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Left Orderability

A groupG 6= 1 is left orderable(LO) if ∃ strict total order< on G

such thatg < h =⇒ fg < fh ∀ f ∈ G

• R is LO

• G LO, 1 6= H < G =⇒ H LO

• G LO =⇒ G torsion-free

• G, H LO ⇐⇒ G ∗ H LO (Vinogradov, 1949)

• G (countable) LO⇐⇒ ∃ embeddingG ⊂ Homeo+(R)
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Theorem (Boyer-Rolfsen-Wiest, 2005)

M a compact, orientable, prime 3-manifold (poss. with boundary).

Thenπ1(M) is LO⇔ π1(M) has an LO quotient.

Hence β1(M) > 0 ⇒ π1(M) LO

So interesting case is when

H∗(M; Q) ∼= H∗(S3; Q)

M is aQ-homology 3-sphere (QHS)
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Foliations

SupposeM has a (codim 1)co-orientable taut foliation(CTF)F

π1(M) acts on leaf spaceL of universal covering ofM

E.g. ifL ∼= R (F is R-covered) then get non-trivial homomorphism

π1(M) → Homeo+(R) ∴ π1(M) is LO

Theorem (Calegari-Dunfield, 2003)

M a prime, atoroidalQHS with a CTF,M̃ the universal abelian cover

of M. Thenπ1(M̃) is LO.

Thurston’s universal circle construction gives

ρ : π1(M) ⊂ Homeo+(S1)

Restriction ofρ to π1(M̃) lifts to H̃omeo+(S1) ⊂ Homeo+(R)
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Heegaard Floer Homology (Ozsváth-Szabó)

M aQHS. ĤF(M) : finite dimensionalZ2-vector space

dim ĤF(M) ≥ |H1(M)|

M is anL-spaceif equality holds

E.g. lens spaces areL-spaces

Is there a “non-Heegaard Floer” characterization ofL-spaces?

Conjecture

M a primeQHS. Then

M is an L-space ⇔ π1(M) is not LO
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M not anL-space

(Ozsváth-Szabó, 2004)

M has anR-covered CTF M has a CTF

(Fenley-Roberts, 2012)
(if M atoroidal)

π1(M) LO π1(M) virtually LO



22

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.



23

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

Base orbifold is either

S2(a1, . . . , an) :



24

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

Base orbifold is either

S2(a1, . . . , an) :

M does not admit a horizontal foliation

(Lisca-Stipsicz, 2007) (BRW, 2005)

M anL-space π1(M) not LO
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P2(a1, . . . , an) : π1(M) not LO (BRW, 2005)

ShowM anL-space by induction onn; using (OS, 2005):

X compact, orientable 3-manifold,∂X a torus;

α, β ⊂ ∂X, α · β = 1, and

|H1
(
X(α + β)

)
| = |H1

(
X(α)

)
| + |H1

(
X(β)

)
|

Then X(α), X(β) L-spaces⇒ X(α + β) L-space (∗)
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(B) Graph manifolds = union of Seifert fibered spaces along tori

Theorem (Clay-Lidman-Watson, 2011)

M a ZHSgraph manifold. Thenπ1(M) is LO.

Theorem (Boileau-Boyer, 2011)

M a ZHSgraph manifold. Then M admits a CTF, horizontal in every

Seifert piece. Hence M is not a L-space.

So Conjecture true forZHS graph manifolds
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; M(f ) QHS =⇒ c 6= 0

M(f ) Seifert⇔ f (ϕi) = ±ϕj (somei, j ∈ {0, 1})

Otherwise,M(f ) aSol manifold

π1(M(f )) not LO (BRW, 2005)
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So reduced to case (1)

(3) In general, induct on|c| : do surgery on suitable simple

closed curves⊂ ∂N and use(∗)



39

Theorem

M is an L-space

(1) True if f∗ =

[
a 1
1 0

]
: f (ϕ1) = ϕ0 , soM(f ) Seifert

(2) True if f∗ =

[
a b
1 d

]
=

[
a 1
1 0

] [
1 d
0 1

]
=

[
a 1
1 0

]
(t0)d

∗

wheret0 : ∂N → ∂N is Dehn twist alongϕ0

BorderedĤF calculation showŝHF(M(f )) ∼= ĤF(M(f ◦ t0))

So reduced to case (1)

(3) In general, induct on|c| : do surgery on suitable simple

closed curves⊂ ∂N and use(∗)

Hence: Conjecture is true for all non-hyperbolic geometric manifolds.
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(D) Dehn surgery

Theorem (OS, 2005)

K a hyperbolic alternating knot. Then K(r) is not an L-space∀ r ∈ Q

So Conjecture =⇒ π1(K(r)) LO

Theorem (Roberts, 1995)

K an alternating knot. Then K(r) has a CTF∀r ∈ Q if K is not

special, and either∀r > 0 or ∀r < 0 if K is special.

Corollary

The Conjecture is true for K(1/q), K alternating, either∀q ∈ Q, or

∀q > 0 or ∀q < 0.
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Theorem

Let K be the figure eight knot. Thenπ1(K(r)) is LO for−4 < r < 4.

Uses special representationsρ : π1(S3 \ K) → PSL2(R)

Also true forr ∈ Z (Fenley-Roberts)

(∗) implies

K a knot inS3, if K(s) anL-space for somes∈ Q, s > 0, thenK(r) an

L-space for allr ≥ 2g(K) − 1

(K is anL-space knot)

So Conjecture =⇒ π1(K(r)) not LO, r ≥ 2g(K) − 1

∃ some results in this direction (Clay-Teragaito; Clay-Watson)
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(E) 2-fold branched covers

L a link in S3

Σ(L) =2-fold branched cover ofL

Theorem (OS, 2005)

If L is a non-split alternating link thenΣ(L) is an L-space.

(uses(∗) ;

L L0 L 8

=⇒ Σ(L), Σ(L0), Σ(L∞) a surgery triad

with detL = detL0 + detL∞)

Theorem

If L is a non-split alternating link thenπ1(Σ(L)) is not LO.

(Also proofs by Greene, Ito)
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(F) Questions

Question 1

If M is aQHS with a CTF, isπ1(M) LO?

Question 2

If K is a hyperbolic alternating knot, isπ1(K(r)) LO ∀ r ∈ Q?

L quasi-alternating =⇒ Σ(L) anL-space

Question 3

DoesL quasi-alternating=⇒ π1(Σ(L)) not LO?

Conjecture =⇒ Q’s 1, 2 and 3 have answer “yes”
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Question 4

If M is aQHS withπ1(M) LO doesM admit a CTF? (Maybe “no”?)

Question 5

Does the Conjecture hold for graph manifolds?

Only known primeZHSL-spaces areS3 and Poincaré HS

Question 6

M a hyperbolicZHS. Isπ1(M) LO?


