
Appendix: Summary of Prerequisits

In this appendix, we will recount for the reader’s convenience some of the theory of ∞-categories, higher
algebra, and spectral algebraic geometry, which we will use throughout the rest of this work. We do not
strive to give a complete presentation; rather we do little more than fix notation and try to get across some
intuition. In particular, we will abstain from giving proofs. For a detailed and exhaustive treatment, see
HTT, HA, and SAG.

A.1. Higher category theory. The title of this subsection is somewhat misleading: we will be con-
cerned with ∞-categories, or more precisely (∞,1)-categories, which are intuitively analogues of categories
which possess objects, morphisms, morphisms between morphisms, and so on indefinitely, but all higher
morphisms (morphisms between morphisms and further up) are required to be invertible. That is a very
versatile context for homotopical reasoning and does subsume usual category theory, that is to say (1,1)-
categories, but does not subsume what is classically called 2-categories, which might be more precisely
termed (2,2)-categories, or higher n-categories for n ≥ 2.

A.1.1. Simplicial sets. The formal backbone of ∞-category theory is the theory of simplicial sets. Let ∆
denote the simplex category, i.e. the category of non-empty finite linearly ordered sets with not-necessarily-
strictly order-preserving maps. Equivalently, objects of ∆ may be set to consist of [n] = {0 < 1 < ⋅ ⋅ ⋅ < n}
for all non-negative integers n. The category of simplicial sets Set∆ is defined to be the presheaf category
on ∆ . That is to say, a simplicial set is a functor X ∶ ∆op → Set and a morphism of simplicial sets is a
natural transformation.

The representable objects in Set∆ are called standard simplices and denoted ∆n ∶= Hom∆(−, [n]). For
any simplicial set X ∈ Set∆, we denote Xn ∶= X([n]) and call it the n-simplices of X. Sometimes 0-
simplices will be referred to as vertices. It follows from the Yoneda lemma that for any simplicial set X
the set of its n-simplices Xn is in bijective correspondence with morphisms ∆n →X in Set∆.

To specify a simplicial set X though, it doesn’t suffice to merely specify its sets of simplices {Xn}n≥0. By
definition, a simplicial set is a functor ∆op → Set, and we must also specify how it behaves with respect to
morphisms in ∆ . Fortunately morphisms in ∆ are quite simple; they are non-strictly increasing functions
[n] → [m] and an easy inductive argument shows that they can all be built by finite composition out of
morphisms

δi ∶ [n − 1] → [n], σi ∶ [n + 1] → [n],

where δi is the function which skips the element i ∈ [n] and σi hits it twice, or explicitly

δi(k) =
⎧⎪⎪⎨⎪⎪⎩

k 0 ≤ k < i,
k + 1 i ≤ k ≤ n,

σi(k) =
⎧⎪⎪⎨⎪⎪⎩

k 0 ≤ k ≤ i,
k − 1 i < k ≤ n + 1.

For any simplicial set X these induce functions di ∶ Xn → Xn−1 and si ∶ Xn → Xn+1, called faces and
degeneracies respectively. From the observation that any morphism in ∆ is a composition of various
δi and σj , it follows that the simplicial set X can be completely recovered from its sets of n-simplices
together with the collection of faces and degeneracies {di, si}0≤i≤n for every Xn. It is possible to write
down an explicit list of identities that functions di ∶ Xn → Xn−1 and si ∶ Xn → Xn+1 for 1 ≤ i ≤ n must
satisfy for them to define an X ∈ Set∆, and this was indeed the original definition of simplicial sets.

Indispensable for defining ∞-categories in the next subsection will be the i-horn of the standard simplex
∆n, a simplicial set denoted Λni with k-simplices

(Λni )k = {f ∈ Hom∆([k], [n]) ∣ [n] ∖ {i} ⊈ f([k])}.

Clearly (Λin)k ⊆ (∆n)k for every k and functoriality, i.e. simplicial set structure, of the horn is induced via
this inclusion. Geometrically, the i-th horn Λni is obtained by removing the interior and the face opposite
to the i-th simplex from ∆n, so for insance the horns of ∆2 may be depicted as

1

0

@@

// 2,

1

��

0

@@

2,

1

��

0 // 2,

where these are Λ2
0, Λ2

1, and Λ2
2 respectively.
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A.1.2. ∞-categories. An ∞-category1 is a simplicial set C ∈ Set∆ which satisfies the inner horn filling
condition: for every n and every 0 < i < n, every solid diagram

Λni

��

// C

∆n

>>

in which the vertical arrow is the evident inclusion map, admits an extension to a commutative diagram
in Set∆ together with the dotted arrow. To get some feeling for how ∞-categories work, let us explain how
to export several basic notions associated to ordinary categories to this context.

For an ∞-category C, the set of vertices C0 is called objects of C and we often denote that X is an object
of C by writing X ∈ C. The 1-simplices of C are likewise morphisms and the face maps d0, d1 ∶ C1 → C0

are then called the domain and codomain or source and target. That is to say, for a morphism f ∈ C1,
we often write f ∶ d1(f) → d0(f) to designate between which pair of objects it goes. The image of the
degeneracy s0 ∶ C0 → C1 is called the identity. More precisely, for any object X ∈ C we call the morphism
s0(X) ∶X →X the identity morphism on X and denote it idX .

The horn filling condition allows us to define composition: for a pair of morphisms f ∶ X → Y and
g ∶ Y →X, we may define a map of simplicial sets Λ2

1 → C which selects in C the solid diagram

Y

g

��
X

f

>>

h // Z

and the inner horn filling condition guarantees the existence of a morphism g ○ f ∶ X → Z as denoted,
together with a filling of the triangle ∆2 → C which we say exhibits h as the composite of g and g. There is
no guarantee as to uniqueness of h and indeed we can not expect it to be such - as we had seen, the arrow
h is not equal to subsequently traversal of arrows f and g, but is instead connected to it by a 2-simplex.
Intuitively, there is only a homotopy h ≃ g○f . This is an example of a common phenomenon in ∞-category
theory: picking out a specific morphism, or object of some other sort, is most often impossible. The best
we can do is pick out a homotopy class of such objects.

There are distinguished compositions of any morphism f ∶ X → Y together with idX or with idY . It is
given by the respective degeneracy map s0, s1 ∶ C1 → C2 evaluated at f , and they give rise to 2-simplices in
C of the form

X

f

  

X

idX

>>

f
// Y,

Y

idY

  

X

f

>>

f
// Y.

Though the choice of a composition of two morphisms is not unique, it is essentially unique, or better
unique up to a contractible space of choices. For example, suppose we are given a pair of 2-simplices
σ,σ′ ∶ ∆2 → C with f = d2(σ) = d2(σ′) and g = d0(σ) = d0(σ′), which therefore exhibit the morphism
h = d1(σ) and h′ = d1(σ′) respectively as a composition on f and g in C. Then the following collection of
2-simplices in C

X

f

��
h′

��

h

��

Y

g

xx

g

&&
Z

idZ // Z

defines a map of simplicial sets Λ3
1 → C and by inner horn filling it extends uniquely to a 3-simplex in C.

Taking the 1-face of this 3-simplex, we obtain a 2-simplex that witnesses a homotopy between h and h′.
We then write h ≃ h′ and say that the morphisms h and h′ are equivalent.

We saw already that composition of a fixed pair of morphisms in an ∞-category exists, and is unique
up to equivalence, however it is not unique and as such whenever we wish to use it, it does not suffice
to merely call upon its existence to summon it, as we are used to doing in ordinary category theory, but

1Formally these are more correctly called quasicategories. There also exists a variety of other models of the intuitive
idea of ∞-categories (or to be completely formal, (∞,1)-categories), and a significant literature on comparing them to
each other and showing that they yield equivalent theories. Because of this, there is a drive in the ∞-category community
to work model-independently, i.e. relying only on those features of higher category theory which should be present in all
models. While we will mostly unconsciously abide by this policy, the quasicategorical model is, thanks to Lurie’s seminal
work, most highly developed, and since HTT and HA are our primary references, we will mostly refer to it and the technical
achievements it boasts.
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must instead specify a particular instance of a composite morphism. Actually, we must do more: we must
specify a morphisms which is to be the composite of the two given morphisms, but then we must also
give a 2-simplex which exhibits that this is the desired composite, i.e. the filling of the horn above. This
paradigm of conditions becoming additional data is another hallmark of ∞-category theory.

Associativity may also be handled by horn filling: suppose we are given three morphisms f ∶ X → Y ,
g ∶ Y → Z and h ∶ Z →W in C, together with a choice of compositions which we will abusively denote g ○f ,
h ○ h and (h ○ h) ○ h. This amounts to specifying three 2-simplices in C which together form a simplicial
subset

X

f

�� (h○g)○f

��

g○f

��

Y

g

xx
h○g

''
Z

h // W

in C. This can clearly be recognized as a map Λ3
1 → C which extends by horn filling to ∆3 → C. Its new

face exhibits an equivalence (h○g)○f ≃ h○(g ○f). Therefore the associativity for the composition of three
morphisms is exhibited by a 3-simplex in C. An analogous argument shows that composition of strings
of composable morphisms of length n in an ∞-category is associative for every n, and this associativity
is witnessed by a particular n-simplex in C. Therefore associativity of composition in an ∞-category
holds only up to a coherent system of equivalences - in notation of homotopy theory, we might say that
composition is associative in the A∞ sense.

In the introduction to this subsection of the appendix, we mentioned that all higher morphisms in an
∞-category are invertible. Let us examine one incarnation of this, for 2-morphisms. Given a parallel pair
of morphisms (1-morphisms, if you wish) f, g ∶ X → Y in an ∞-category C, we may define a 2-morphism
α ∶ f → g to be a 2-simplex α ∶ ∆2 → C of the form

X

g

  

f

~~
Y

idY // Y.

Given such a 2-morphism, we may define a map Λ3
1 → C which may be depicted as the subsimplex

X

f

α
��

f

��

g

��

Y

idY
xx

idY
&&

Y
idY // Y

in C. Inner horn filling condition asserts that it extends to a 3-simplex ∆3 → C and the new 2-face of this
simplex gives a 2-morphism g → f which is a (left) inverse to α in terms of the evident composition of
2-morphisms. Of course, analogous arguments show that n-morphisms in C are invertible for every n ≥ 2.
Therefore the notion of an ∞-category, as we have defined it via simplicial sets, realizes the heuristic idea
of an (∞,1)-category.

A.1.3. Nerve of an ordinary category. We have defined ∞-categories as a particular sort of simplicial sets,
but we would obviously desire the theory of ∞-categories to generalize usual category theory. Fortunately
there is a canonical way of associating a simplicial set to an (ordinary) category.

The nerve of the category C is the simplicial set NC defined by NCn = HomCat([n],C), where the poset
[n] is identified with a category in the usual way, that is to say the category which may be represented as
0→ 1→ ⋅ ⋅ ⋅ → n. The n-simplices of NC are composable sequences of morphisms in C of length n. Face and
degeneracy maps are given by composing or inserting the identity, which is to say

di(C0
f1Ð→ C1

f2Ð→ ⋯ fnÐ→ Cn) = C0
f1Ð→ ⋯ fi−1ÐÐ→ Ci−1

fi+1○fiÐÐÐÐ→ Ci+1
fi+2ÐÐ→ ⋯ fnÐ→ Cn,

si(C0
f1Ð→ C1

f2Ð→ ⋯ fnÐ→ Cn) = C0
f1Ð→ . . .

fiÐ→ Ci
idCiÐÐ→ Ci

fi+1ÐÐ→ ⋯ fnÐ→ Cn.

