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Dislaimer. This is a transcription of the notes I took of David Ben-Zvi’s inaugural talk
in the 2019 Spring semester BZ(R) Seminar at UT Austin, on February 8, 2019.

1. Motivating shifted symplectic and Poisson geometry

In this seminar we will primarily be concerned with shifted symplectic and shifted
Poisson geometry. David likes the latter a bit more, so this talk may be slanted in that
direction.

1.1. Ordinary symplectic manifolds. Symplectic manifolds are good for many things.
Crucially, they are phase spaces of classical mechanical systems. The primary example
is M = T ∗X, where X is the configuration space of the mechanical system. Coordinates
q on X encode position, while the corresponding coordinates p in the fiber directions of
T ∗X encode momenta. The ring of functions O(M) is the algebra of observables of the
system, and comes equipped with a Poisson bracket {⋅, ⋅}. Fixing an observable H to be
the Hamiltonian, time evolution is given in terms of the Poisson bracket as ∂

∂t = {H, ⋅}.
This is the setting in which usual Hamiltonian mechanics takes place.

1.2. Symplectic structures on moduli spaces. Despite being a generalization of sym-
plectic geometry, one important application of shifted symplectic geometry is that it can
be used to produce several interesting examples of symplectic manifolds (presuming we
already care about those). Let us take a look at two examples of interesting symplec-
tic spaces, the existence of which we will later be able to describe via shifted symplectic
methods.

Example 1.2.1. Let Σ be an oriented topological surface. That is to say, a Riemann
surface, but we won’t need its complex structure. The claim is that LocG(Σ) carries a
symplectic structure. Here LocG(Σ) is the moduli space of G-local systems on Σ, e.g.
locally constant sheaves with G-action, for G a fixed compact or complex reductive group.
Slighly more precisely, we may write

LocG(Σ) = Maploc const(Σ,BG),
where on the right we are viewing Σ as a homotopy type. The points of LocG(Σ) can be
identified with flat G-bundles on Σ, the latter being viewed as a smooth manifold. That
is to say, we have (P,∇) ∈ LocG(Σ) with P a G-bundle and ∇ a flat connection on P. We
may identify the tangent space of this moduli space as

T(P,∇) Loc(Σ,BG) = H1(Σ; ad(P,∇)).
For simplicilty, let us now assume that G = GLn, so the GLn-bundle P corresponds to

a vector rank n bundle E on Σ. In this case we may refine the above formula to

T(P,∇) Loc(Σ,BG) = H1
dR(Σ; EndE).

On the right side, we really have (the cohomology of) the twisted de Rham complex
(End(E) ⊗ Ω●,∇). Using the trace form on EndE and integrating it over Σ, we obtain
the symplectic structure on LocGΣ.
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For an arbitrary group G, we do not have access to the trace form. To play its role, it
suffices to choose an arbitrary non-degenerate invariant form on g, and then procede as
before.

Example 1.2.2. In a similar spirit, let S be a holomorphic surface (4 real dimensions)
which is Calabi-Yau, so that ωS ≃ OS . The funkiest example is when S is a K3 surface. But
if that doesn’t get you excited on its own, you may prefer the easier example of S = T ∗Σ
for a Riemann surface Σ (or you could compactiy this cotangent space, . . . ).

Consider the moduli space BunG S of holomorphic G-bundles on S, that is, the mapping
stack Map(S,BG). As before, this also turns out to carry a symplectic structure. These
moduli spaces are very important in physics, for instance Hitchin systems arise this way.
E.g., a special case is the Higgs moduli space

BunG T
∗Σ

def= HiggsGΣ

whose points are G-budnles P on Σ together with a choice of η ∈ H0(P; adP⊗Ω1).
Remark 1.2.3. While Example 1.2.1 is certainly true as stated (up to properly defining
everything in sight), there is some subtlety about how Example 1.2.2 has to be interpred.
In particular, it might be better to consider it up to Fourier transform, by replacing
BunG ∗S with an appropriate moduli space ShvG S of sheaves with 1-dimensional support.
That said, we shall not currently concern ourselves much with technicalities.

