injective}$$

Homotop f so that

- (1) $f \mid f^{-1}(V_{\alpha})$ is a homeomorphism onto a disjoint union of meridian disks of V_{α}
- (2) $f \mid f^{-1}(M)$ is transverse to F
- (3) γ a component of $f^{-1}(F) \Longrightarrow f \mid : (\gamma, \partial \gamma) \to (F, \partial F)$ essential

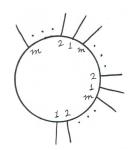
Get graph $\Gamma \subset T^2$ vertices of $\Gamma \longleftrightarrow$ components of $f^{-1}(V_\alpha)$ edges of $\Gamma \longleftrightarrow$ arc components of $f^{-1}(F)$



Get graph $\Gamma \subset T^2$

vertices of $\Gamma \longleftrightarrow$ components of $f^{-1}(V_{\alpha})$ edges of $\Gamma \longleftrightarrow$ arc components of $f^{-1}(F)$

(3) $\Longrightarrow \Gamma$ has no trivial loops



Get graph $\Gamma \subset T^2$

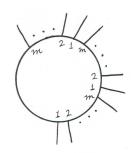
vertices of $\Gamma \longleftrightarrow$ components of $f^{-1}(V_{\alpha})$

edges of $\Gamma \longleftrightarrow \operatorname{arc\ components\ of} f^{-1}(F)$

(3) $\Longrightarrow \Gamma$ has no trivial loops

$$|\partial F| = m$$
; so $|\partial F \cap \text{ meridian of } V_{\alpha}| = m\Delta(\alpha, \beta)$

 \therefore each vertex of Γ has valency $m\Delta$



Get graph $\Gamma \subset T^2$

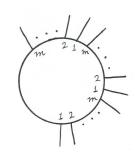
vertices of $\Gamma \longleftrightarrow$ components of $f^{-1}(V_{\alpha})$ edges of $\Gamma \longleftrightarrow$ arc components of $f^{-1}(F)$

(3) $\Longrightarrow \Gamma$ has no trivial loops

$$|\partial F| = m$$
; so $|\partial F \cap \text{ meridian of } V_{\alpha}| = m\Delta(\alpha, \beta)$

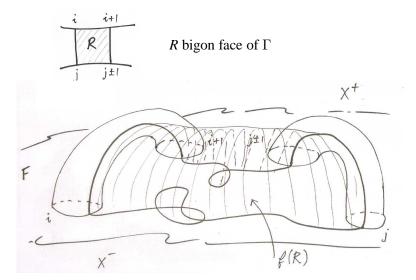
 \therefore each vertex of Γ has valency $m\Delta$

Number components of ∂F 1, 2, ..., m in order around ∂M Label endpoints of edges of Γ = points of $\partial F \cap f(T^2)$ with corresponding component of ∂F



Assume F separates M: $M = X^+ \cup_F X^ f(\text{faces of } \Gamma)$ lie alternately in X^\pm

Assume F separates $M: M = X^+ \cup_F X^$ f(faces of Γ) lie alternately in X^\pm



 $f \mid R$ gives essential homotopy

$$H:(\bigcirc -\bigcirc) \times (I,\partial I) \to (X^{\varepsilon},F) \qquad (\varepsilon=\pm)$$

 H_0, H_1 not homotopic into ∂F

$f \mid R$ gives essential homotopy

$$H:(\bigcirc -\bigcirc) \times (I,\partial I) \to (X^{\varepsilon},F) \qquad (\varepsilon = \pm)$$

 H_0, H_1 not homotopic into ∂F

Jaco-Shalen-Johannson: \exists characteristic *I*-bundle

$$(\Sigma^{\varepsilon}, \Phi^{\varepsilon}) \subset (X^{\varepsilon}, F)$$
 such that

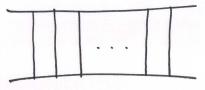
 $f \mid R$ gives essential homotopy

$$H: (\bigcirc -\bigcirc) \times (I, \partial I) \to (X^{\varepsilon}, F) \qquad (\varepsilon = \pm)$$