It is easy to see that the nerve contains all the information about the category. In fact, the objects,
morphisms, etc. of the category C may be inferred from its nerve NC in precisely the same way in which we
defined their analogues for an ∞-category in the previous subsection. It is not hard to see that NC satisfies
the inner horn filling property, where the filling of a horn is defined via composition of morphisms in C.
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The nerve of any category is hence an ∞-category. From the description of functors between ∞-categories
in the next subsection, it easily follows that the nerve functor N ∶ Cat → Set∆ is fully faithful. The nerve
construction is also compatible with functors in the sense that

Fun (NC,ND) ≃ N Fun (C,D),
where Fun on the left hand side is the ∞-category of functors between two ∞-categories and Fun on the
right hand side is the ordinary functor category. Therefore there is no loss in identifying ordinary categories
with the ∞-categories given by their nerves, and dropping N from notation.

A.1.4. Functors. Given two ∞-categories C and D, we define a functor F ∶ C → D to be any morphism of
simplicial sets, or equivalently, natural transformation between the respective functors. This consists of a
map Fn ∶ Cn → Dn for every n, which may for n = 0 be identified with the object map of the functor and for
n = 1 with the morphism map of the functor. From the preceding discussion it follows that an n-simplex
of an ∞-category C may be identified with a string of composable morphisms in C of length n, together
with the specification of all their possible compositions. Compatibility of the n-simplex map Fn with the
face maps di means that it is compatible with this structure and in particular respects composition, and
compatibility with degeneracies si mean that F preserves identity morphisms. Therefore the ∞-categorical
notion of a functor carries the same intuition as functors classically do in ordinary category theory.

We may canonically upgrade functors between two ∞-categories to a simplicial set by setting2

Fun (C,D)n ∶= HomSet∆(C ×∆n,D)
and it turns out that the simplicial set Fun (C,D) again satisfies the inner horn filling condition, so that
Fun (C,D) is itself an ∞-category. Furthermore the collection of all (small, but we will follow the good old
practice in category theory of ignoring set theoretic issues) ∞-categories forms itself an ∞-category Cat∞.

A.1.5. The homotopy category. By quotienting out the spaces of morphisms by the relation of equivalence,
we may associate to an ∞-category C an ordinary category hC or Ho(C), called the homotopy category of
C. Observe that

HomhC(X,Y ) ≃ π0 MapC(X,Y )
for any pair of objects X,Y ∈ C. This gives rise to a functor h ∶ Cat∞ → Cat which is the left adjoint to the
nerve functor N ∶ Cat → Cat∞. That is to say, for any ∞-category C and ordinary category D, there is a
natural equivalence

MapCat∞(C,D) ≃ MapCat(hC,D)
(recall that we are omitting N from notation) arising from the canonical functor C ↦ hC. We often refer
to this functor as passing to homotopy.

Given a morphism f ∶ X → Y in an ∞-category C, we say that is is an equivalence if it induces
an isomorphism upon passage to the homotopy category hC. If there exists an equivalence between two
objects X and Y of an ∞-category C, we shall say that X and Y are equivalent and write X ≃ Y.

Setting C to Cat∞, we obtain a notion of equivalence between ∞-categories. However this admits a
more explicit description. A functor F ∶ C → D is called fully faithful if the induced map MapC(X,Y ) →
MapD(F (X), F (Y )) is a homotopy equivalence of spaces for every pair of objects X,Y ∈ C, and it is called
essentially surjective if the functor it induces on homotopy hF ∶ hC → hD is essentially surjective in the
usual meaning of category theory, i.e. for every object D ∈ D there exists some X ∈ C such that F (X) ≃D.
Just like between ordinary categories, a functor between ∞-categories is an equivalence precisely when it
is both fully faithful and essentially surjective.

Given an ∞-category C, we call a subcategory and simplicial subset D ⊆ C which is also itself an ∞-
category and for which hC is a subcategory of hD. The simplicial set inclusion then defines a functor of
∞-categories D→ C and we say that D is a full subcategory if this functor is fully faithful, which is to say
if hD is a full subcategory of hC.

A.1.6. Spaces are Kan complexes are ∞-groupoids. We have already seen that all ordinary categories
may be considered as ∞-categories via the nerve construction. Another crucial class of examples of ∞-
categories is offered by spaces. This is where much of the motivation for ∞-category theory comes from:
Grothendieck’s realization that spaces may be equivalently thought as ∞-groupoids.

In simplicial approaches to homotopy theory, space is often taken to mean Kan complex, i.e. a simplicial
set satisfying the horn filling condition. A Kan complex is clearly also an ∞-category, since these were
defined to be simplicial sets satisfying horn filling only for inner horns.

The reader might object that the term space should be reserved for topological spaces (by which we
shall always mean objects of some convenient category of topological spaces, e.g. compactly generated
weakly Hausdorff spaces). We denote the category of spaces by T, and remark that it actually carries more
structure: it is a model category.

2Observe that this is no cleaver trick, but rather a definition forced upon us by the fact that inner Hom, should it exist,
has to be right adjoint to taking products. Since the Yoneda lemma gives a natural bijection between n-simplices of a
simplicial set and simplicial set maps from ∆n into it, we find ourselves before the given formula for Fun (C,D).
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foreshadowing that it arises as a homotopy category of an ∞-category of spaces.
Simplicial sets admit a natural functor to topological spaces. It comes from sending the standard

n-simplex ∆n to its geometric counterpart ∣∆n∣ ∶= {(x0, . . . , xn) ∈ [0,1]n+1 ∣ x0 + ⋅ ⋅ ⋅ + xn ≤ 1} and then
extending to an arbitrary simplicial set X by setting

∣X ∣ ∶= limÐ→
∆n→X

∣∆n∣.

Recall that Set∆ is a presheaf category in which ∆n are the representable functors, which implies that
X ≃ limÐ→∆n→X

∆n in for any X ∈ Set∆. Consequently the geometric realization functor ∣ − ∣ ∶ Set∆ → T

commutes with colimits.
To any topological space X we may associate a Kan complex Sing●X defined as a functor by [n] ↦

HomT(∣∆n∣,X). From this definition it follows quickly that for any simplicial set K and topological space
X there is a natural equivalence

HomT(∣K ∣,X) ≃ HomSet∆(K,Sing●X),

showing that geometric realization and Sing● are adjoint functors. It is a classical theorem that this
adjunction is a Quillen equivalence for certain model category structures on both side, which translates
into an equivalence between the ∞-category of (convenient) topological spaces, obtained from the model
category T, and the ∞-category of Kan complexes, which comes from the standard model structure on
Set∆ in which Kan complexes are the fibrant objects. We will from now on not distinguish between these
two ∞-categories, denoting both by S and calling their objects spaces.

In particular, the functor Sing● ∶ S→ Cat∞ is fully faithful and allows us to identify spaces with certain
∞-categories, namely with Kan complexes. Objects of Sing●(X) are precisely the points of X and a
morphism x → y is a path between those points. From this it is evident that any morphism in the ∞-
category Sing●(X) admits both a left and the right inverse, corresponding to traversing the same path in
the opposite direction. This may also be witnessed on the level of the definition of a Kan complex. Given
any morphism f ∶ x→ y in a Kan complex K, the solid diagrams

y

��
x

f

??

idx // x

x
f

��
y

??

idy
// y

determine maps Λ2
0 →K and Λ2

2 →K (observe that these are the outer 2-horns, the ones excluded from the
inner horn filling condition defining ∞-categories). The horn filling condition ensures that these extend to
maps ∆2 →K and the new 1-simplex, denoted by the dotted arrow in the above diagrams, provides the let
and right compositional inverse to f. We had seen how higher morphisms are invertible in any ∞-catgory
in subsection ??, thus this implies that in a Kan complex all morphisms are invertible. Conversely it is
easy to see that this is nothing else than a restatement of the horn filling condition defining a Kan complex.
Therefore spaces are to ∞-categories what groupoids are to categories, justifying Grothendieck’s motto
that spaces are ∞-groupoids.

An equivalent restatement of what it means for an ∞-category C to be an ∞-groupoid is to assert that
the homotopy category hC is a groupoid. For a topological space X, this groupoid may be recognized
as the fundamental groupoid π≤1(X). This is the groupoid containing information about path-connected
components of X and about homotopy classes of paths in X. Then by analogy the ∞-groupoid correspond-
ing to X might be denoted π≤∞(X) and its n-morphisms encode homotopy classes of n-simplices in X
for all n ≥ 0. The assertion that Kan complexes are equivalent to topological spaces may then be states
as saying that, unlike the fundamental groupoid π≤1(X), the “fundamental ∞-groupoid” π≤∞(X) loses no
information about the homotopy type of the topological space X.

The geometric realization functor ∣ − ∣ ∶ Cat∞ → S is a left adjoint to the fully faithful inclusion S→ Cat∞
identifying spaces with ∞-groupoids, but said inclusion also admits a right adjoint C↦ C≃. We call C≃ the
maximal subgroupoid of C and its universal property may be restated as asserting a natural equivalence

MapCat∞(X,C) ≃ MapS(X,C
≃)

for any space X. There is in particular a canonical (up to equivalence) functor C≃ → C corresponding to
picking X ≃ C≃ and the identity map on the right of the above equivalence. This functor admits a more
explicit description: the objects of the ∞-category C≃ are the same as those of C, the space MapC≃(C,D)
consists for any C,D ∈ C of those components of the space MapC(C,D) which correspond to invertible
morphisms in π0 MapC(C,D) ≃ HomhC(C,D), and the functor C → C≃ is the identity on objects and the
inclusion MapC≃(C,D) →MapC(C,D) on morphisms.

For a pair of ∞-categories C and D the ∞-category of functors Fun (C,D) may in general possess non-
invertible morphisms. The ∞-category of all (small) ∞-categories Cat∞ must on the other hand have
MapCat∞(C,D) be a space, which is to say an ∞-groupoid. It follows that MapCat∞(C,D) ≃ Fun (C,D)≃,
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hinting that, just like the category of all (small) categories Cat is actually a 1-categorical shadow of a
2-category, so is Cat∞ an (∞,1)-categorical shadow of an (∞,2)-category.

A.1.7. Initial and terminal objects. The true utility of ∞-categories is that a vast chunk of ordinary cate-
gory theory may be transported to the ∞-categorical setting with very little changes.

For instance an object X of an ∞-category C is initial (resp. terminal) if it is an initial (resp. ter-
minal) object of the ordinary category hC. Equivalently, that means that the space MapC(X,Y ) (resp.
MapC(Y,X)) is non-empty and contractible for all objects Y ∈ C. Just like in ordinary category theory,
initial (resp. terminal) objects need not exist, but if they do, they are essentially unique, which is to say
unique up to a contractible ambiguity.

Of course we do not need to deal with dual notions such as initial and terminal objects separately,
but may treat them simultaneously by use of the opposite category. Recall that the simplex category ∆
may be identified with the category of all non-empty finite linearly ordered sets. This category admits
an involution ∆ → ∆ obtained by simply reversing each order. Given any simplicial set X ∶ ∆op → Set,
its opposite may be defined by pre-composing it with that involution. For any ∞-category C the opposite
simplicial set Cop is also an ∞-category and called the opposite ∞-category of C. Explicitly the objects of
Cop are just the objects of C, while for all pairs X,Y ∈ C we have

MapCop(X,Y ) ≃ MapC(Y,X).
This recovers the usual notion of an opposite category upon passage to homotopy, in the sense that there
is a natural equivalence of categories h(Cop) ≃ (hC)op. Clearly initial objects in Cop are precisely terminal
objects in C and vice versa.

