
PARTY HATS AND EXPLOSIONS

ROK GREGORIC

The subject matter of this note concerns, as the title suggests, party hats and explosions.
More precisely, we will explain how to explode a part hat. In order to be able to do so, we
must first explain what we mean by both party hats and by explosions. We will do so in
two ways, equivalent in content, but divergent in flavor:

1. Via classical algebraic geometry

Throughout this note, we work over a fixed algebraically closed field k. Take k =C if it
eases psychological distress, but note that no special properties of the complex numbers
will be used. That is to say, we will be engaging in algebraic geometry, as opposed to
utilizing the rich analytic or differentiable structure that would be available over C, but
not over an arbitrary base field k.

1.1. Affine geometry. As such, we adopt the terminological conventions of algebraic
geometry:

● The n-dimensional affine space An is the vector space kn.
● The multiplicative group Gm is the group of units k× under multiplication.
● An affine variety is a subset Y ⊆ An, cut out by (i.e. given as the simultaneous
vanishing locus of) a collection of polynomial equations.

Though the notation and terminology suggest one should view An as an affine space,
i.e. without a distinguished point 0 ∈ An, we will nonetheless make that choice for con-
venience. Nonetheless, while we use the notation and terminology of “the origin”, this
merely amounts to a choice of a point in affine n-space, and any other chosen point would
do just as well. That is implicitly done anyways when writing things in An in terms of
coordinates1.

1.2. Projective space. The basic idea of projective geometry is that the n-dimensional
projective space should be

Pn = {lines L ⊆An+1 through the origin 0}.

Any point P ∈An+1−{0} determines a unique line L = P0 ⊆An+1 that passes both through
it and the origin. Scaling the point P (or more precisely, the vector from 0 to P ) does not
change the line L. This suggests the quotient description

Pn = (An+1 −{0})/Gm

for the scaling Gm-action on the punctured n-space An+1 −{0}.

Date: March 6, 2022.
University of Texas at Austin.
1In fact, more choice is required in that case: that of the n coordinate axis, and of a point

(0, . . . ,0,1,0, . . . ,0) on each.

1



1.3. Homogeneous coordinates. Let us try to understand this in coordinates. The
we set P = (x0, . . . , xn) ∈ An+1 −{0}, and denote its image under the quotient map
An+1 −{0} → Pn by L = P0 = [x0 ∶ . . . ∶ xn] ∈ Pn.
The homgoeneous coordinates [x0 ∶ . . . ∶ xn] ∈ Pn thus makes sense whenever xi ≠ 0
holds for at least one 0 ≤ i ≤ n. Since P0 = (λP )0 holds for any scalar λ ∈ k×, we have

[x0 ∶ . . . ∶ xn] = [λx0 ∶ . . . ∶ λxn].

In light of the quotient description of Pn, this fully determines homogeneous coordinates.

1.4. Projective varieties. Let X ⊆ Pn be a projective variety, i.e. the vanishing locus

X = {[x0 ∶ . . . ∶ xn] ∈ Pn ∣ fi(x0, . . . , xn) = 0 ∀i}

of some collection of homogeneous polynomials fi(x0, . . . , xn) ∈ k[x0, . . . , xn]. Homogeneity
of the defining polynomial equations is imposed in order that the property of their van-
ishing is independent of rescaling, and hence makes sense for homogeneous coordinates.

1.5. Tautological bundle. A point L ∈ Pn may be viewed as a line L ⊆ An+1, and as
such as a 1-dimensional vector space. This leads to the tautological line bundle O(−1) on
Pn, whose fiber over a point L ∈ Pn is given by

O(−1)L ∶= L.

Given a projective variety X ⊆ Pn, it also admits a tautological bundle OX(−1), obtined
either as pullback (i.e. restriction) of the tautological bundle O(−1) = OPn(−1) from the
ambient projective space Pn, or equivalently by the same fiber-wise description

OX(−1)L ∶= L

for all points L ∈X.

Remark 1.1. The reason for the −1 in the notation for the tautological bundle OX(−1)
is that there is an easy modification of it that makes sense of the so-called Serre twists
OX(n) for any n ∈ Z. If n ≥ 0, we define fiber-wise over L ∈X ⊆ Pn

OX(−n)L ∶= L⊗n, OX(n) ∶= (L∨)⊗n.