1.3. Unifying principle, using shifted symplectic geometry. The two examples
are closely related, but different, both for their applications in physics, but also because
the first time we considered local systems, whereas the second time we considered all
holomorphic bundles. Likewise the base space was a Riemann surface in the first, while
an Calabi-Yau algebraic surface in the second.

On the other hand, the key similarity between the two examples is that both consider
a stack of the form

Map(?,BG).
In light of this, both examples are special cases of the following paradigm:

Principle 1.3.1. The classifying stack BG admits a 2-shifted symplectic structure. This
shifted structure induces an (ordinary) symplectic structure on Map(?,BG).

Remark 1.3.1. Please note that this principle is not meant to be precise. In particular, we
are purpusefully avoiding specifying what structure we must assume ? to come equipped
with. We shall return to this point later, once we know at least vaguely what shifted
symplectic structure really is.

1.4. Quantum mechanics. We exaplained why you might care about symplectic mani-
folds if you care about classical mechanics. But even if you are only interested in quantum
mechanics, you probably care about them. That is because of quantization, the process of
obtaining a quantum system out of a classical one.

As we explained in Section 1.1, the setting for classical mechanics is a symplectic mani-
fold (M,ω). In fact, it suffices to extract the Poisson algebra of observables (O(M),{⋅, ⋅}).
Its quantization should be an aprropriate non-commutative algebra Oh̵(M), depending on
a parameter h̵, and reducing to the classical case when h̵↦ 0.

So now you are surely convinced that you care about symplectic manifolds, and by
Section 1.3 thus also about shifted symplectic ones!

1.5. Time for a definition. Shifted symplectic manifolds should come in several types,
depending on how shifted they are. The most basic example of a shifted symplectic maniold
should be a symplectic manifold, which we will re-christen a 0-symplectic manifold. We
have also encountered a 2-shifted symplectic space in the form of BG. Though it seems
natural to continue trying to find examples of n-shifted symplectic spaces for increasing
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n, it turns out that a lot of the subject is motivated by the other direction: as we will
discuss more later (see Section 1.10), it turns out that (−1)-shifted symplectic structures
are in some sense the most fundamental.

In any case, as the title of this section indicates, it is time for a definition. Recall first
the one you presumably already know:

Definition 1.5.1. A symplectic structure is a closed 2-form ω ∈ Ω2,cl
M such that the map

it induces TM
ωÐ→ T ∗M is an isomorphism.

To arrive at the shifted analogue, we merely shift everyhting in sight witht the chain
complex shift-by-k operation [k].

Definition 1.5.2. A k-shifted symplectic structure is a k-shifted closed 2-form ω ∈ Ω2,cl
M [k]

such that the map it induces TM
ωÐ→ T ∗M [k] is an isomorphism.

For this to of course even be possible, we need to adopt the context of derived algebraic
geometry. This means that we can take Spec of things such as CDGAs1 giving us access
to shifts. The shifted cotangent bundle may be defined as

T ∗M[k] = SpecM SymTM [−k],

the relative Spec of the CDGA SymTM [k], with TM being the tangent bundle, viewed as
a chain complex in degree 0. When M is not smooth, we need TM to intead mean the
tangent complex2, but nothing else changes. The only thing that is a bit hard, as we shall
see later in this seminar, is defining what it means for ω ∈ Ω2

M [k] to be closed.

1.6. Shifted Poisson algebras. One of the main upshots from having a shifted sym-
plectic structure is that it allows to define shifted Poisson algebras. David finds those
somewhat more fundamental and easier to remember.

Given M a k-shifted symplectic space, then OM comes with the structure of a Pk+1-
algebra. That means that it has two pieces of data:

● a commutative product ⋅,
● a Poisson bracket {⋅, ⋅} of degree 1 − (k + 1) = −k,

and, as any Poisson bracket, {⋅, ⋅} is required to be a Lie bracket, and a biderivation with
respect to the product.

Remark 1.6.1. The numbers in Pk+1 are a little annoying and non-intuitive, and occa-
sionally require some light mental gymnastics such as 1− (k + 1) = −k to make them seem
plausible. This is due to conflicting with the standard En-notation, because people who
first studied shifted Poisson structures did not want to rename classical Poisson algebras
as 1-Poisson, wanting them to be 0-Poisson instead.