A.1.8. Overcategories and undercategories. In order to be able to discuss overcategories, undercategories,
limits and colimits in the ∞-categorical setting, it is useful to recall the join operation of simplicial
sets. It is defined by setting ∆i ⋆ ∆j ∶= ∆i+j+1 and extending to arbitrary simplicial sets by requiring
⋆ ∶ Set∆ × Set∆ → Set∆ to preserve colimits in each factor separately (since any simplicial set may be
written as a limit of standard simplices). Under geometric realization this corresponds to the geometric join
operation, classically constructed by embedding two complexes K and L into a pair of trivially intersecting
hyperplanes inside some big enough euclidean space, and then setting K ⋆ L to be the union of all line
segments connecting any pair of a point in K and a point in L. In particular if C is an ∞-category, the
left cone C◁ ∶= C ⋆∆0 and right cone C▷ ∶= C ⋆∆0 realize the idea of adding a disjoint initial and disjoint
terminal object to C.

Given a functor of ∞-categories F ∶ C → D, the overcategory over F D/F is defined by the universal
property that for every ∞-category E there is an equivalence

Fun (E,D/F ) ≃ Fun (E ⋆ C,D) ×Fun (C,D) {F}.
By selecting E to be ∆n, we may read off the above universal property the n-simplices of D/F and hence
prove the existence of D/F as a simplicial set. Intuitively an object of the overcategory D/F consists of
an object D ∈ D together with maps D → F (C) for every object C ∈ C, which must be compatible with
functoriality of F up to coherent homotopy. More formally, objects of D/F are precisely functors C◁ → D

such that their restriction under the canonical functor C→ C◁ is equivalent to F. These are the analogues
of what is classically often called cones over F .

An object C in an ∞-category C may be identified with a functor C ∶ ∆0 → C from the trivial ∞-
category with one object and no non-identity morphisms. Then the overcategory C/C consists object-wise
of all morphisms with codomain C in C, and e.g. the space of morphisms between two objects X → C and
Y → C is precisely the space of 2-simplices in C exhibiting commutativity of the triangle

X //

  

Y

~~
C

in which the two diagonal arrows are the structure morphisms of the two objects of C/C .

A.1.9. Limits and colimits. For any functor F ∶ C → D, a terminal object of the ∞-category D/F is called
the limit of F and denoted lim←ÐF. We will also often abusively refer to the object in D obtained as the

image of the distinguished initial vertex of C◁ under the functor lim←ÐF ∶ C◁ → D as the limit of F . As a

terminal object, the limit of any functor is essentially unique in case it exists.
The undercategory DF / may either be defined by passing to opposite categories from the overcategory,

or directly by the universal property

Fun (E,DF /) ≃ Fun (C ⋆ E,D) ×Fun (C,D) {F}
for any ∞-category E. Objects of the undercategory DF / are functors C▷ → D which restrict to F on C,
which might be called cocones over F. An initial object of D/F is called a colimit of F and denoted limÐ→F.
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If F ∶ C→ D is a functor and D is (the nerve of) an ordinary category, then lim←ÐF and limÐ→F recover their

usual meanings from ordinary category theory as the limit and colimit of the functor between ordinary
categories hF ∶ hC→ hD ≃ D.

The formal theory of limits and colimits in ∞-category theory is quite similar to its counterpart in
ordinary category theory. We also have special names for certain limits and colimits: a family of objects
{Ci}i∈I in an ∞-category C indexed by some indexing set I, may be viewed as a functor I → C from the
discrete ordinary category I (the set of objects is I and there are no non-identity morphisms) and its limit
is called the product of the family {Ci}i∈I and denoted ∏i∈I Ci, while the colimit of this functor is called
the coproduct of the family {Ci}i∈I and denoted ∐i∈I Ci. When the indexing set is empty, this recovers the
terminal and initial object respectively. When I has two elements and the family of objects in question is
{X,Y }, the product is denoted X × Y and the coproduct X∐Y.

Given an object C of an ∞-category C, the product in the overcategory C/C is called fibered product and
for two objects X → C and Y → C in C/C the underlying object of C of their product is denoted X ×C Y.
That is to say, there exists a commutative square in C

X ×C Y //

��

Y

��

X // C

in which the two arrows ending at C are the structure morphisms of the two objects of C/C , such that this
square is terminal among all such commutative squares. We call such a diagram pullback square, and the
dual notion, corresponding to a coproduct X∐C Y in an undercategory CC/, a pushout square.

It should be pointed out that limits and colimits of ∞-categories tend to not be preserved upon passage
to homotopy. In particular, if X × Y is the product of objects X and Y in an ∞-category C, then it most
likely will not be the case that is is also a product of X and Y in the ordinary category hC. This has to
do with the fact that in homotopical categories, say in topological spaces, the formation of products (and
(co)limits in general) is usually not homotopy invariant. But the ∞-categorical world is only capable of
discussing notions up to homotopy, so non-homotopy-invariant notions are not well defined. Instead ∞-
categorical limits and colimits recover the notion of homotopy limits and colimits, the derived functors (in
Quillen’s model category approach to homotopical category theory) of the usual limit and colimit functors.

For instance, if ∆ ∶X →X ×X denotes the diagonal map of any given space X, the diagram

X
id //

id

��

X

∆

��

X
∆ // X ×X

is a pullback square in the usual category of spaces. On the other hand this is not a pullback square in
the ∞-category of spaces S, where the pullback is instead given by

LX //

��

X

∆

��

X
∆ // X ×X

in which LX ≃ MapS(S1,X) is the free loop space on X and the unlabelled maps LX →X are evaluations
at a point of the circle.

A.1.10. Preseheaves and adjoint functors. For any ∞-category C we define the presheaf ∞-category on C

to be P(C) ∶= Fun (Cop,S). Limits and colimits in functor categories are calculated object-wise, and since S

possesses all (small) limits and colimits, the same holds for P(C). One universal property of the presheaf
∞-category is that for any ∞-category D there is a natural equivalence of ∞-categories (note that this is
really an (∞,2)-categorical universal property)

Fun (D,P(C)) ≃ Fun (Cop ×D,S).
Setting D ≃ C and selecting from the right hand side the canonical functor Cop × C → S given object-wise
by (X,Y ) ↦ MapC(X,Y ), we obtain a functor j ∶ C → P(C) which we call the Yoneda embedding. As the
name suggests, this functor is a fully faithful embedding by courtesy of the ∞-categorical Yoneda lemma.
Just like in the classical case, the objects of the essential image of j are called representable presheaves.

The Yoneda embedding allows us to talk about adjoints. Given a pair of functors of ∞-categories
F ∶ C → D and G ∶ D → C, we say that they are adjoint, or more precisely that F is left adjoint to G and
that G is right adjoint to F , if there is a functorial equivalence

MapD(F (C),D) ≃ MapC(C,G(D))
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for all objects C ∈ C and D ∈ D. More precisely, the two functors F and G define a pair of functors

C
op ×D

Fop×idDÐÐÐÐÐ→ D
op ×D→ S, C

op ×D
idCop ×GÐÐÐÐÐ→ C

op × C→ S,

where the unlabelled arrows are the pairings obtained from the Yoneda embedding, and F is left adjoint
to G precisely when these functors are equivalent as objects of the functor ∞-category Fun (Cop ×D,S).
Whenever a functor admits a left or right adjoint, said adjoint is essentially unique.

A hallmark property of adjoint functors, carried over from ordinary category theory, is that left adjoints
preserve colimits and right adjoints preserve limits. There is likely no single other fact that we use quite
as often or as potently in this thesis as this one.

Under certain conditions on ∞-categories, the converse to this statement is also true. The condition
in question is presentability3, a very powerful smallness condition that makes ∞-categories especially
amenable to study. Namely, an ∞-category C is presentable if it admits all small colimits, the morphisms
spaces MapC(X,Y ) are small for all objects X,Y ∈ C, and there exists a small set of objects that generates
all objects of C under colimits. While only the existence of (small) colimits is postulated in the definition
of a presentable ∞-category, it turns out that all (small) limits exist also. The ∞-category S of (small)
spaces is a chief example of a presentable ∞-category.

For a functor between presentable ∞-categories, the Adjoint Functor Theorem asserts that left adjoint-
ness is equivalent to preservation of colimits and right adjointness is equivalent to preservation of limits.
The Adjoint Functor Theorem might best be appreciated as an existence theorem, making various functors
between presentable ∞-categories appear out of thin air.

Given a pair of ∞-categories C and D, let us introduce some more notation. Let FunL(C,D) and

FunR(C,D) denote the full subcategories of the functor ∞-category Fun (C,D) spanned by all those functors

which are left and right adjoint respectively. That is to say, F ∶ C → D belongs to FunL(C,D) precisely
when it possesses a right adjoint. When C and D are both presentable, this is equivalent to F preserving
colimits, and belonging to FunR(C,D) is equivalent to preserving limits. With this new notation, we
may formulate another universal property for P(C): for any presentable ∞-category D there is a natural
equivalence

FunL(P(C),D) ≃ Fun (C,D).
This in particular implies the fact that every presheaf P ∈ P(C) may be written as a colimit of representa-
bles, in the form P ≃ limÐ→C∈C/P j(C).

Presentable ∞-categories may be organized into ∞-categories PrL and PrR in which the space of mor-
phisms between two arbitrary ∞-categories C and D is given by FunL(C,D) and FunR(C,D) respectively.
Associating to a left adjoint functor its right adjoint and vica versa defines an equivalence of ∞-categories
PrL ≃ (PrR)op, which is the identity on objects.

A.1.11. Localization. A functor of ∞-categories is called a localization if it possesses a fully faithful right
adjoint. That is to say, we without loss of generality consider a localization as a functor L ∶ C → C such
that, if LC denotes the essential image of L in C, the codomain-restricted functor L ∶ C → LC is a left
adjoint to the inclusion LC → C. Given such a localization L ∶ C → C, let S denote the collection of all
morphisms f in C for which Lf is an equivalence. Then for any ∞-category D composition with L defines
a fully faithful embedding

Fun (LC,D) → Fun (C,D),
the essential image of which consists of all those functors F ∶ C→ D which carry all the morphisms in S to
equivalences.

In many cases it is also possible to go backwards, starting from the collection of morphisms which
the localization takes to equivalences. Suppose we are given S any small4 collection of morphisms in a
presentable ∞-category C. An object Z ∈ C is S-local if for every f ∶ X → Y in S the induced map
MapC(Y,Z) → MapC(X,Z) is an equivalence. Let S−1C to be the full subcategory of C spanned by all
S-local objects. Then S−1C is the essential image of a localization L ∶ C → C and furthermore every
localization of C is of this for some S.

A.1.12. ∞-topoi. Any presentable ∞-category may be realized as a special sort of localization of a presheaf
category. If said localization functor L ∶ P(C) → P(C), exhibiting a presentable ∞-category X ≃ LP(C),
also preserves finite limits, then X is called an ∞-topos5. This means that an ∞-topos is a full subcategory
X ⊆ P(C) of a presheaf ∞-category together with a localization L ∶ P(C) → X, which plays the role of a
sheafification functor.

3Presentability has another characterization: an ∞-category is presentable if and only if it arises from a combinatorial
model category. It is a stroke of luck that the following motto therefore makes sense: an ∞-category is presentable if and
only if it admits a model categorical “presentation”.

4An important relaxation may be afforded here by instead only requiring S to contain a small subset which generates
the same strongly saturated class of morphisms as S.