These are still 1-dimensional vector spaces, but the difference is that the tensor powers
and/or duals change the transition maps (suppressed in our account) that give the bundle
structure on OX(n).

1.6. Blowup of a plane at a point. The blowup Bl0(An+1) of An+1 at the origin is
supposed to leave An+1−{0} unchanged, but replace the point 0 ∈An+1 with the collection
of all the lines through it. The lines in An+1 through the origin form, as discussed above
in Section 1.2, the projective space Pn. This suggests defining the blowup as

Bl0(An+1) ∶= {(P,L) ∈An+1 ×Pn ∣ P ∈ L}.

Let us verify that this definition does the job. Sending (P,L) ↦ P gives a canonical
map π ∶ Bl0(An+1) →An+1, the fibers of which are

π−1(P ) ≅ {L ∈ Pn ∣ P ∈ L} =
⎧⎪⎪⎨⎪⎪⎩

{L = P0} if P ≠ 0,
Pn if P = 0

as desired.
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1.7. Blowup in coordinates. Let us express the subset Bl0(An+1) ⊆An+1 ×Pn in terms
of the standard and homogeneous coordinates on paffine and projective space respectively.
Setting P = (x0, . . . , xn) and L = [y0 ∶ . . . ∶ yn], a pair (P,L) ∈ Bl0(An+1) satisfies P ∈ L if
and only if

[x0 ∶ . . . ∶ xn] = [y0 ∶ . . . ∶ yn].
By definition of homogeneous coordinates, that is equivalent to asking that there exists a
scalar λ ≠ 0 such that

xi = λyi ∀i.
For those 1 ≤ i ≤ n for which yi = 0, this means that it must also be that xi = 0. If yi ≠ 0,
we may on the other hand write

λ = xi
yi
. (1)

This holds for all such i, hence the defining equation can be rewritten as
xi
yi
= xj
yj

for all indices 0 ≤ i, j ≤ n for which yi, yj ≠ 0. Rewriting this in the still equivalent form
xiyj = xjyi,

this now holds for all i, j, and encodes both (1) and the vanishing condition. Hence we
obtain the coordinate description of the blowup of affine (n + 1)-space at a point as

Bl0(An+1) = {((x0, . . . , xn), [y0 ∶ . . . , yn]) ∈An+1 ×Pn ∣ xiyj − xjyi = 0 ∀0 ≤ i, j ≤ n}.

Since this exibits it as the zero locus of polynomial equations, this shows Bl0(An+1) is a
variety itself2.

1.8. Blowup of an affine variety. Let Y ⊆ An+1 be an affine variety containing the
origin, i.e. such that 0 ∈ Y . The blowup of Y along the point 0 ∈ Y is defined as the closure

Bl0(Y ) = π−1(Y − {0}) = {(P,L) ∈ (Y − {0}) ×Pn ∣ P ∈ L},

where the closure has the effect of adding in those lines L ⊆ An+1 through 0 which are
tangential directions of approach3 to 0 along Y .

Remark 1.2. We may (fancifully) concieve of the blowup in the following way, (partiially)
justifying the name. Set some explosives at the chosen point of the variety, then right after
you detonate them, freeze time. Everything that was located at the point before is now
sent flying into all directions - all directions away from the point, that is. On the other
hand, things far away from the detonation site remain uneffected (at least in the moment
right after the explosion - the shock waves are yet to reach them). precisely the geometric
situation en

1.9. Key property of blowup. Keeping the same notation as in the previous section,
there exists a canonical map π ∶ Bl0(Y ) → Y , inherited from the eponymous one from the
ambient case Y =An+1. Its characterizing properties are:
(1) E ∶= π−1({0}) ⊆ Bl0(Y ) is a divisor, i.e. a codimension 1 subvariety.
(2) Bl0(Y ) −E = π−1(Y − {0})

≅Ð→ Y − {0}.