Thus a functional definition of a shifted symplectic structure is: what is necessary for
the ring of functions to be shifted Poisson.

But why would you care about shifted Poisson algebras? Well, if you care about homo-
topy theory, then you alread care. That is because it turns out that

Pk+1 = H∗(Ek).

Hence (shifted) Poisson structures may be viewed as some sort of linearizations or shadows
of (higher homotopy) commutative ones.

1CDGA stands for commutative differential graded algebra, and is a rather standard notion in homo-
logical algebra and related areas of algebra and geometry.

2This is the dual of the slightly more famous cotangent complex. David denotes it T ∗M and doesn’t like
that people often use LM instead. Sorry, David! :)
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1.7. Examples of shifted symplectic structures. The easiest example of a k-shifted
symplectic space is the k-shifted cotangent complex T ∗X[k]. That is very simple and
non-surprising, but is already a source of genuinely interesting consequences.

Example 1.7.1. Consider the classifying space BG = ●/G. A standard DAG computation
shows that T●/G = g[1], and so T ∗●/G = g∗[−1], from which we can find that the 1-shifted

cotangent bundle of BG is

T ∗(●/G)[1] = g∗/G.
Thus the coadjoint quotient g∗/G is an example of a 1-shifted symplectic manifold.

An application of this shifted symplectic structure is that Hamiltonian reduction from
ordinary symplextic geometry admits a nice description. Namely, there is an equivalence
between Hamiltonian G-actions, which may be encoded as G-equivariant moment maps

M
µÐ→ g∗, and between 1-shifted Lagrangians3 M/G → g∗/G. Pavel Safranov has found

striking applications of this in representation theory, repackaging some results about quan-
tum groups to avoid some ugly formulas.

Example 1.7.2. The other example of a shifted symplectic space that we already en-
countered is the classifying space BG itself. We claimed it was 2-shifted symplectic, and

indeed we may identify Ω2,cl
BG[2] = (Sym2 g∗)G with the space of bilinear invariant forms of

g. For instance, we may pick the form to be the Killing form, i.e. the trace pairing. Fur-
thermore the condition that the (2/shifted) 2-form is symplectic is equivalent to requiring
the bilinear form to be nondegenerate.

There are various variants of this example. Here is one:

Example 1.7.3. Identifying BGLn with the classifying stack of rank n vector bundles, we
could also consider the classifying stack of perfect complexes, which we will denote BPerf.
It may be defined by functor of points as Map(X,BPerf) = Perf(X), the perfect chain
complexes of sheaves on X. Then just like BGLn has a 2-shifted symplectic structure, so
does BPerf.

1.8. The general principle. Time to return to the principle encountered in Section 1.3,
and outline it in more detail.

Theorem 1.8.1 (Main Theorem of PTVV; reformulation of the (BV)AKSZ construction).
Let M be a k-shifted symplectic space, and let Σ be d-oriented. Then the moduli stack
Map(Σ,M) is (k − d)-shifted symplectic.

The notion of Σ being d-orientabile means rougly that either:

● Σ is an oriented d-fold (topological dimension d),
● Σ is a Calabi-Yau d-fold (topological dimension 2d).

In the situation of the theorem, we have the diagram

Map(Σ,M) π←Ð Σ ×Map(Σ,M) evÐ→M

and the main idea is the following: pull the shifted symplectic form on M back along
the evaluation map ev, and then integrate it over the fibers of π to produce a form on
Map(Σ,M). It is in the second step that the assumption of d-orientability is used, and it
is also this fiber integration which looses d dimensions, explaining the discrepancy in the
shiftedness of the symplectic structures on M and Map(Σ,M).

Remark 1.8.2. There also exists a version of Theorem 1.8.1 for shifted Poisson structures,
and is appropriately the main theorem of CPTVV, the sequel paper to PTVV.