5Beware that an ∞-topos is an ∞-categorical generalization of a Grothendieck topos, and not of the more general notion
of an elementary topos.
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Indeed, suppose that C is a (small) ∞-category and let hC carry a Grothendieck topology J (since hC
is an ordinary category, we mean here a Grothendieck topology in the usual sense). Let S denote the
class of all monomorphisms U → j(C) in P(C) which correspond to covering sieves of objects C in C (or
equivalently in hC) with respect to the Grothendieck topology J. Then we define the ∞-category of sheaves
on C with respect to J to be Shv(C, J) ∶= S−1P(C). The condition on a presheaf F ∶ Cop → S to be a sheaf
is therefore the same as in classical topos theory: for every covering sieve U → j(C) with respect to the
chosen Grothendieck topology, the canonical map

F(C) ≃ MapP(C)(j(C),F) →MapP(C)(U,F),

where we have used the Yoneda lemma on the left, must be an equivalence.
For use in spectral algebraic geometry, we will require also sheaves with values in various other ∞-

categories than just S, such as spectra and E∞-rings. It is beneficial to be more general from the outset
and define sheaves on an arbitrary ∞-topos X with values in an arbitrary ∞-category C with all small
limits. A C-valued sheaf of X is a functor F ∶ Xop → C which preserves small products. Of particular
interest is the ∞-topos corresponding to a space X, which is to say X ≃ Shv(U(X)) where U(X) is the
poset of open subsets in X considered as a category with the usual Grothendieck topology. In this ∞-topos,
a C-valued sheaf is equivalent to a functor F ∶ U(X)op → C satisfying the familiar-looking sheaf condition:
for any open set U ⊆X the canonical morphism

F(U) → lim←Ð
V ⊆U

F(V ),

ranging over all the open subsets of U, is an equivalence in C.
The ∞-category of (unless stated otherwise always S-valued) sheaves Shv(C, J), which we may also

denote Shv(C) when the Grothendieck topology is clear from the context, is an ∞-topos. However unlike
the situation in ordinary topos theory, not every ∞-topos needs be of this form.

A.1.13. Effective epimorphisms. Just like ordinary (Grothendieck) topoi do among ordinary categories, ∞-
topoi admit an elegant characterization among ∞-categories by the Giradu axioms. Let us mention only
one, the analogue of which is in the classical topos theory is usually stated in the form that all equivalence
relations in a topos are effective. To formulate its ∞-categorical analogue, we need a new notion.

A groupoid object in X is a functor U ∶ ∆op → X such that for any non-negative integer n and any
partition [n] = S ∪ S′ into subsets for which the intersection S ∩ S′ = {s} is a singleton, the induced
diagram

U([n])

��

// U(S′)

��

U(S) // U({s})

is a pullback square in X. Conversely given any morphism U0 → U−1 in X, we may define a groupoid object
U in X inductively by setting U([0]) ∶= U0 and requiring

U([n + 1])

��

// U0

��

U([n]) // U−1

to be a pullback square for every n ≥ 0. This is compatible with the convenient convention of denoting
U([n]) simply by Un. In the described case we call U the Čech nerve of the morphism U0 → U−1 and
denote it Č(U0 → U−1), so that we have

Č(U0 → U−1)n ≃ U0 ×U−1 ⋅ ⋅ ⋅ ×U−1 U0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

for all non-negative integers n. A groupoid object U is effective if it admits a limit U−1 ≃ limÐ→U ∈ X such that

U ≃ Č(U0 → U−1). The ∞-categorical Giradu axiom in question now asserts that every groupoid object in
an ∞-topos is effective.

A closely related notion is that of an effective epimorphism, which is such a morphism f ∶X → Y that the
canonical map limÐ→ Č(f) → Y is an equivalence. The above stated Giradu axiom may be restated as saying

that for any groupoid object U in an ∞-topos X the morphism U0 → limÐ→U is an effective epimorphism.
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A.1.14. Unstraightening. This is a construction which is essential in setting up much of the fundamentals
of algebra in the ∞-categorical setting, and we are reviewing it here primarily because of the repeated
encounters with it in the subsection ??.

The idea is that, for any given ∞-category C, a functor F ∶ C → Cat∞ consists of a particular sort of
collection of ∞-categories F (X) ranging over objects X of C, and it is possible to specify very explicitly
precisely what sort of a collection that is. Namely, we may collect them together into one big ∞-category D,
equipped with a functor p ∶ D→ C such that its fibres are DX = D×C{X} ≃ F (X). Then the unstraightening
construction exhibits an equivalence between Fun (C,Cat∞) and the ∞-category of coCartesian fibrations6

p ∶ D → C with morphisms consisting of those morphisms in the overcategory Cat∞/C which preserve
coCartesian lifts of morphisms in C.

To illustrate one use of unstraightening, let X be a space, which we may identify with an ∞-groupoid.
It can be shown that the requirement on a functor C → X to be a coCartesian fibration, implies that C is
also an ∞-groupoid. Furthermore the requirement that a relative map of spaces Y → Z over X preserve
coCartesian lifts is always automatically satisfied, and so the unstraightening construction yields an equiv-
alence Fun (X,S) ≃ S/X between the ∞-category of space-valued functors on X and the overcategory of
spaces over X. We will regularly employ make heavy use of this equivalence in subsequent chapters.

The real utility of unstraightening lies in the fact that, given two functors F,G ∶ C → Cat∞ with
corresponding coCartesian fibrations p ∶ D → C and q ∶ E → C, then natural transformations F → G
correspond to just those morphisms D → E in Cat∞/C which preserve coCartesian lifts. By relaxing this
requirement, we may therefore obtain various extensions of the notion of functors between morphisms,
which can be used to “cheat” into the theory of ∞-category, which is to say (∞,1)-categories, several
notions which might more organically belong to the (∞,2)-world. We will encounter many examples of
this in the next subsection.

A.2. Higher categorical algebra. Out of the sections comprising the Appendix, this one is probably
the most cluttered and technical and the least readable. One the one hand, it introduces several of the key
notions that we will spend the rest of the thesis studying, so its importance should not be underestimated.
But on the other hand the formidable technical intricacies involved in setting up the theory, will have
afterwards served their role, and become very efficiently swept under the rug of the notions they helped
define. For instance, while ∞-operads feature quite prominently in this subsection, they will not appear
anywhere else in the rest of this thesis.

A.2.1. Symmetric monoidal ∞-categories. Let Fin∗ denote the (nerve of the) category whose objects are
the sets ⟨n⟩ = ∆0∪{1,2, . . . , n} for all non-negative integers n and whose morphisms are maps α ∶ ⟨n⟩ → ⟨m⟩
such that α(∗) = ∗. For a fixed n, we define the morphisms ρi ∶ ⟨n⟩ → ⟨1⟩ in Fin∗ for all 1 ≤ i ≤ n by sending
i to 1 and all the other elements of ⟨n⟩ to ∗. A map f ∶ ⟨m⟩ → ⟨n⟩ is called inert, if it arises by choosing
a certain subset of ⟨m⟩, sending it to the base point ∗, and doing nothing else. In particular, the maps ρi

are inert for all i, since they send all elements in ⟨n⟩ aside from i to the base-point.
A symmetric monoidal ∞-category is a functor C⊗ ∶ Fin∗ → Cat∞ such that C(∆0) ≃ ∆0, and for every

positive integer n, the morphisms

C
⊗(⟨n⟩) → ∏

1≤i≤n
C
⊗(⟨1⟩),

defined by the maps ρi for 1 ≤ i ≤ n, is an equivalence. The ∞-category C⊗(⟨1⟩) is called the underlying
∞-category of C⊗ and is denoted C.

A map α ∶ ⟨n⟩ → ⟨m⟩ in Fin∗ may be interpreted as a specification of which variables in a product are
to move to which place (i should move to place α(i)), which to multiply together (multiply 0 ≤ i ≤ n and
0 ≤ j ≤ n if α(i) = α(j), i.e. if α assigns them to the same place), on which places to include the unit (those
1 ≤ j ≤ m which are not in the image of α), and which to forget (those 1 ≤ i ≤ n for which α(i) = ∗, i.e.
those to which α does not assign a place). A symmetric ∞-category therefore consists of an ∞-category C

equipped with a functorial association of a functor Cn → Cm to every such specification α, such that the
functors associated to ρi is the i-th coordinate projection pri ∶ Cn → C. In line with this interpretation,
we define the functor ⊗ ∶ C × C → C to be the one corresponding to the morphism α ∶ ⟨2⟩ → ⟨1⟩ in Fin∗
with α(1) = α(2) = 1. Likewise is 1 ∶ ∆0 → C, or equivalently an object 1 ∈ C, defined to correspond to
the map ∆0 → ⟨1⟩. Sometimes, when we will wish to highlight the dependence on the symmetric monoidal
∞-category, we will denote these also by ⊗C and 1C.

The intuition behind the notion of an ∞-operad7 is similar: an ∞-operad O⊗ should consist of an un-
derlying ∞-category O together with just about any collections of homotopically compatible operations on
it. The formal implementation of this idea is trickier. Taking a cue from the unstraightening construction,

6Do not be distraught by all the coCartesian business. It is a simple enough technical lifting condition, the details of
which can be found in HTT, which underlies much of the unstraightening story, but which we will never in any way use,
and therefore hope we will be excused for omitting from our already cumbersome review of ∞-category theory.

7The terminology here is perhaps a bit misleading: ∞-operads are the ∞-categorical generalizations of colored operads,
also known as multicategories, a notion already more general than usual (i.e. monochromatic) operads.
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a symmetric monoidal ∞-category may be equated with C⊗ a coCartesian fibration p ∶ C⊗ → Fin∗ for some
abusively denoted ∞-category C⊗ with fibers C⊗⟨n⟩ ≃ C⊗(⟨n⟩). Then ∞-operads are defined as certain types

of functors p ∶ O⊗ → Fin∗. Because we will only use ∞-operads as tools to talk about other objects of
interest to us, let us indicate only very rougly what kind of conditions need to be imposed on a functor
to make it an ⊗-operad. First of all, p-coCartesian lifts of all inert morphisms in Fin∗ should exists. This
implies that any inert map f ∶ ⟨m⟩ → ⟨n⟩ gives rise to a functor f! ∶ O⊗

⟨m⟩ → O⊗
⟨n⟩ Secondly, in analogy with

with symmetric monoidal ∞-categories, a choice of p-coCartesian lifts ρi! ∶ O⊗
⟨n⟩ → O⊗

⟨1⟩ for 1 ≤ i ≤ n together

define an equivalence

O
⊗
⟨n⟩ ≃ ∏

1≤i≤n
O
⊗
⟨1⟩.

Thirdly, a similar condition should also hold on the level of morphism spaces of the ∞-category O⊗. By
the way the definition of an ∞-operad is set up, an ∞-operad with the structure functor p a coCartesian
fibration is by unstraightening equivalent to a symmetric monoidal ∞-category. Our interest will lie
primarily with symmetric monoidal ∞-categories, but the language of ∞-operads, which is at this point
a harmless additional level of generality, will prove very useful in discussing various structures related to
them.

The ∞-category of symmetric monoidal ∞-categories is defined to be the full subcategory8 Cat⊗∞ of
the functor ∞-category Fun (Fin∗,Cat∞). Its morphisms are called symmetric monoidal functors. While
symmetric monoidal functors are for many purposes the correct class of functors to consider between
symmetric ∞-categories, we shall specify another weaker class of morphisms in subsection ??. It turns out
that it is the latter instead of the former that is the better notion to consider for general ∞-operads.

A.2.2. Examples of symmetric monoidal ∞-categories. Let us list some examples of symmetric monoidal
∞-categories.

(i) The first example is Comm⊗, the commutative ∞-operad (even though it is actually a symmetric
monoidal ∞-category). It is defined as the composite Fin∗ → ∆0 → Cat∞ of the terminal functor
to the one-object ∞-category ∆0, with the inclusion of the ∞-category ∆0 into the ∞-category
of all ∞-categories. Thus Comm⊗

n ≃ ∆0 for every n, and Comm⊗ is by construction the terminal
symmetric monoidal ∞-category and more generally the terminal ∞-operad.

(ii) Now let C be any ∞-category with finite products. For a given positive integer n, let P denote the
inclusion-ordered power set of {1,2, . . . , n} ⊂ ⟨n⟩. Let C×(⟨n⟩) denote the ∞-category of all functors
f ∶ N(P )op → C for which, given any subset S ⊆ {1,2, . . . , n}, the morphisms f(S) → f({j}) induced
by the element inclusions {j} ⊆ S exhibit an equivalence f(S) ≃ ∏j∈S f({j}). This extends to a

functor C× ∶ Fin∗ → Cat∞ which we call the Cartesian symmetric monoidal structure on C. Clearly
the underlying ∞-category of C× is C and the multiplication operation Cn → C with respect to this
symmetric monoidal ∞-category is just the product functor (X1, . . . ,Xn) ↦X1 × ⋅ ⋅ ⋅ ×Xn.