2However it is neither an affine or a projective variety. It instead an instance of a more general class
of quasi-projective varieties. These are, formally speaking, locally closed subsets in Pn for the Zariski
topology, and subsume both affine and projective varieties.
3Though this might sound as describing the entire tangent space T0Y , it instead ends up being the

smaller tangent cone TC0Y ⊆ T0Y . When 0 is a non-singular point in Y , the two agree, but at a singularity
0 ∈ Y , the tangent cone is a more refined “linear” approximate of Y at point 0.
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Note that under the canonical map π ∶ Bl0(An) →An, the preimage of an (irreducible)
affine variety Y ⊆An has two irreducible components

π−1(Y ) = Bl0(Y ) ∪ π−1(0);
the blowup Bl0(Y ) (sometimes also called the proper transform of Y ) and π−1(0) ≅ Pn.
Also, as the picture of blowing up the nodal (or cuspidal) plane cubic Y ⊆A2, e.g. given
by x20 = x21(x1 − 1) (resp. x20 = x31) at the node (resp. cusp) shows, blowing up at a singular
point often has the effect of resolving (or at least reducing) singularieties.

Remark 1.3. It fact, any algebraic curve may be desingularized by a finite sequence
of blowups at points. A vast generalization of this is Hironaka’s Theorem, asserting the
analogous assertion is true for a variety of arbitrary dimension over a field of characteristic
zero, so long as we allow ourselves to blow up along more general subvarieties.

1.10. Cone over a projective variety. With the “explosions” part of the title now
clarified, we turn next to “party hats”. Let X ⊆ Pn by a projective variety. The (affine)
cone over X is the set

C ∶= ⋃
L∈X
L ⊆An+1 .

That is to say, C consists of all the points in An+1 which lie on lines L that define elements
L ∈ X ⊆ Pn+1. In terms of defining homogeneous polynomial equations for the projective
variety

X = {[x0 ∶ . . . ∶ xn] ∈ Pn ∣ fi(x0, . . . , xn) = 0 ∀i},
the affine cone over X is cut out by the same equations, but interpreted in affine space

C = {(x0, . . . , xn) ∈An+1 ∣ fi(x0, . . . , xn) = 0 ∀i}.
In particular, it is an affine variety. Since the origin 0 ∈An+1 lies on every line in L ∈X (or
even L ∈ Pn), or equivalently, since the polynomials fi are all homogeneous and as such
must vanish at the origin, it follows that the cone always includes a distinguished point
0 ∈ C, called its vertex.

1.11. Blowup of a cone at its vertex. Real-life experience with cones, e.g. party hats,
pyramids, etc. suggests that the vertex 0 ∈ C is likely to be a singular point. We may
wonder if blowing it up resolves it.

Theorem 1.4. Let X be a projective variety, and C its affine cone with vertex 0 ∈ C.
There is a canonical isomorphism of varieties

Bl0(C) ≅VX(OX(−1))
between the blowup of the affine cone along the vertex and the total space of tautological
bundle OX(−1) over X.
Visually, we can imagine that blowing up a cone at the vertex creates a cylinder. This
is what Theorem 1.4 justifies and generalizes.

Proof. Recall from Section 1.5 that the tautological line bundle OX(−1) is given fiber-wise
over L ∈X by OX(−1)L = L. It follows that its total space is

VX(OX(−1)) = {(P,L) ∈An+1 ×X ∣ P ∈ L}, (2)

with the bundle projection map VX(OX(−1)) →X given by (P,L) ↦ L. Indeed, the fibers
of this map are precisely

VX(OX(−1)) ×X {L} ≅ {P ∈An+1 ∣ P ∈ L} = L.
When X = Pn, the total space formula (2) recovers the definition of the blowup from
Section 1.6, so that we have

VPn(O(−1)) ≅ Bl0(An+1).
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The vector bundle structure is exhibited by sending the pair (P,L) ∈An+1 ×Pn with P ∈ L
to the line component L ∈ Pn, while the blowup structure is instead given by sending it to
the point component P ∈ An+1. In particular, this proves the theorem in the special case
when X = Pn, since the cone over it is clearly the entire affine space C =An+1.
For an arbitrary projective variety X ⊆ Pn, we have

VX(OX(−1)) ⊆VPn(O(−1)) ≅ Bl0(An+1),
allowing us to view the total space of the tautolotical bundle OX(−1) as a subvariety of
Bl0(An+1). Note that the projection VX(OX(−1)) →An+1, given by (P,L) ↦ P , surjects
onto the affine cone C ⊆ An+1 over X. Indeed, since P ∈ L, we have P ∈ C if and only if
L ∈X by the definition of the affine cone. Taking the preimage of VX(OX(−1)) → C over
the complement of the vertex of the cone is

VX(OX(−1)) ×C (C − {0}) = {(P,L) ∈ (C − {0}) ×X ∣ P ∈ L}
= {(P,L) ∈ (C − {0}) ×Pn ∣ P ∈ L}
= Bl0(C) ×C (C − {0}).