3Of course we haven’t mentioned what shifted Lagrangians are yet, and we will not say more about
them here and now, other than that a good theory of them exists, as we will return to them in a few weeks.
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The moduli we talked about in Section 1.2 were all special cases of the construction of
this Theorem for M = BG. Of course, the original idea behind those examples, as well as
the PTVV Theorem and particularly its predecesor AKSZ, has to do with a certain highly
popular buzzword that often rears its head in the BZ(R) Seminar:

1.9. Quantum Field Theory. Indeed, the authors initialized in AKSZ are all physicists;
of note are K for Kontsevich and S for Albert Schwarz, David’s academic great great
grandfather.

The idea is this: the fields in our field theory should be maps from the spacetime Σ to
some appropriate codomains. For instance, in the examples of Section 1.2 the codomain
was BG, which therefore has to do with gauge theory.

In general, we are trying to get symplectic manifolds as phase spaces of field theory.
But there is something more elemental we can do: we can write down the Lagrangian, as
opposed to Hamiltonians implicit in the previous discussion.

The difference is that before, in the Hamiltonian formalism, we were ignoring time.
In the Lagrangian approach, we are considering all paths x(t) in our chosen symplectic
manifold M (in which the fields take values), and their parameters t plays the role of time.
The action is defined as

a(ϕ) = ∫
Σ

L (ϕ(x))dx,
where L is the Lagrangian (a classical observable, i.e. a function on M) and ϕ is a field
(i.e. a map ϕ ∶ Σ → M). In classical mechanics, we are trying to extremize the action.
That is to say, the path that a particle actually follows is one which minimizes the action.
Summarizing:

Principle 1.9.1 (of Least Action). Classical mechanics is concerned only with Crit(a).
Here Crit(a) denotes the critical locus of the action functional a. But the above principle

is only about classical mechanics, and we really want to QFT.

1.10. Perturbative QFT. Suppose we wanted to instead of classical do perturbative
quantum mechanics - roughly that means that the quantum parameter h̵ is very small4.
Classically we only needed the critical locus of the action, but here we need more: paths
can explore the whole space, as each path that a particle might have travelled (even if
such a path would violate the laws of classical mechanics) can contribute to the Feynmann
integral5

∫ e−
i
h̵
a(ϕ)Dϕ,

through which probability amplitudes and expectation values can all be expressed. But
all is not so bleak:

Principle 1.10.1 (that David learned from Costello). Perturbative quantization only de-
pends on dCrit(a).

Here Crit(a) denotes the derived critical locus of the action. More precisely, we need
dCrit(a), together with some extra structure on it. The cool thing now is: it turns out
that dCrit(a) carries a (−1)-shifted symplectic structure, and this is precisely the data
needed to define field theory!

Remark 1.10.1. Note that Principle 1.10.1, while pleasingly parallel to the Least Action
Principle 1.9.1 governing classical mechanics, is quite surprising. It is valid despite the
fact that quantum mechanics, unlike classical mechanics, can move away from Crit(a)!

4Recall that a basic principle of quantization is that setting h̵↦ 0 should reproduce the classical system
which we are trying to quantize, while the actual physically relevant quantum system will be obtained by
setting h̵ to be the Planck constant, the usual value this symbol takes in physics.

5These physical gadgets are notoriously hard to define rigorously, but in principle, we should be inte-
grating over the space of all fields, and with respect to a mystical measure Dϕ.
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To see what this Principle affords us, let’s recall our setup: we want Map(Σ,M) to be
the space of fields for the QFT. What we need to specify additionally is various sorts of
coordinates on this space, which is what people clasically did. Instead, in light of Principle
1.10.1, we just need the (−1)-shifted symplectic structure, which is the fundamental object.
That is (part of) what was meant by the somewhat cryptic remark in Section 1.5.

1.11. Derived critical locus. So, seeing how we now care about it, what is dCrit(a)
really?

Let us answer in slighlty greater generality, abandoning the specific case of the action
functional for a general space Z and function on it f ∈ O(Z). Then dCrit(f) is just the
critical locus of f , but done correctly, in a sense in which the usual critical locus Crit(f) is
not always correct. Recall that the latter critical locus may be defined as the intersection

Crit(f) = Γ(df) ∩ 0 ⊂ T ∗Z
of the “graph” Γ(df) ⊂ T ∗Z of the differential df with the zero section 0 ⊂ T ∗Z of the
cotangent bundle. Conversely, the derived critical locus may also be written in the form

dCrit(f) = Γ(df) ∩ 0 ⊂ T ∗Z,
but the intersection must be taken in the derived sense.