(iii) Observe that given any symmetric monoidal ∞-category C⊗ ∶ Fin∗ → Cat∞, we may produce a
new one by composing it with the self-equivalence Cat∞ given by C ↦ Cop. If C is the underlying
∞-category of C⊗, then its opposite Cop is the underlying ∞-category of op ○C⊗. We may apply
this construction in the case when C is an ∞-category closed under finite coproducts. Then Cop has
finite products, so it admits a Cartesian symmetric monoidal structure (Cop)×. Then the symmetric

monoidal ∞-category C∐ ∶= op ○(Cop)× is called coCartesian symmetric monoidal ∞-structure on
C. Its underlying ∞-category is C and its operation Cn → C is given by the coproduct functor
(X1, . . . ,Xn) ↦X1∐⋅ ⋅ ⋅∐Xn.

(iv) On the ∞-category PrL of presentable ∞-categories with left adjoints for morphisms, there exists
a distinguished symmetric monoidal ∞-category structure given by

C⊗D ∶= FunR(Cop,D).

The unit object for this symmetric monoidal structure is S. The functor ⊗ ∶ PrL × PrL → PrL

preserves colimits in each variable. Furthermore, we have C⊗S∗ ≃ C∗ and C⊗τ≤nS ≃ τ≤nC, showing
that pointification and truncation are special cases of tensoring presentable ∞-categories.

A.2.3. Lax symmetric monoidal functors. Given a pair of ∞-operads p ∶ O⊗ → Fin∗ and q ∶ O′⊗ → Fin∗,
we define an ∞-operad map from O⊗ to O′⊗ to be a functor F ∶ O⊗ → O′⊗ in the overcategory Cat∞/Fin∗ ,
which preserves coCartesian lifts of all inert morphism in Fin∗. Let AlgO(O′) denote the ∞-category of
∞-operad maps from O⊗ to O′⊗. In slightly greater generality, which will be very useful in subsection ??,

8This is rather unfortunate notation since we are also using the notation C⊗ for a symmetric monoidal ∞-category with
underlying ∞-category C and monoidal operation ⊗. Therefore it might seems like Cat⊗∞, instead of being the ∞-category
of all symmetric monoidal ∞-categories, is some sort of symmetric monoidal structure on Cat∞. However since we will not
be using any symmetric monoidal structures on Cat∞ other than the Cartesian one, we doubt this will be the cause of
much confusion.
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given two ∞-operad maps p ∶ O′⊗ → O⊗ and q ∶ O′′⊗ → O⊗ we may also define an ∞-category AlgO′/O(O′′)
of relative ∞-operad maps to consist of commuting triangles

O′⊗

p
!!

// O′′⊗

q
}}

O⊗

of ⊗-operad maps. When O⊗ = Comm⊗, the terminal ∞-operad, we recover AlgO′/O(O′′) ≃ AlgO′(O′′).
Though ∞-operad maps are important in their own right, we will primarily be interested in some

particular cases of them. When C⊗ and D⊗ are symmetric monoidal ∞-categories, the objects of AlgC(D)
are called lax symmetric monoidal functor from C⊗ to D⊗. The property of a functor F ∶ C→ D between the
underlying ∞-categories of two symmetric monoidal ∞-categories C⊗ and D⊗ being symmetric monoidal,
is exhibited by some family of compatibility diagrams which must be homotopy coherent, in the sense that
they possess mutually compatible fillings. For example, these fillings include equivalences

1D ≃ F (1C), F (X) ⊗D F (Y ) ≃ F (X ⊗C Y )
for all objects X and Y in C. The property of a functor F as above being lax symmetric monoidal
is exhibited by the same compatibility diagrams, only that they are not required to have fillings, only
compatible systems of morphisms. E.g. there are compatible morphisms

1D → F (1C), F (X) ⊗D F (Y ) → F (X ⊗C Y ),
but they are not required to be equivalences. To formalize this idea as we have set it up here, we would
require there to be non-invertible 2-cells in our ∞-category C. However since we are working with (∞,1)-
categories, this is not possible. The unstraightening construction provides a way around that, by encoding
what would more naturally be (∞,2)-categorical data inside ∞-category theory9. Indeed, if we required
coCartesian lifts of all morphisms in Fin∗ to be preserved by F in the above definition, we would have
rediscovered symmetric monoidal functors.

A.2.4. Commutative algebras and commutative monoids. Let C⊗ be a symmetric ∞-category. The ∞-
category of commutative algebra objects in C⊗ is CAlg(C) ∶= AlgComm(C). Informally, a commutative algebra
object A ∈ CAlg(C) consists of an underlying object denoted, by standard abuse of notation, also A ∈ C,
together with a map 1C → A in C, which is the unit of A, a morphism A ⊗ A → A in C which exhibits
the operation on A, and these morphisms together satisfy all the possible compatibility relations up to
coherent homotopies, encoded by lax symmetric monoidal functoriality with respect to Comm⊗ .

Commutative algebra objects with respect to a Cartesian symmetric monoidal structure admit a more
explicit description. A commutative monoid object in an ∞-category with finite products C is a functor
X ∶ Fin∗ → C such that for every positive integer n, the morphism X(⟨n⟩) → X(⟨1⟩)n in C, defined by the
maps ρi ∶ ⟨n⟩ → ⟨1⟩ in Fin∗ for 1 ≤ i ≤ n, is an equivalence. Let CMon(C) denote the full subcategory of
Fun (Fin∗,C) spanned by commutative monoid objects. When C = Cat∞ is the ∞-category of ∞-categories,
then clearly CMon(C) ≃ Cat⊗∞. That is to say, symmetric monoidal ∞-categories are the commutative
monoid objects in Cat∞. More generally, equipping C with the symmetric monoidal ∞-structure C×, there
is an equivalence

CAlg(C) ≃ CMon(C),
allowing us to express commutative algebra objects in a Cartesian symmetric monoidal ∞-category entirely
internal to the underlying ∞-category C. By the same consideration as in ?? for symmetric monoidal ∞-
categories, we may see that the functoriality of a commutative monoid object X equips its underlying
object X ∶=X(⟨1⟩) ∈ C with an operation X ×X →X which is commutative, associative, and unital, up to
coherent homotopy.

Unlike in the Cartesian case, commutative algebra objects in a coCartesian symmetric monoidal ∞-
category C∐ may be identified by the equivalence

CAlg(C) ≃ C.

This is a sophisticated incarnation of a well-known phenomenon: for any space X ∈ S, the diagonal map
∆ ∶X →X ×X exhibits the structure of a commutative coalgebra on X. That is the same as saying that it
exhibits X ∈ CAlg(Sop), where the symmetric monoidal structure on Sop is given by the product of spaces
in S, and is therefore the coCartesian structure.

For any symmetric monoidal ∞-category C, the ∞-category of commutative algebra objects CAlg(C)
inherits a canonical symmetric monoidal structure from C, and this structure is coCartesian. This is
analogous to the classical fact that the tensor product is the coproduct in the category of commutative

9This is also the historic way the Grothendieck construction, the analogue of the (un)straightening construction for
ordinary categories, first arose. Studying moduli spaces, Grothendieck encountered algebraic stacks, an inherently 2-
categorical structure. The Grothendieck construction was his solution, designed as a way to package discussion of stacks
inside the 1-categorical language of fibered categories.
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rings. This means that coproducts, and colimits more generally, in CAlg(C) tend to differ greatly from
the colimits of the underlying objects in C. On the other hand, the forgetful functor CAlg(C) → C does not
only preserve limits, it even creates them, in the sense that K◁ → CAlg(C) is a limit diagram if and only
if its composite with the forgetful functor is.

A.2.5. E∞-spaces and infinite loop spaces. Let CMon ∶= CMon(S) be the ∞-category of E∞-spaces. An
E∞-space intuitively consists of a space X together with a map, which we will mostly write additively,
+ ∶X ×X →X such that (x+ y) + z ≃ x+ (y + z) for all x, y, z ∈X and all higher associativity and unitality
laws hold up to coherent homotopy. As our choice of notion for their ∞-category suggests, E∞-spaces are
the homotopical analogues of commutative monoids from ordinary algebra.

The functor S → Cat∞, which identifies spaces with ∞-groupoids, is the right adjoint of the maximal
underlying space or core functor C ↦ C≃. In particular, it preserves products and as such extends to a
symmetric monoidal functor between the Cartesian structures S× → Cat×∞. It hence also induces a functor
between commutative monoid objects CMon → Cat⊗∞, since CMon(Cat∞) ≃ Cat⊗∞. This means that, given
a space X, specifying an E∞-structure on it is equivalent to specifying a symmetric monoidal ∞-structure
on it, if we view it as an ∞-groupoid.

A.2.6. Monoids and monoidal ∞-categories. Though our main interest resides with commutative phenom-
ena, we will also consider their non-commutative analogues. As we have seen that the Fin∗ controls
commutative structures, so does the simplex category ∆op control associative ones. Just like symmetric
monoidal ∞-categories are equivalent to commutative monoid objects in the ∞-category Cat∞, so can all
monoidal ∞-categories be expressed in terms of monoid objects. It will turn out beneficial to consider a
more general notion than that of a monoid.

Let C be an ∞-category with all finite products. A functor X ∶ ∆op → C is called a simplicial object in
C and its n-simplices are usually denoted by Xn ∶= X([n]). A category object in C is a simplicial object
X ∶ ∆op → C for which the maps ρi ∶ [1] → [n] with ρi(0) = i, ρi(1) = i − 1 for all 0 ≤ i ≤ n − 1 together
exhibit an equivalence

Xn ≃X1 ×X0 ⋅ ⋅ ⋅ ×X0 X1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

.

This requirement, called the Segal condition, is expressing the familiar property that every n-simplex in
X is equivalent to a composition of a string of n composable 1-simplices.

Observe that groupoid objects treated in ?? are examples of category objects.
A category object X in C, for which X0 is a terminal object, is called a monoid object in C. In that case

we call X1 ∈ C the underlying object of the monoid object and the Segal condition becomes Xn ≃ Xn
1 , in

clear analogy with the definition of a commutative monoid object in ??.Let Mon(C) denote the ∞-category
of monoid object in C, a full subcategory of Fun (∆op,C). A monoid object in Cat∞ is called a monoidal
∞-category. As the name suggests, the intuition behind monoidal categories is just like the one behind
symmetric monoidal ∞-category, only without any commutativity assumptions.

There exists a canonical functor ∆op → Fin∗ defined by sending [n] ↦ ⟨n⟩, the precise details of which
will not matter for our purposes, more than to say that it induces a functor CMon(C) → Mon(C) which
associates the “underlying monoid object” to a commutative monoid object in any given ∞-category C.
Applying this to C = Cat∞, we can extract a monoidal ∞-category from a symmetric ∞-category C⊗, which
we will also denote by C⊗. Conversely, given any monoidal ∞-category C⊗, it corresponds by unstraightening
to a certain coCartesian fibration C⊗ → ∆op. Composing it with the functor ∆op → Fin∗, we obtain an
∞-operad. This allows us to identify a monoidal ∞-category C⊗ with a certain ∞-operad, also denoted C⊗

by the standard abuse of notation, but it will in general not be a symmetric monoidal ∞-category.

A.2.7. Associative algebras. In the previous subsection, we defined monoidal ∞-categories as particular
kinds of monoid objects. In the discussion of commutative algebras, we saw that they only coincide with
commutative algebra objects when considering Cartesian symmetric monoidal structure. To get the right
notion of an associative algebra object in a monoidal category, we should encode the structure we are after
operadically.

Recall the ordinary associativity operad, i.e. the multicategory Ass with one object ∗, for every finite
set I the set of multimorphisms MulAss({∗}i∈I ,∗) consisting of linear orderings on I, and composition
defined by the evident merging of linear orderings. By the canonical way of identifying ordinary (possibly
colored) operads with ∞-operads10, we obtain the associative ∞-operad Ass⊗.

Let C⊗ be a monoidal ∞-category. Viewing it as an ∞-operad as described at the end of the previous
subsection, it admits a canonical ∞-operad map to Ass⊗. Then the ∞-category of relative ∞-operad maps
AlgAss/Ass(C) is called the ∞-category of associative algebra objects in C⊗ and denoted simply by Alg(C).

10This is called the operadic nerve and the details concerning it may be found in HA. In particular, the commutative
∞-operad Comm⊗ may also be identified with the operadic nerve of the classical commutative operad, the one-object
multicategory with no non-identity multimorphisms.
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An associative algebra object A ∈ Alg(C) intuitively consists of an underlying object A ∈ C together with
a morphism A⊗A→ A in C which is unital and associative up to coherent homotopy.

Analogously to the commutative case treated in subsection ??, when C× is a Cartesian (symmetric)
monoidal structure, there is an equivalence

Alg(C) ≃ Mon(C).
In general for an symmetric monoidal ∞-category, there is a “underlying associative algebra object” functor
CAlg(C) → Alg(C), which reduces to the underlying monoid object functor CMon(C) →Mon(C) from the
previous subsection.

A.2.8. Left modules. In a similar vein to Ass⊗, we may extract another ∞-operad LM⊗, the left module
∞-operad, from an ordinary one. In particular, the colored operad LM is question has two objects a and
m and, for any finite set I, the set of multimorphisms MulLM({Xi}i∈I , Y ) consists of

(1) linear orderings of I if Y = a and Xi = a for all i ∈ I.
(2) the empty set if Y = a and Xi ≠ a for some i ∈ I.
(3) linear orderings {i1 < ⋅ ⋅ ⋅ < in} of I such that Xin = m and Xj = a for all j < in, if Y = m.

Composition is given by the evident merging of linear orders, just like in Ass. Clearly LM⊗ is defined
to capture the idea of a left action of an associative algebra object, with the color a standing for the
algebra and m for the module. Restricting to the full suboperad generated by a in the description above
of LM, which is equivalent to Ass, gives rise to an ∞-operad map Ass⊗ → LM⊗ and in turn a functor
AlgLM/Ass(C) → Alg(C) for any monoidal ∞-category C. Given an associative algebra object A ∈ Alg(C)
in a monoidal ∞-category C⊗, the ∞-category of (left) modules over A is defined to be the fiber

LModA(C) ∶= AlgLM/Ass(C) ×Alg(C) {A}.
Restriction of LM to the full subcategory spanned by the color (i.e. object) m likewise induces a functor
AlgLM/Ass(C) → C, called the underlying object of the module. The data of a left A-module intuitively
corresponds to an object M ∈ C together with morphisms A⊗M →M which is appropriately compatible
with respect to the associative algebra structure on A and itself associative up to coherent homotopy.

Viewing a monoidal ∞-category C⊗ as an associative algebra object in Cat×∞, an module M ∈ LModC⊗(Cat∞)
is called an ∞-category left tensored over C⊗. Informally, this consists of an underlying ∞-category M to-
gether with a functor ⊗ ∶ C×M→M, which is unital and associative up to coherent homotopy.Furthermore,
this tensoring functor must be compatible with the monoidal structure C⊗, in the sense that there is a
natural equivalence

MapM ((C′ ⊗C) ⊗M,N) ≃ MapM (C′ ⊗ (C ⊗M),N)
which is also compatible with all the diagrams exhibiting higher associativity relations. For any associative
algebra object A ∈ Alg(C), a modification of the above construction of left modules produces an ∞-category
LModA(M), allowing A to also act upon objects of M. This comes with an underlying-object functor
LModA(M) → M which always possesses a left adjoint, which we say associates to an object M ∈ M the
free A-module generated by M . The underlying object of such a free A-module is A⊗M ∈M.

When C⊗ is a symmetric monoidal ∞-category and A ∈ CAlg(C) a commutative algebra object, we will
commonly denote its ∞-category of modules by ModA(C) and it possesses a canonical symmetric monoidal
structure. The unit object 1 ∈ C always admits a commutative algebra structure, more specifically as the
initial object in CAlg(C), and the forgetful functor exhibits the equivalence Mod1(C) ≃ C.

Given any ∞-category with colimits C, it is naturally tensored over S×, in such a way that the tensoring
functor ⊗ ∶ S × C → C preserves colimits in each variable separately. For a space X and object C ∈ C, this
is obtained by setting

X ⊗C ≃ (limÐ→
x∈X

{x}) ⊗C ∶= limÐ→
x∈X

C.

Similarly a pointed ∞-category C is canonically tensored over pointed spaces S∗ by an analogous formula.
When C only possesses finite colimits, C is tensored over the ∞-category of finite spaces Sfin, , i.e. the full
subcategory of S generated by a point under finite colimits, or, in case C is pointed, over Sfin

∗ .

A.2.9. The ∞-categorical Barr-Beck theorem. For any ∞-category C, the endofunctor ∞-category Fun (C,C)
may be promoted to a monoidal ∞-category with the monoidal operation given by composition of functors
and the identity functor being the monoidal unit. The algebra objects T ∈ Alg(Fun (C,C)) are called
monads on C, and particularly important examples of monads arise from adjunctions. Given a functor
F ∶ C → D with a right adjoint G ∶ D → C, there is a canonical monad T on C with the underlying functor
G ○ F. The unit map of the adjunction ε ∶ idC → G ○ F ≃ T doubles as the unit of the associative algebra,
and the counit of the adjunction η ∶ G ○ F → idD gives rise to the “operation” on the algebra object T as

T ○ T ≃ (G ○ F ) ○ (G ○ F ) ≃ G ○ (F ○G) ○ F ηÐ→ G ○ F ≃ T.
The homotopy coherent nature of composition in ∞-categories ensures that this extends to exhibit an
associative algebra structure on T. The ∞-category C is naturally tensored over the monoidal ∞-category
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Fun (C,C)⊗ with the tensoring functor ⊗ ∶ Fun (C,C)⊗C→ C given by assigning (F,X) ↦ F (X). Therefore
it makes sense for a monad T on C to talk about modules in C over it. Lurie’s ∞-categorical generalization of
the Barr-Beck theorem is a powerful criterion for recognizing when a functor is equivalent to the underlying
object projection LModT (C) → C from such a module ∞-category. Before we can state it, we need to
familiarize ourselves with some simplicial terminology.

Let ∆−∞ denote the (nerve of the) ordinary category of non-empty linearly ordered finite sets for objects
and monotonic maps which preserve the minimal element of the ordering for morphisms. The assignment
[n] ↦ [n] ∪ {−∞}, where the element −∞ is defined to be smaller than all numbers, defines an embedding
∆→∆−∞ . A simplicial object ∆op → C in an ∞-category C is called split if it extends along the described
embedding to a functor (∆−∞)op → C. Similarly, given a functor F ∶ C → D, a simplicial object X in C is
F -split if the simplicial object F ○X is split in D, that is to say, if it fits into a commutative diagram of
∞-categories

If a simplicial object is split, then it is also F -split for every functor F . For any simplicial object
X ∶ ∆op → C, we say that the colimit limÐ→X ∈ C, if it exists, is the geometric realization of X and denote it

∣X ∣. Every split simplicial object has a geometric realization .

Theorem A.2.1 (Bar-Beck, Theorem HA.4.7.4.5). Let G ∶ D → C be a functor between ∞-categories.
Then there exists a monad T on C such that D ≃ LModT (C) and p is equivalent to the canonical functor
LModT (C) → C precisely when the following conditions are satisfied:

(1) The functor G admits a left adjoint F .
(2) The functor G is conservative, i.e. if G(f) is an equivalence in C for some morphism f in D, then

f is an equivalence in C.
(3) The ∞-category C possesses geometric realizations of all G-split simplicial objects, and G preserves

such geometric realizations.

In that case, T may be identified with the monad of the adjunction between F and G.

In the statement of the Barr-Beck theorem, we could have replaces the condition that D ≃ LModT (C) for
some monad T on C with the seemingly more general condition that there exists some monoidal ∞-category
A⊗, a tensored ∞-category over A⊗ with the underlying ∞-category C, and an algebra object A ∈ Alg(A)
such that D ≃ LModA(C). This is because, in the described situation, the functor T (X) ∶= A⊗X for X ∈ C
defines a functor C → C, and the algebra structure on A assures that T is also an algebra object, i.e. a
monad. Then LModA(C) ≃ LModT (C), the left hand side referring to tensoring over A⊗ and the right
referring to tensoring over Fun (C,C)⊗.

A.3. Higher linear and commutative algebra.

A.3.1. Stable ∞-categories. An ∞-category C is stable if it is pointed with a zero (i.e. simultaneously initial
and terminal) object 0, possesses finite limits and colimits, and a diagram

X //

��

Y

��

0 // Z

in C is a pullback square if and only if it is a pushout square. That is to say, in a stable ∞-category fiber
and cofiber sequences coincide. The condition that an ∞-category is stable admits a variety of equivalent
restatements, for instance that C is pointed, closed under finite limits and the functor ΩX ∶= 0 ×X 0 is

a self-equivalence Ω ∶ C ≃Ð→ C. The suspension functor ΣX ∶= 0∐X 0 is its inverse. Finite products and
coproducts in a stable ∞-category are equivalent, and so we may use the biproduct notation ⊕ for either.

If X,Y ∈ C are objects in a stable ∞-category, then since the functor MapC(−, Y ) takes colimits to
limits, we have

MapC(X,Y ) ≃ MapC(Σ
kΩkX,Y ) ≃ Ωk MapC(Ω

kX,Y ).
That is to say, the functor MapC ∶ Cop×C→ S canonically factors through the forgetful functor CMongp → S

that sends an infinite loop space to its underlying space. Thus we may view mapping spaces of sta-
ble ∞-categories as taking values in the ∞-category CMongp of infinite loop spaces. In particular,
π0 MapC(X,Y ) ≃ π2 MapC(Ω2X,Y ) is an abelian group for all objects X and Y, so the homotopy cat-
egory of C is additive.

A.3.2. Comparison with abelian and triangulated categories. The notion of a stable ∞-category, while also
encompassing stability as usually understood in homotopy theory, is formally most closely analogous to
the 1-categorical notion of an abelian category. Fibers and cofibers correspond to kernels and cokernels,
and the condition that fiber and cofiber squares coincide is equivalent to the condition that ker(coker f) ≃
coker(ker f) for any morphism f in an abelian category. This justifies that a stable ∞-category is a good
context for homological algebra.
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But it is a well-known fact in classical algebra that for most homological algebra, such as formation
of derived functors, the correct context is not an abelian category A, but rather its derived category
of chain complexes D(A). Indeed, stable ∞-categories are formally closer to these latter objects than to
abelian categories. In particular, the homotopy category of any stable ∞-category is naturally triangulated.
The shift functor [1] of the triangulated structure comes from the suspension functor Σ. Thus stable ∞-
categories and triangulated categories may be viewed as a competing generalization of abelian categories.
Though not every triangulated category appears as the homotopy category of a stable ∞-category, most
“encountered in nature” do. While stable ∞-categories are hence in some sense less general, they also do
not suffer certain deficits of triangulated categories, such as the clumsy definition (the octahedral axiom
in particular) and the lack of functorial (co)kernels.

A.3.3. Stabilization. Given any ∞-category with finite limits C, its stabilization is a stable ∞-category
Sp(C) together with a functor Ω∞ ∶ Sp(C) → C which induces an equivalence

FunR(D,Sp(C)) ≃ FunR(D,C)

between right adjoint functors for any stable ∞-category D. Since right adjoint functors preserve limits, it
follows from this universal property that an ∞-category C with a terminal object ∗ and its pointification
C∗ ≃ C∗/ have equivalent stabilizations. Stabilization may be explicitly described as the limit

(1) Sp(C) ≃ lim←Ð(⋯ → C∗
ΩÐ→ C∗

ΩÐ→ C∗).

Spectra are classically viewed as a convenient enlargement of the category of (co)homology theories,
and this point of view can be pursued to explain stabilization of ∞-categories in general. Specifically, there
is an equivalence Sp(C) ≃ Exc∗(Sfin

∗ ,C) between the stabilization of an ∞-category C and the ∞-category
of pointed excisive functors from the ∞-category of finite spaces into C, where a functor is pointed if it
preserves terminal objects and excisive if it takes pushouts to pullbacks. The condition of excisiveness is
clearly analogous to the Mayer-Vietoris or excision axiom in the usual definition of a homology theory.
The functor Ω∞ ∶ Sp(C) → C corresponds to evaluation of an excisive functor on S0.

When C is a presentable ∞-category, the functor Ω∞ admits a left adjoint Σ∞
+ ∶ C → Sp(C) by the

adjoint functor theorem. It follows from the anti-equivalence (PrL)op ≃ PrR that this satisfies the dual
universal property: for any presentable stable ∞-category D, the functor Σ∞

+ induces an equivalence
FunL(Sp(C),D) ≃ FunL(C,D).

Though this all holds for a presentable ∞-category C whether it is pointed or not, let us switch the
notation from Σ∞

+ to Σ∞ when C is pointed. This is so that, if + ∶ C → C∗ denotes the left adjoint to the
inclusion C∗ → C, explicitly given by C ↦ C∐∗, we obtain a commutative diagram

C
+ //

Σ∞
+ ""

C∗

Σ∞
||

Sp(C).

The functor Ω∞ ∶ Sp(C) → C likewise factors through the forgetful functor C∗ → C, but we shall denote it
Ω∞ both times and make clear from the context which one we are referring to.

Beware that the stabilization construction is in general not functorial11. Nevertheless, when when a
functor F ∶ C → D preserves finite limits, for instance if it has a left adjoint, then it canonically induces a
functor F̃ ∶ Sp(C) → Sp(D), defined by sending a pointed excisive functor E ∈ Exc∗(Sfin

∗ ,C) ≃ Sp(C) to the

left composite F ○E ∶ Sfin
∗ → D which will again be pointed and excisive.

A.3.4. Spectra. A particularly important example of a stable ∞-category is the ∞-category of spectra Sp . It
may be obtained as the stabilization of the ∞-category of spaces or equivalently, seeing how S is generated
by a point under colimits, as the free stable ∞-category generated under colimits by a single object. This
object is the sphere spectrum S ∶= Σ∞S0, where Σ∞ ∶ S∗ → Sp(S∗) ≃ Sp is the suspension spectrum functor.

In the description of spectra as pointed excisive functors, S ∶ Sfin
∗ → S is the evident inclusion of subcategory.

Of course, Sp is equivalent to the ∞-category obtained from the model category of any of the standard
constructions of spectra, e.g. symmetric spectra, orthogonal spectra, S-modules, etc.

Since the ∞-category Sp is stable, the suspension functor Σ ∶ Sp → Sp is an equivalence with inverse
Σ−1 ≃ Ω. We may therefore define the k-th homotopy group of a spectrum E ∈ Sp for any k ∈ Z to be

πkE ∶= π0(Ω∞ΣkE) ≃ π0 MapSp(Σ
kS,E),

where the second equivalence follows from the adjunction between Σ∞ and Ω∞.

11This failure of functoriality is the subject of the entire field of Goodwillie calculus, as presented in HA Chapter 6.
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If πkE ≃ 0 for all n < k, we say that E is n-connective. A 0-connective spectrum is just called connective,
while a spectrum which is connective for some unspecified n is called eventually connective. Let Spcn denote
the full subcategory of connective spectra in Sp. The functor Ω∞ ∶ Sp→ S restricts to an equivalence

Spcn ≃ CMongp

between connective spectra and grouplike E∞-spaces, or equivalently, infinite loop spaces.
If πkE ≃ 0 for all k ≠ 0, then the spectrum E is called discrete and the full subcategory of those is

denoted Sp♡ . The functor E ↦ π0E defines an equivalence Sp♡ ≃ Ab between discrete spectra and the
(nerve of the) ordinary category of abelian groups. The inverse of this equivalence can be identified with
the composite of the inclusion Ab→ S∗ of abelian groups into discrete spaces pointed at the unit element,
and the suspension spectrum functor Σ∞ ∶ S∗ → Sp. The resulting spectrum for an abelian group A ∈ Ab is
classically denoted HA and called the Eilenberg-MacLane spectrum, but we shall instead identify Ab with
Sp♡ and not notationally distinguish between an abelian group and the spectrum it corresponds to.

A.3.5. Smash product and E∞-rings. The ∞-category of spectra admits a symmetric monoidal structure
⊗, called the smash product, which is essentially unique in satisfying the conditions that ⊗ ∶ Sp×Sp → Sp
preserves colimits in each variable, and that the unit object for ⊗ is the sphere spectrum S. An analogous
result holds for pointed spaces, namely there exists a unique symmetric monoidal structure ∧, also called
the smash product, such that ∧ ∶ S∗ × S∗ → S∗ preserves colimits in each variable, and the unit object for
∧ is S0. It follows from the universal properties of ∧ and ⊗ that the functors + ∶ S → S∗, Σ∞ ∶ S∗ → Sp
and Σ∞

+ ∶ S→ Sp are all symmetric monoidal, where S is equipped with the Cartesian symmetric monoidal
structure.

We shall denote the ∞-category of commutative algebra objects in spectra for ⊗ by CAlg ∶= CAlg(Sp)
and refer to it as the ∞-category of E∞-rings12 This is the ∞-categorical incarnation of what is more
classically called highly structured ring spectra or E∞-ring spectra. For an E∞-ring R, the set π0R comes
naturally equipped with a commutative ring structure. In fact, the subcategory CAlg♡ ⊂ CAlg may be
canonically identified with the (nerve of the) ordinary category of commutative rings. As with abelian
groups, we will not distinguish between a commutative ring and the corresponding E∞-ring.

We have seen that all ordinary commutative rings are examples of E∞-rings. Another large class of
examples of E∞-rings may be obtained by observing that the functor Σ∞

+ being monoidal implies that it
induces a functor Σ∞

+ ∶ CMon → CAlg. Hence for any E∞-space X, the suspension spectrum Σ∞
+ X is an

E∞-ring. When we take X to be a point, we recover the fact that the sphere spectrum S is an E∞-ring,
which is also evident from the fact that it is the unit for the smash product.

A.3.6. E∞-rings vs homotopy commutative ring spectra. Though the intuition behind them is similar, E∞-
rings should not be confused with the weaker notion of a homotopy commutative ring spectrum. The
latter is an object R ∈ Sp for which π0R is a commutative ring, i.e. there exists a ring structure on R on
the level of the homotopy category. The notion of an E∞-ring is much more restrictive, requiring instead
the ring structure to exist even before passing to homotopy. More precisely, an E∞-ring R consists of a
spectrum R together with a multiplication map µ ∶ R ⊗R → R and a unit map 1 ∶ S → R, such that the
axioms for a commutative ring, stated diagramatically, hold up to a coherent system of homotopies. Note
that this is not actually a condition to be imposed, but rather additional data to be specified: for every
compatibility diagram which we could write down, we must specify a map that exhibits it commuting, and
further compatibility maps will then depend on the ones chosen previously.

One major appeal of the ∞-categorical approach to stable homotopy theory is that it efficiently orga-
nizes these immense collections of coherence data, which could prove quite unmanageable if approached
directly13, in such a way that reasoning about them almost entirely analogously as with the correspond-
ing classical objects is logically valid, as opposed to just a useful heuristic, which is often the case when
phrasing things in terms of model categories.

A.3.7. Modules and E∞-R-algebras. Given an E∞-ring R, the ∞-category of modules over R is defined
to be ModR ∶= ModR(Sp). It inherits a symmetric monoidal operation ⊗R from Sp, which may again
be specified uniquely up to equivalence by the requirements that ⊗R ∶ ModR ×ModR → ModR preserves
colimits in each variable, and that R is its unit. With respect to this symmetric monoidal structure, there is

12As the notation suggests, there exists an entire hierarchy of En-rings for every possibly unbounded positive integer
n. More generally, for any symmetric monoidal ∞-category C, its En-objects may be defined either as algebras over the
little n-disc operad, or recursively via the relation AlgEn+1

(C) ≃ Alg(AlgEn(C)). In the initial and limiting case we recover

AlgE1
(C) ≃ Alg(C) and AlgE∞(C) ≃ CAlg(C).

13This might indeed be one of the reasons why it took quite long, until the publication of EKMM, that is [?], in the
the 1990s, to develop a good point-set theory of highly structured ring spectra. From the ∞-categorical point of view, it
is not surprising that the various strictly commutative models for E∞-rings, such as S-modules, symmetric and orthogonal
spectra etc. are nuanced and subtle objects whose construction requires some sophistication; they are strictifications of an
E∞-structure, and the existence of such strictifications, let alone an explicit construction, is most often a highly non-trivial
matter.
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an equivalence CAlg(ModR) ≃ CAlgR/ between two candidate notions for the ∞-category of E∞-R-algebras
CAlgR. Observe that for R = S, we recover ModS ≃ Sp, CAlgS ≃ CAlg and ⊗S ≃ ⊗.

For any E∞-ring R, there is a forgetful functor ModR → Sp which is symmetric monoidal and therefore
comes with an associated forgetful functor CAlgR → CAlg. These functors admit left adjoints which may
be described as sending E ↦ R⊗E. Composing this left adjoint R⊗ − ∶ CAlg → CAlgR with the already-
discussed functor Σ∞

+ ∶ CMon → CAlg, we obtain a symmetric monoidal functor CMon → CAlgR, the
image of an E∞-space X under which we shall denote R[X]. It follows from the discussion that this
functor satisfies the universal property that for any E∞-R-algebra A there is an equivalence

MapCAlgR
(R[X],A) ≃ MapCMon(X,Ω

∞A).

In particular when R is the sphere spectrum, then S[X] is just an alternative notation for the suspension
E∞-ring Σ∞

+ X. To highlight the analogy with classical algebra, we will mostly prefer to use the former
notation.

A.3.8. Recognition principle for modules. Module ∞-categories are closed under small limits and colimits,
and in fact this almost suffices to characterize them. We will state a theorem of Lurie which makes this
idea precise. The theorem is closely related to a theorem of Schwede and Shipley, but is more specific and
less general in the sense that it also takes into account the monoidal structure.

Let C be any stable ∞-category. As observed before, invertibility of the functor Ω ∶ C → C implies that
mapping spaces in Sp possess the structure of infinite loop spaces. We can say more; using the equivalence
of Sp with the limit of the tower

⋯ → S∗
ΩÐ→ S∗

ΩÐ→ S∗,

we may associate to every pair of objects X,Y ∈ C a mapping spectrum MapC(X,Y ) ∈ Sp . There is some
room for confusion due to the fact that we are using the same notation for the mapping space and the
mapping spectrum of a stable ∞-category, so we will have to make it evident from the context which will
be meant.

Proposition A.3.1 (Proposition HA.7.1.2.7). Let C⊗ be a symmetric monoidal ∞-category. Then there
exists an E∞-ring R ∈ CAlg such that C⊗ ≃ Mod⊗R if and only if the following conditions are satisfied:

(1) The ∞-category C is stable and presentable, and the functor ⊗ ∶ C × C→ C preserves small colimits
separably in each variable.