 H_0, H_1 not homotopic into ∂F

Jaco-Shalen-Johannson: ∃ characteristic *I*-bundle

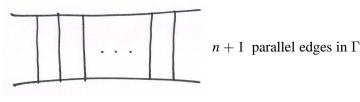
- $(\Sigma^{\varepsilon}, \Phi^{\varepsilon}) \subset (X^{\varepsilon}, F)$ such that
- (1) $(\Sigma^{\varepsilon}, \Phi^{\varepsilon})$ is an $(I, \partial I)$ -bundle
- (2) any essential homotopy H as above is homotopic into $(\Sigma^{\varepsilon}, \Phi^{\varepsilon})$
- (3) $(\Sigma^{\varepsilon}, \Phi^{\varepsilon})$ is minimal w.r.t. (2).



n+1 parallel edges in Γ

gives essential homotopy of length n

$$H: \left(\bigcirc -\bigcirc\right) \times \left(I, \left\{i/n: 0 \leq i \leq n\right\}\right) \to (M, F)$$

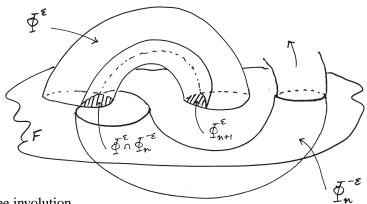


gives essential homotopy of length n

$$H: (\bigcirc -\bigcirc) \times \Big(I, \{i/n: 0 \le i \le n\}\Big) \to (M, F)$$

Get surfaces in F $\Phi^{\varepsilon} = \Phi_{1}^{\varepsilon} \supset \Phi_{2}^{\varepsilon} \supset \Phi_{3}^{\varepsilon} \supset \cdots$ minimal w.r.t. property

H essential homotopy of length n starting in X^{ε} $\Longrightarrow H_0 \simeq \operatorname{into} \Phi_n^{\varepsilon}$



Free involution

$$\tau_\varepsilon:\Phi^\varepsilon\to\Phi^\varepsilon$$

$$\Phi_{n+1}^{\varepsilon} = \tau_{\varepsilon}(\Phi^{\varepsilon} \cap \Phi_n^{-\varepsilon})$$

Proposition (BCSZ)

If M is hyperbolic and (X^{\pm}, F) not both I-bundles then $\exists k$ such that $\Phi_k^{\varepsilon} = \emptyset$.

Proposition (BCSZ)

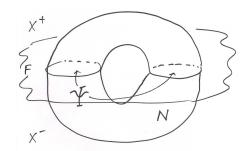
If M is hyperbolic and (X^{\pm}, F) not both I-bundles then $\exists k$ such that $\Phi_k^{\varepsilon} = \emptyset$.

If not, \exists *n* such that $\Phi_n^{\pm 1} = \Phi_{n+1}^{\pm 1} = \dots = \Psi \neq \emptyset$

Proposition (BCSZ)

If M is hyperbolic and (X^{\pm}, F) not both I-bundles then $\exists k$ such that $\Phi_k^{\varepsilon} = \emptyset$.

If not, $\exists n \text{ such that } \Phi_n^{\pm 1} = \Phi_{n+1}^{\pm 1} = \ldots = \Psi \neq \emptyset$ Then get $N \subset M$, $\partial N = \coprod \text{tori}, N \cap F = \Psi$,



$$(N\cap X^{\varepsilon},\Psi)$$
 an

I-bundle,
$$\varepsilon = \pm$$

M hyperbolic

$$\Longrightarrow N = M$$

$$\therefore (X^{\varepsilon}, F)$$
 I-bundle, $\varepsilon = \pm$

neither (X^{\pm}, F) an *I*-bundle $\Longrightarrow \Phi_n^{\varepsilon} = \emptyset$ for $n \ge m$

neither
$$(X^{\pm},F)$$
 an *I*-bundle $\Longrightarrow \Phi_n^{\varepsilon} = \emptyset$ for $n \geq m$