In light of the closure definition of the blowup Bl0(C) ⊆ Bl0(An+1) from Section 1.8, it
suffices, in order to identify VX(OX(−1)) and Bl0(C), to show that the fiber of the map
VX(OX(−1)) → C over the vertex 0 ∈ C is a divisor (see Section 1.9). For that, note that

VX(OX(−1)) ×C {0} ≅ {L ∈X ∣ 0 ∈ L} =X
is the zero section of the vector bundleVX(OX(−1)) →X, and as such a divisor indeed. □

2. Via scheme theory

After a hopefully-friendly classical geometric discussion so far, we will now redo some of
it, and in particular re-prove Theorem 1.4, with the modern algebro-geometric language
and technology. Our pace here will be much more brisk, as time constraints prohibit
us from the (substantial undertaking) of giving a gentle introduction to scheme theory.
Instead we merely provide a summary of the main notions that will show up in the re-proof
of Theorem 1.4.

2.1. Affine schemes. Given a commutative k-algebra A, there is4 an associated affine
scheme Spec(A).

● A basis for its Zariski topology is given by basic opens
D(f) = Spec(A[f−1])

for elements f ∈ A. Viewing f ∈ A = O(Spec(A)) as a function on Spec(A), the
basic open D(f) is the open locus {f ≠ 0}.
● A closed subscheme Z ⊆ Spec(A) is uniquely characterized by an ideal I ⊆ A, and
isomorphic to Z ≅ Spec(A/I). Viewing elements f ∈ I ⊆ O(Spec(A)) as functions
on Spec(A), then Z is to be viewed5 as the closed locus {f = 0, ∀f ∈ I}.
● If A = k[x1, . . . , xn]/I, then the quotient homomorphism k[x1, . . . , xn] → A induces
a closed immersion

Spec(A) ↪ Spec(k[x1, . . . , xn]) =An,
exhibiting the affine scheme Spec(A) as a closed subscheme of affine space.

4It may be defined as a ringed space by its underlying space consisting of all prime ideals in A, or via
the functor-of-points approach as a corepresentable functor. These nuances are unimportant to us here,
and we will leave the choice to the zealous reader.
5Note however that, unlike a subvariety, a closed subscheme is not merely a locus, but may admit non-

reduced structure. That is to say, the actual ideal that cuts the subscheme is kept track of, as opposed to
merely its radical.
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● In contrast to the previous point, the power of scheme theory lies in allowing us
to view any commutative ring A as a geometric object Spec(A), regardless of any
relationship to polynomial rings. In that sense, we can work more coordinate-free
and intrinsically, and the reducion of an algebro-geometric question to a purely
algebraic problem is often formal and transparent (our proof of Theorem 2.3 may
be seen as an instance, but there are many more convincing ones).

2.2. Projective schemes. Let S be a commutative Z≥0-graded k-algebra, i.e. S = ⊕n≥0 Sn
with SnSm ⊆ Sn+m. There is6 an associated scheme Proj(S).

● A basis for its Zariski topology is given by basic opens
D+(f) = Spec(S[f−1]0)

for homogeneous elements f ∈ Sd, d ≥ 1. Here the localization S[f−1] is graded in
the standard way, i.e. for any n ∈ Z the n-th piece of the grading is

S[f−1]n = ⊕
i,j≥0
i−dj=n

Sif
−j .