(2) The unit object 1 ∈ C is a compact, and generates C in the sense that, for any object X ∈ C, if
πk MapC(1,X) ≃ 0 for all k ∈ Z, then X ≃ 0.

In that case, there is an equivalence R ≃ MapC(1,1).

A.3.9. Modules over a commutative ring. Let R ∈ CAlg♡ be a commutative ring. Then ModR is equivalent
to the ∞-categorical derived category of chain complexes of ordinary R-modules by a version of the Dold-
Kan correspondence. The homotopy group functor πk ∶ ModR → Ab corresponds to the functor M● ↦
Hk(M●) taking a complex to its k-th homology group (or its (−k)-th cohomology group, if we were using
the cohomological grading convention). In particular, the subcategory of discrete objects Mod♡R may be
identified with the (nerve of the) ordinary category of R-modules.

Note that the in spite of our choice of notation, the smash product ⊗R on commutative rings Mod♡R
does not coincide with the ordinary smash product over R. Indeed, the subcategory Mod♡R ⊂ ModR is not
closed under the smash product. This should not be very surprising in light of the above discussion, since
ModR corresponds to the derived category of ordinary R-modules, and so we have for any M,N ∈ Mod♡R

πk(M ⊗R N) ≃ TorRk (M,N).

Stated differently, the smash product ⊗R corresponds to what is in more classical accounts of homological
algebra usually denoted ⊗L

R, the derived tensor product. Similarly we also have the dual equivalence

πk MapModR
(M,N) ≃ Ext−kR (M,N),

thus the mapping spectrum MapModR
(M,N) corresponds to the object denoted in the more classical

literature by RHomR(M,N).
The functor R[−] ∶ CMon → CAlgR restricts, since R is discrete, to a functor between discrete objects

R[−] ∶ CMon♡ → CAlg♡R. The left and right ∞-categories may be identified with the (nerves of the) ordinary
categories of commutative monoids,, and commutative R-algebras respectively. Given an commutative
monoid G ∈ CMon♡, the commutative R-algebra R[G] resumes its familiar meaning from representation
theory as the monoid R-algebra. In particular if G is an abelian group, then Z[G] is the usual group
ring of G. Thus the analogy suggests that the suspension spectrum S[X] ≃ Σ∞

+ X of an infinite loop
space X ∈ CMongp should be the analogue of the group ring, i.e. it should contain information about
representations of X over the sphere spectrum.
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A.3.10. The cotangent complex. The formalism of the cotangent complex, more classically known under
the name (topological) André-Quillen homology, is the brave new algebra analogue of the algebraic theory
of Kähler differentials. One way to approach it is through stabilization, starting from the equivalence

Sp(CAlgR) ≃ ModR

for any E∞-ring R. This gives functor Σ∞
+ ∶ CAlgR →ModR and we may define absolute cotangent complex

of R to be LR ∶= Σ∞
+ R. Using the description of E∞-R-algebras CAlgR ≃ CAlgR/, we may identify the

pointification (CAlgR/)∗ with the ∞-category CAlgR//R the objects of which are E∞-ring maps A → R
such that the composition R → A → R is equivalent to the identity on R. The zeroth-space functor
Ω∞ ∶ ModR → (CAlgR)∗ ≃ CAlgR//R admits an explicit description as associating to an R-module M its
trivial square-zero extension R⊕M ∈ CAlgR//R. Informally, this augmented E∞-R-algebra consists of the

underlying module R⊕M equipped with the multiplication (a, x)(b, y) ∶= (ab, ay+bx). Of course, that only
makes sense as stated when both R and M are discrete, but a similar formula holds with no reservations
on the level of homotopy. That is, for a ∈ πi(R), b ∈ πj(R), x ∈ πk(M) and y ∈ πl(M)

(a, x)(b, y) = (ab, ay + (−1)jkbx)

Putting everything together, we may for every E∞-R-algebra A and an R-module M rewrite the adjunction
between Σ∞

+ and Ω∞ in the form

MapModR
(LR,M) ≃ MapCAlgR//R(R,R⊕M).

The right hand side may be identified with R-linear derivations R →M (in this context, this may be taken
as the definition of derivations), exhibiting that the cotangent complex satisfies the analogous universal
property with respect to derivations that the module of Kähler derivations do in the classical context.

For a map of E∞-rings A→ B, we define its relative cotangent complex LB/A by a cofiber sequence

LA ⊗A B → LB → LB/A

in the ∞-category ModB . One appearance of the relative cotangent complex is the result that a morphism
of connective E∞-rings A→ B is an equivalence if and only if π0A→ π0B is an isomorphism and LB/A ≃ 0.

With the cotangent complex at our disposal, we may define the analogues of various classical notions
from commutative algebra. An E∞-R algebra A is formally smooth if LA/R is perfect, formally étale if
LA/R ≃ 0, and differentially smooth or étale if it is almost finitely presented and formally smooth or formally
étale respectively.

Perhaps the most important property of étale E∞-algebras is the fact that they are completely deter-
mined on the level of homotopy. Formally, that means that for any map of E∞-rings R → A, if CAlgét

R//A
denotes the subcategory of CAlgR//A consisting of all commutative triangles of E∞-rings

B

��
R //

ϕ

??

A

for which ϕ is étale, and CAlg♡,ét
π0R//π0A

denotes the analogously defined ordinary category, then the map

B ↦ π0B defines an equivalence of ∞-categories (or as it follows from this result, of ordinary categories)

CAlgét
R//A ≃ CAlg♡,ét

π0R//π0A
.

A.4. Spectral algebraic geometry. The idea of spectral algebraic geometry is straightforward: if mod-
ern (i.e. post-Grothendieck) algebraic geometry is the study of spaces that are geometrically glued-together
out of commutative rings, then spectral algebraic geometry is the study of geometrically glued-together
out of (perhaps connective) E∞-rings.

A.4.1. Spectral schemes. Recall that if R is a commutative ring, its spectrum is the collection of prime
ideals in R equipped with the Zariski topology. That is to say, closed sets in the Zariski topology are of
the form

V(I) ∶= {p ∈ SpecR ∶ I ⊆ p},
where I may be any ideal in R, playing the role of the “variety cut out by the ideal I”. A basis for the
topology is given by the open sets

D(x) ∶= SpecR ∖V((x)) = {p ∈ SpecR ∶ x ∉ p}

for elements x ∈ R. The spectrum of R is made into a locally ringed space by specifying its structure sheaf
on the covering {D(x)}x∈R by setting

OSpecR(D(x)) ∶= R[x−1]
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and letting the canonical localization morphisms to be the restriction maps of the sheaf. This makes
OSpecR into a sheaf of commutative rings, and the spectrum of R is formally the locally ringed space
(SpecR,OSpecR).

Given a connective E∞-ring R, we may define its spectrum SpecR to be Specπ0R, the space of prime
ideals of the underlying commutative ring π0R equipped the Zariski topology, together with a sheaf of
E∞-rings OSpecR satisfying the following:

(1) There is an equivalence of E∞-rings R ≃ OSpecR(Specπ0R)
(2) For any x ∈ π0R the compositum

R ≃ OSpecR(Specπ0R) → OSpecR(D(x))

of this equivalence with the restriction map, exhibits an equivalence

OSpecR(D(x)) ≃ R[x−1]

between the sections of the sheaf OSpecR over the open subset D(x) and the E∞-ring localization
of R at the element x.

These requirements determine the spectrally ringed space (SpecR,OSpecR) essentially uniquely. A spectral
scheme is then defined to be a spectrally ringed space locally equivalent to spectra of E∞-rings. That is
to say, a spectral scheme consists of a pair (X,OX) of a space and a sheaf of E∞-rings on it, such that
every point x ∈ X possesses an open neighbourhood U for which (U,OX ∣U) is equivalent to SpecR for
some connective E∞-ring R. By relaxing the requirement that R be connective, we arrive at the notion of
a non-connective spectral scheme.

Non-connective spectral schemes admit an alternative description as locally spectrally ringed spaces
(X,OX) such that:

(1) The locally ringed space (X,π0OX) is a scheme.
(2) For every i ∈ Z the homotopy sheaf πiOX is quasi-coherent (as a sheaf of modules on the scheme

(X,π0OX).
(3) For every i ∈ Z and every open affine subscheme U ⊆X the natural map

πi(OX(U)) → (πiOX)(U)

is an isomorphism.

If furthermore the homotopy sheaves πiOX are trivial for all i < 0, then (X,OX) is a spectral scheme. This
second characterization captures how a (non-connective) spectral scheme is essentially a classical scheme
together with homotopy groups.

The collection of all (non-connective) spectral schemes forms a full subcategory SpSch (resp. SpSchnc)
inside the ∞-category of locally spectrally ringed spaces. The full subcategory Aff spanned by all affine
spectral schemes, which means spectral schemes equivalent to SpecR for any connective E∞-ring R, is
naturally anti-equivalent to the ∞-category CAlgcn of connective E∞-rings. The anti-equivalence CAlgcn ≃
Affop is given by R ↦ SpecR in one direction and X ↦ O(X) in the other.

A.4.2. Spectral Deligne-Mumford stakcs. By replacing in the definition of a spectral scheme topological
spaces with the more general ∞-topoi and the Zariski toplogy with the finer étale topology, we obtain the
definition of a spectral Deligne-Mumford stack.

The small étale site of SpecR for an E∞-ring R is equivalent to the ∞-category CAlget
R of étale R-

algebras with the Grothendieck cotopology defined by setting jointly faithfully flat finite families to be
coverings. By the principle that a scheme should be identified with its étale ∞-topos, we will also denote
the sheaf ∞-topos Shv(CAlget

R) by14 SpecR. A sheaf of E∞-rings on the ∞-topos SpecR is given by the
forgetful functor CAlget

R → CAlgR, which plays the role of OSpecR and makes SpecR into a spectrally
ringed15 ∞-topos.

A spectral Deligne-Mumford stack is a spectrally ringed ∞-topos (X,O), such that X admits a family
of objects {Uα} such that the coproduct ∐Uα is 0-connective, and there exists for every α a connective
E∞-ring Rα such that the spectrally ringed ∞-topos16 (X/Uα ,O ∣Uα) is equivalent to SpecRα. By omitting
the connectivity requirement on the E∞-rings Rα, we obtain the notion of a nonconnective spectral Deligne-
Mumford stack.

14In SAG the notation SpétR is used for this ∞-topos, but since we do not wish to notationally distinguish between
spectral schemes and their corresponding spectral Deligne-Mumford stacks, it seems to make sense to stick to SpecR.

15A spectrally ringed topos is a pair (X,O) of an ∞-topos X and a sheaf (i.e. small limit preserving functor) O ∶ Xop
→

CAlg of E∞-rings on X.
16Here the restriction O∣U of the sheaf O on X to the overcategory X/U is obtained as the composition

(X/U )
op
→ X

op O
Ð→ CAlg,

where the first arrow is the forgetful functor sending an object X → U in X/U to the object X ∈ X.
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The ∞-category of (non-connective) spectral Deligne-Mumford stacks SpDM (resp. SpDMnc) is defined
as the full subcategory of the ∞-category of Henslian17 spectrally ringed ∞-topoi. spanned by spectral
Deligne-Mumford stacks. By associating its étale topos to a (nonconnective) spectral scheme, we ob-
tain a fully faithful embedding SpSch → SpDM (resp. SpSchnc → SpDMnc), and we will generally not
distinguish between a (nonconnective) spectral scheme and the corresponding (nonconnective) spectral
Deligne-Mumford stack.

17Thought we shall not need to know the details, this is a locality condition analogous to the requirement that schemes
be locally ringed topoi, but local with respect to the étale instead of the Zariski topology.
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