$$\implies$$
 # parallel edges in $\Gamma \le m+1$

neither
$$(X^{\pm}, F)$$
 an *I*-bundle $\Longrightarrow \Phi_n^{\varepsilon} = \emptyset$ for $n \ge m$

$$\implies$$
 # parallel edges in $\Gamma \le m+1$

 $\overline{\Gamma}$ reduced graph : amalgamate parallel edges

 $\overline{\Gamma}$ has no monogons or bigons

$$\chi \Longrightarrow \exists \text{ vertex of valency} \leq 6 \text{ in } \overline{\Gamma}$$

neither
$$(X^{\pm}, F)$$
 an *I*-bundle $\Longrightarrow \Phi_n^{\varepsilon} = \emptyset$ for $n \ge m$

$$\implies$$
 # parallel edges in $\Gamma \le m+1$

 $\overline{\Gamma}$ reduced graph : amalgamate parallel edges

 $\overline{\Gamma}$ has no monogons or bigons

$$\chi \Longrightarrow \exists \text{ vertex of valency } \leq 6 \text{ in } \overline{\Gamma}$$

$$\therefore \Delta \geq 6 \Longrightarrow \exists$$
 family of $\geq m$ parallel edges in Γ

 $M(\beta) = \widehat{X}^+ \cup_T \widehat{X}^-$; analysis of Φ_k^{ε} for small k gives information about \widehat{X}^{\pm} ; e.g. consider

 $(*) \ \Phi^{\varepsilon} \supset \partial F \text{ and has no component} \longmapsto \operatorname{disk} \subset T$

 $M(\beta) = \widehat{X}^+ \cup_T \widehat{X}^-$; analysis of Φ_k^{ε} for small k gives information about \widehat{X}^{\pm} ; e.g. consider

- $(*) \ \Phi^{\varepsilon} \supset \partial F \text{ and has no component} \longmapsto \operatorname{disk} \subset T$
- $(*) \implies \widehat{X}^{\varepsilon}$ is Seifert with orbifold $D^2(a,b)$, a,b>1, $(a,b)\neq (2,2)$

 $M(\beta) = \widehat{X}^+ \cup_T \widehat{X}^-$; analysis of Φ_k^{ε} for small k gives information about \widehat{X}^{\pm} ; e.g. consider

- $(*) \ \Phi^{\varepsilon} \supset \partial F \text{ and has no component} \longmapsto \operatorname{disk} \subset T$
- $(*) \implies \widehat{X}^{\varepsilon}$ is Seifert with orbifold $D^2(a,b), a,b>1, (a,b) \neq (2,2)$

not $(*) \Longrightarrow \#$ parallel edges in $\Gamma \le m$

- $M(\beta) = \widehat{X}^+ \cup_T \widehat{X}^-$; analysis of Φ_k^{ε} for small k gives information about \widehat{X}^{\pm} ; e.g. consider
- $(*) \ \Phi^{\varepsilon} \supset \partial F \text{ and has no component} \longmapsto \operatorname{disk} \subset T$
- $(*) \implies \widehat{X}^{\varepsilon}$ is Seifert with orbifold $D^2(a,b), a,b>1, (a,b)\neq (2,2)$
- not $(*) \Longrightarrow \#$ parallel edges in $\Gamma \le m$

Faces of Γ give (singular) disks in $X^{\pm} \longmapsto$ topological information about \widehat{X}^{\pm}

 $\cdots \sim \rightarrow \cdots$ eventually get contradiction to $\Delta \geq 6$ if $m \geq 3$.

To complete proof of Conjecture 1, need to show:

if $M(\alpha)$ is small Seifert then

(1) if M is a bundle or semi-bundle and $M(\beta)$ is reducible or toroidal then $\Delta(\alpha,\beta) \leq 5$;

To complete proof of Conjecture 1, need to show:

if $M(\alpha)$ is small Seifert then

- (1) if M is a bundle or semi-bundle and $M(\beta)$ is reducible or toroidal then $\Delta(\alpha, \beta) \leq 5$;
- (2) if $M(\beta)$ is Seifert then

either
$$\Delta(\alpha, \beta) \leq 5$$
 or M is the figure eight exterior