Remark 1.11.1. We briefly sketch how derived intersections work. Recall that an ordi-
nary intersection X ∩ Y is given by a pair of points, one in each subspace X,Y ⊂ Z we
are trying to intersect, such that those two points are equal as points in Z. Similarly the

derived intersection, which we will here denote X
R∩ Y to notationally distinguish it from

classical intersection X ∩Y , is given by such a pair of points, one in each subspace X and
Y that we are trying to intersect, but instead of requiring the two points to be equal, we
require there to be a path inside the whole space Z connecting them6. Since a path is
contractible and therefore from the point of view of homotopy theory just as good as a
point, this is indeed a homotopical way of identifying the two points.

Returning to the intersection in hand, observe that both Γ(f) and the zero section 0
are Lagrangians with respect to the symplicial structure on the cotangent bundle T ∗Z.
So we are led to ask what structure is to be found on an intersection of two Lagrangians.
The classical answer is that it is a discrete set. The fancy answer is that it carries a
(−1)-shifted symplectic form. To understand how that works, we need to stoop down to
performing

1.12. A computation. Explicitly, we are trying to understand

(1) Γ(df) R∩ 0 = Spec (OΓ(df)
L
⊗OT∗Z Ozero section),

where the derived intersection
R
⊗ on the LHS turned into the derived tensor product

L
⊗ on

the RHS. To compute the latter, we can resolve O0 = Ozero section, which fiber-wise amounts
to resolving a point inside a vector space.

This is achieved by the Koszul resolution: since cotangent spaces are all smooth and
affine, it suffices to consider X = SpecS for S = C[x1, . . . , xn]. The point 0 ∈ X is given
by the S-algebra C = C0, where we have set xi = 0 for all i. The Koszul complex is then
(S ⊗ Λ∗T0, dKosz), where T0 is the tangent space to X at the point 0, and the Koszul
differential dKosz is given by contracting with df in a way perhaps familiar from the theory
of differential forms.

Such a Koszul resolution is a fiber-level construction, but simply tensoring with the
variables of the base space Z extends it to a global one over Z. Let us specialize to the
extreme case when f = 0, so that all the differentials in the Koszul complex vanish. By

6A slight subtlety is that is does not suffice to merely assert the existence of a path connecting the two
points; we need instead to specify such a path as part of the data of a derived intersection.
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replacing O0 with the Koszul complex Λ∗T (here T = TZ is the tangent sheaf on Z), the

derived tensor procut
L
⊗ in (1) becomes replaces with the ordinary tensor product ⊗, and

so we find that

O(0 R∩T ∗Z 0) = Λ∗T.
That is to say, derived self-intersection of a point looks like the exterior algebra, which
may itself be written as

Λ∗T = SymT [1] = O(T ∗[−1]).
Summarizing, we have learned that in the most extreme case of a zero function we have

dCrit(0) = T ∗[−1].
More excitingly, for an arbitrary function f things looks almost the same, only with a
different differential. Indeed, just as before

O(Γ(df) R∩T ∗Z 0) = (Λ∗T = SymT [1] = O(T ∗[−1]),⌟df) ,
where, as indicated, the differential is given roughly by contracting with df .

We can now deliver on the promise made at the end of Section 1.11 and exibit a
shifted symplectic structure on the derived critical locus. Indeed, the exterior algebra
of multivectorfields Λ∗T carries the usual Schouten-Nijenhuis bracket {−,−}, a degree 1
Lie bracket known to be compatible with contractions such as ⌟df , thus it descends to
O(dCrit(a)) and makes it into a P0-algebra. But we learned in Section 1.6 that this is
equivalent to a (−1)-shifted symplectic structure on dCrit(a) itself, and our promise is
fulfilled.
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