● If S = k[x0, . . . , xn]/I (with the usual grading where ∣xi∣ = 1 for all i) for a ho-
mogeneous ideal I, then the quotient homomorphism k[x0, . . . , xn] → S induces a
closed immersion

Proj(S) ↪ Spec(k[x0, . . . , xn]) = Pn,
exhibiting the affine scheme Proj(S) as a closed subscheme of projective space.
● For any n ∈ Z, the n-th Serre twisting sheaf OProj(S)(n) over Proj(S) is defined
by setting its sections over the basic open D+(f) ⊆ Proj(S) for f ∈ Sd, d ≥ 1 to be

Γ(D+(f);OProj(S)(n)) ∶= S[f−1]n,

i.e. the homogeneous elements of the localization S[f−1] in degree n.
● If S is generated (as a ring by) S1 ⊆ S (as is for instance true for all projective
varieties by the previous point), then there is the addition formula

OProj(S)(n +m) = OProj(S)(n) ⊗OProj(S)(m)
for all n,m ∈ Z. In particular, the Serre twisating sheaves are in that case line
bundles. That is not generally true without the assumption of generation in degree
1.
● Unlike the correspondence A ↦ Spec(A) between rings and affine schemes, which
induces an equivalence of categories and as such loses and gains no data, the
correspondence S ↦ Proj(S) is more complicated. Diferent graded rings S ≠ S′
can bive rise to the same scheme Proj(S) ≅ Proj(S′); not every map of schemes
Proj(S′) → Proj(S) necessarily arises from a graded ring map S → S′, nor does
any such map induce a map of schemes on Proj, etc.

2.3. Blowup of an affine scheme. Let Y = Spec(A) be an affine scheme and Z ⊆ Y a
closed subscheme determined by the ideal I ⊆ A. The blowup of Y along Z is

BlZ(Y ) ∶= Proj(⊕
n≥0
In)

The A-module structure on the ideal I and its powers In gives rise to the structure map
BlZ(Y ) → Spec(A) = Y , called either the blowup projection or sometimes the “blow-
down”.

6For what it’s worth, its underlying space consists of all such homogeneous prime ideals p ⊆ S, which
do not fully contain the irrelevant ideal S+ ⊆ S.
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Remark 2.1. Though we will not use anything other than the Proj definition of the
blowup in what follows, let us nonetheless take a little detour to describe the schematic
blowup, and see that it is indeed much like the classical above-discussed construction that
it generalizes. The preimage under the blow-down projection π ∶ BlZ(Y ) → Spec(A) = Y
of the “center of the blowup” Z ⊆ Y is the exceptional divisor

EZ(Y ) = BlZ(Y ) ×Y Z = Proj(⊕
n≥0
In ⊗A A/I) = Proj(⊕

n≥0
I/In),

which is precisely the definition of the projective normal cone CZ/Y . On the other hand,
the restriction to the open complement

BlZ(Y ) −EZ(Y ) = BlZ(Y ) ×Y (Y −Z)
πÐ→ Y −Z

is an isomorphism. Compare this to Section 1.9.

2.4. Cone over a projective scheme. With the scheme theory background reviewed,
we can re-cast the content Section 1.10 in this setting.
Let S = ⊕n≥0 Sn be a commutative graded k-algebra with S0 = k, and let X = Proj(S).
The (affine) cone over X is defined to be C ∶= Spec(S). The vertex of this cone 0 ∈ C
is the closed schscheme determined by the irrelevant ideal S+ ∶= ⊕g≥1 Sn ⊆ S. Indeed, the
vertex is as a scheme of the form

{0} ≅ Spec(S/S+) = Spec(S0) = Spec(k);
a point as promised.

Remark 2.2. If S is generated as an algebra by S1, then the Proj construction can be
obtained by a quotient construction

X ≃ (C − {0})/Gm
akin to the quotient presentation of projective space from Section 1.2. Here the “scaling”
Gm-action on the affine scheme C = Spec(S) is equivalent to (and induced from) the Z-
grading on the ring S. The vertex {0} ⊆ C is precisely the fixed-point locus of this action,
which is why its complement also inherits a Gm-action.

2.5. Vector bundles over schemes. There is one last notion to recall: if E is a locally
free sheaf of OX -modules, equivalent to a vector bundle on a scheme X, the corresponding
total space of E is given by

VX(E) ∶= SpecX(Sym∗OX (E
∨)).

Here the relative spectrum SpecX(A) →X of a quasi-coherent sheaf of OX -algebras A is a
relative version (i.e. working over the general base X instead of merely a point like in 2.1)
of Spec. It is defined via gluing from its restrictins over affine open subschemes U ⊆ X,
where it is set to be

SpecX(A) ×X U ≃ Spec(Γ(U ;A)),
where the sheafyness of A enables gluing over different affine opens U ⊆X.

2.6. Blowup of a cone at its vertex revisited. At last we turn to a scheme-theoretic
proof of the next analogue of Theorem 1.4. The proof we sumarize can be found in full,
and in a more general context, in EGA II, Section 7.8.

Theorem 2.3. Let S be a graded k-algebra with S0 = k, generated by S1 ⊆ S. For X =
Proj(S), the cone C = Spec(S) and vertex 0 ∈ C as in Section 2.4, there is a canonical
isomorphism of schemes

Bl0(C) ≅VX(OX(−1))
between the blowup of the affine cone along the vertex, and the total space of line bundle
OX(−1) over X.
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Proof. The proof-strategy is as follows: we will rephrase each side of the desired isomor-
phism, the right side in (ii) and the left side in (i), using the assumed degree-one genera-
tion. Then we will identify the two rephrased terms, which will not require the generation
assumption, and will reduce to a direct comparison of graded rings.

(i) The total space of the Serre twisting sheaf OX(−1) is
VX(OX(−1)) = SpecX(Sym∗OX (OX(1))),

as we saw in Section 2.5. Since S is assumed to be generated in degree 1, the sheaf
OX(1) is invertible, and OX(1)⊗n ≅ OX(n). It being an invertible sheaf implies that
the symmetric group action on its tensor powers are trivial, hence the canonical
map

OX(n) ≅ OX(1)⊗n → OX(1)n/Σn = SymnOX (OX(1))
is an isomorphism of sheaves of OX -modules. By passing to the sheaves of algebras
and the relative spectrum over X, we obtain a canonical isomorphism

VX(OX(−1)) ≅ SpecX (⊕
n≥0

OX(n)) (3)

(ii) Recall from Section 2.3 that the blowup of the cone C at the vertex 0 ∈ C, which
is cut out by the irrelevant ideal S+ ⊆ S, is given by

Bl0(C) = Proj (⊕
n≥0
Sn+).

Thanks to the degree-one generation assumption, we have Sn = Sn1 for all n ≥ 0,
hence

S+ = S1 + S2 + S3 + S4 +⋯
= S1 + S21 + S31 + S41 +⋯
= S1(k + S1 + S21 + S31 +⋯)
= S1(S0 + S1 + S2 + S3 +⋯)
= S1S.

That is to say, the irrelevant ideal S+ coincides with the ideal S1S generated by
the subset S1 ⊆ S. It follows that S+ = Sn1 S holds for every n ≥ 0. Let us introduce
a new graded ring S♯ by

S♯ ∶= ⊕
n≥0
S≥n, (4)

i.e. the graded ring whose n-th graded piece is S♯n = S≥n = ⊕m≥n Sm. Thanks to the
degree-1-generation assumption, we have

S♯n = Sn + Sn+1 + Sn+2 +⋯
= Sn1 + Sn+11 + Sn+21 +⋯
= Sn1 (k + S1 + S21 +⋯)
= Sn1 S.

We conclude that S♯n = Sn+ holds for all n ≥ 0, and so

Bl0(C) = Proj(S♯). (5)

In light of (3) and (5), the desired assertion is reduced to the subsequent Lemma. □

Lemma 2.4. For any graded k-algebra S and X = Proj(S), with S♯ defined as (4), there
is a canonical isomorphism of schemes

Proj(S♯) ≅ SpecX (⊕
n≥0

OX(n)).
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Proof. There is a canonical map of graded rings (−)♯ ∶ S → S♯, obtained by sending a
homogeneous element f ∈ Sn to the homogeneous element f ♯ ∈ S♯n = S≥n, which is defined
to be “just itself” as f ∈ Sn ⊆ S≥n. It is clear from its definition that the image of the
irrelevant ideal S+ ⊆ S under this map generates the irrelevant ideal S♯+ ⊆ S♯, hence it gives
rise to a corresponding morphism of schemes Proj(S♯) → Proj(S) =X.
Both schemes in question therefore admit canonical maps into X, and we will show that
they agree upon restriction to a basic open D+(f) ⊆ X for any f ∈ Sd, d ≥ 1. Since such
open subschemes cover X, the observation that everything we will do will be compatible
on intersections, implies the agreement of the two schemes over the entirety of X. