ON THE REVERSIBILITY OF TWIST-SPUN KNOTS

CAMERON MCA. GORDON *

The University of Texas at Austin
Department of Mathematics, 1 University Station C1200, Austin, TX 78712-0257

Received Revised

ABSTRACT

Litherland has shown that if a knot is (+)-amphicheiral then its m-twist-spin is reversible. We show that, for classical knots, in many cases the converse holds.

The irreversibility (sometimes called noninvertibility) of certain twist-spun knots has been established by Ruberman [10], using the Farber-Levine linking pairing and the Casson-Gordon invariants. More recently, alternative proofs of the irreversibility of the 2-twist-spun trefoil have been given by Carter, Jelsovsky, Kamada, Langford and Saito [4], and by Rourke and Sanderson [9], using quandle cohomology and the homotopy theory of racks, respectively. Similar methods have been used by Satoh [11] to prove the irreversibility of certain other twist-spun torus knots. In the present note we use more geometric methods to prove the following more general result.

Theorem 1. (1) The 2-twist-spin of a rational knot κ is reversible if and only if κ is amphicheiral.

- (2) If m, p, q are > 1 then the m-twist-spin of the (p, q) torus knot is irreversible.
- (3) If $m \geq 3$ then the m-twist-spin of a hyperbolic knot κ is reversible if and only if κ is (+)-amphicheiral.

Since a rational knot is either hyperbolic or a (2, q) torus knot, we obtain the following corollary.

Corollary 2. If $m \geq 2$ then the m-twist-spin of a rational knot κ is reversible if and only if κ is amphicheiral.

The "if" directions in parts (1) and (3) of Theorem 1 are due to Litherland [5], who shows that the m-twist-spin of a (+)-amphicheiral knot is always reversible.

We work in the PL category. A knot κ (more precisely, an n-knot) is a locally flat oriented pair (S^{n+2}, K) , where K is homeomorphic to S^n . (The knots in Theorem 1

^{*}Partially supported by TARP grant 003658-0519-2001.

are 1-knots.) Two knots $\kappa_1 = (S^{n+2}, K_1)$ and $\kappa_2 = (S^{n+2}, K_2)$ are equivalent if there is an orientation preserving homeomorphism of pairs $h: (S^{n+2}, K_1) \to (S^{n+2}, K_2)$. A knot $\kappa = (S^{n+2}, K)$ is reversible if it is equivalent to $(S^{n+2}, -K)$; it is (ε) -amphicheiral if it is equivalent to $(-S^{n+2}, \varepsilon K)$, $\varepsilon = \pm$. Note that if κ is reversible then (+)- and (-)-amphicheirality coincide, and hence, since rational knots are reversible, we can unambiguously use the term amphicheiral in part (1) of Theorem 1 and in Corollary 2.

Let $\kappa = (S^{n+2}, K)$ be a knot. Then K has a regular neighborhood N(K), where $(N(K), K) \cong (S^n \times D^2, S^n \times \{(0,0)\})$ [13], and the exterior of κ is $X = \overline{S^{n+2} - N(K)}$. Recall that κ is fibered if X is a fiber bundle over S^1 ; the fiber is then $M_0 = \overline{M - B}$, where M is a closed, connected, orientable (n + 1)-manifold and B is an (n + 1)-ball in M, and X is homeomorphic to the identification space $M_0 \times I/f = M_0 \times I/((x,0) \sim (f(x),1))$ for all $x \in M_0$, for some orientation preserving homeomorphism $f: M_0 \to M_0$, the monodromy of the bundle.

The observation that lies behind Theorem 1 is the following, the first part of which is due to Ruberman [10].

Proposition 3. Let κ be a fibered knot with fiber M_0 and monodromy f. If κ is reversible then M_0 and $-M_0$ are h-cobordant rel ∂ . Moreover, the orientation reversing self-homotopy equivalence $g: M_0 \to M_0$ induced by the h-cobordism satisfies $fgf \simeq g$.

Before giving the proof of Proposition 3, we show how it implies Theorem 1.

First note that attaching $B \times I$ to the h-cobordism between M_0 and $-M_0$ in the obvious way gives an h-cobordism between M and -M. Also, the corresponding extension of g to M and any extension of f to M still satisfy $fgf \simeq g$.

Next recall Zeeman's theorem on twist-spinning [14]: if κ is an n-knot, and m is a positive integer, then $\kappa^{(m)}$, the m-twist-spin of κ , is an (n+1)-knot which is fibered with fiber M_0 and monodromy f, where M is the m-fold branched cyclic covering of κ , and f is the restriction to M_0 of the canonical covering translation of M.

Proof of Theorem 1

- (1) If $\kappa_{p/q}$ is the rational knot associated with the rational number p/q, then the 2-fold branched covering of $\kappa_{p/q}$ is the lens space L(p,q). Hence Proposition 3 implies that if the 2-twist-spin $\kappa_{p/q}^{(2)}$ is reversible then L(p,q) and -L(p,q) are h-cobordant. By the G-signature theorem (see [1, p.479]), two lens spaces are h-cobordant if and only if they are homeomorphic as oriented manifolds. Hence if $\kappa_{p/q}^{(2)}$ is reversible then $q^2 \equiv -1 \pmod{p}$, which implies that $\kappa_{p/q}$ is amphicheiral [12]. (Since $\kappa_{p/q}$ is reversible, (+)- and (-)-amphicheirality coincide.) On the other hand, for any n-knot κ , if κ is (+)-amphicheiral then $\kappa^{(m)}$ is reversible [5].
- (2) Let $\tau_{p,q}$ denote the (p,q) torus knot. The *m*-fold branched cyclic covering M of $\tau_{p,q}$ is a Seifert fiber space. Since $\tau_{2,q}$ is a non-amphicheiral rational knot, we

may assume by part (1) that either m > 2 or p and q are both > 2. Then M is not a lens space (including S^3 and $S^2 \times S^1$); see for example [8, Theorem 1]. Also, the Euler number $e(M) \neq 0$, by [7, Theorem 1.2] (see [8]). Hence by [7, Theorem 8.2, M admits no orientation reversing self-homotopy equivalence. It follows from Proposition 3 that $\tau_{p,q}^{(m)}$ is irreversible.

(3) If κ is the figure eight knot then κ is (+)-amphicheiral, and hence $\kappa^{(m)}$ is reversible [5], so the theorem holds in this case.

If κ is a hyperbolic knot other than the figure eight knot, and $m \geq 3$, then the m-fold branched cyclic covering M of κ is hyperbolic, and the canonical covering translation $f: M \to M$ is an isometry [2], [3]. Let \tilde{K} be the (geodesic) fixed point set of f, and let N be a tubular neighborhood of \tilde{K} , consisting of all points of M within some sufficiently small distance of \tilde{K} . Note that N can be parametrized as $S^1 \times D$, where each meridian disk $\{x\} \times D$ is a geodesically embedded copy of the disk D of some radius centered at the origin (0,0) in the disk model of \mathbb{H}^2 , and where $\tilde{K} = S^1 \times \{(0,0)\}$. Then f(N) = N, and, taking polar co-ordinates on D, f|N is given by $f(x,(r,\theta))=(x,(r,\theta+\frac{2\pi}{m})).$

Now suppose that $\kappa^{(m)}$ is reversible, and let $g: M \to M$ be the degree -1homotopy equivalence given by Proposition 3. By [6], $g \simeq \gamma$, where γ is an isometry. Since $f \gamma f \simeq \gamma$, we have, again by [6], that $f \gamma f = \gamma$. In particular, $\gamma(\tilde{K}) = \tilde{K}$. There are two possibilities: (i) $\gamma | \tilde{K}$ is orientation preserving, and (ii) $\gamma | \tilde{K}$ is orientation reversing.

In case (ii), $\gamma | N$ is of the form $\gamma(x,d) = (\alpha(x), \beta_x(d))$, where $\beta_x : D \to D$ is some orientation preserving isometry. Hence β_x is given by $\beta_x(r,\theta) = (r,\theta + \theta_x)$, for some θ_x . Then $f\gamma f(x,(r,\theta))=(\alpha(x),(r,\theta+\theta_x+\frac{4\pi}{m}))$, and hence, since $m\geq 3$, $f\gamma f \neq \gamma$, a contradiction.

It follows that case (i) must hold. Since $f\gamma f = \gamma$, γ induces an orientation reversing homeomorphism $h: S^3 \to S^3$, such that h(K) = K and h|K is orientation preserving. Thus κ is (+)-amphicheiral.

As noted above, the converse is proved in [5].

Proof of Proposition 3

The first part of the statement is due to Ruberman [10]; we include a proof for completeness. Let X be the exterior of κ , so we have $X \simeq M_0 \times I/f$. Suppose that κ is reversible. Then we have an orientation preserving homeomorphism $h: S^{n+2} \to S^{n+2}$ such that h(K) = K and h|K is orientation reversing. By an isotopy we may assume that h(N(K)) = N(K), and that, under the homeomorphism $(N(K),K) \cong (S^n \times D^2, S^n \times \{(0,0)\}), \ h|N(K) = \alpha \times \beta, \text{ where } \alpha : S^n \to S^n$ is some orientation reversing homeomorphism, and $\beta:D^2\to D^2$ is given by $\beta(r,\theta) = (r,-\theta)$. Lifting the restriction h|X to the infinite cyclic covering of X, we get an orientation preserving homeomorphism $\tilde{h}: M_0 \times \mathbb{R} \to M_0 \times \mathbb{R}$, such that $\tilde{h}|S^n \times \mathbb{R} = \alpha \times \varepsilon$, where $\varepsilon : \mathbb{R} \to \mathbb{R}$ is given by $\varepsilon(t) = -t$.

Let $M_0' = \tilde{h}(M_0 \times \{0\})$, and choose $t \in \mathbb{R}$, t > 0, so that $M_0 \times \{t\}$ is disjoint from

 M'_0 . Let W be the compact submanifold of $M_0 \times \mathbb{R}$ cobounded by $M_0 \times \{t\}$ and M'_0 . Orient M_0 and \mathbb{R} , and thereby $M_0 \times \mathbb{R}$, and orient M'_0 so that the induced orientation on $\partial M'_0 = S^n \times \{0\}$ is the same as that induced by $M_0 \times \{0\}$. Thus W is an oriented cobordism rel ∂ between $M_0 \times \{t\}$ and M'_0 . Note that the homeomorphism $\tilde{h}|M_0 \times \{0\} : M_0 \times \{0\} \to M'_0$ is then orientation reversing, since $\tilde{h}|S^n \times \{0\} : S^n \times \{0\} \to S^n \times \{0\}$ is the orientation reversing homeomorphism α . Hence W is an oriented cobordism rel ∂ between M_0 and $-M_0$.

Now $\overline{M_0 \times \mathbb{R} - W} = U \coprod V$, where $U = M_0 \times [t, \infty)$ and $V = h(M_0 \times [0, \infty))$. Hence there is a strong deformation retraction $M_0 \times \mathbb{R} \to W$. Since the inclusions of $M_0 \times \{t\}$ and M'_0 into $M_0 \times \mathbb{R}$ are homotopy equivalences, it follows that W is an h-cobordism.

Let $i_0: M_0 \to M_0 \times \mathbb{R}$ be the inclusion map $i_0(x) = (x,0)$, and let $p: M_0 \times \mathbb{R} \to M_0$ be projection onto the first factor. Then the orientation reversing self-homotopy equivalence $g: M_0 \to M_0$ induced by the h-cobordism W is given by $g = p\tilde{h}i_0$.

The group of covering translations of the infinite cyclic covering $M_0 \times \mathbb{R}$ of X is generated by $T: M_0 \times \mathbb{R} \to M_0 \times \mathbb{R}$, where T(x,t) = (f(x),t+1). Note that \tilde{h} is the lift of h that takes $S^n \times \{0\}$ to $S^n \times \{0\}$, and $\tilde{h}T$ is the lift of h that takes $S^n \times \{0\}$ to $S^n \times \{-1\}$. Hence $\tilde{h}T = T^{-1}\tilde{h}$, giving $T\tilde{h}T = \tilde{h}$. Let $S: M_0 \times \mathbb{R} \to M_0 \times \mathbb{R}$ be given by S(x,t) = (x,t+1). Observe that $i_0f = TS^{-1}i_0$, and that fp = pT. Then $fgf = fp\tilde{h}i_0f = pT\tilde{h}TS^{-1}i_0 = p\tilde{h}S^{-1}i_0 \simeq p\tilde{h}i_0 = g$, since $S \simeq id$.

References

- M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications, Ann. of Math. 88 (1968), 451–491.
- [2] M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque 272 (2001).
- [3] D. Cooper, C. Hodgson and S. Kerckhoff, Three-dimensional Orbifolds and Cone Manifolds, Memoirs of the Mathematical Society of Japan 5 (2000).
- [4] J.S. Carter, D. Jelsovsky, L. Langford, S. Kamada and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, arXiv math.GT/9903135.
- [5] R.A. Litherland, Symmetries of twist-spun knots, Knot Theory and Manifolds, Proceedings, Vancouver 1983, ed. D. Rolfsen, Lecture Notes in Mathematics 1144, Springer, 1985, pp. 97–107.
- [6] G. Mostow, Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Studies 78, Princeton University Press, 1973.
- [7] W.D. Neumann and F. Raymond, Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, Algebraic and Geometric Topology, Proceedings, Santa Barbara 1977, ed. K.C. Millett, Lecture Notes in Mathematics 664, Springer, 1978, pp. 163–196.
- [8] V. Nuñez and E. Ramírez-Losada, The trefoil knot is as universal as it can be, preprint.
- [9] C. Rourke and B. Sanderson, There are two 2-twist-spun trefoils, preprint.
- [10] D. Ruberman, Doubly slice knots and the Casson-Gordon invariants, Trans. Amer. Math. Soc. 279 (1983), 569–588.
- [11] S. Satoh, On cocycle invariants of twist-spun (2, n)-torus knots, preprint.
- [12] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1950), 133–170.

- $[13] \ {\rm C.T.C.} \ {\rm Wall}, \ {\it Locally flat PL submanifolds with \ codimension \ two}, \ {\rm Proc. \ Camb. \ Phil.}$ Soc. **63** (1967), 5–8.
- [14] E.C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495.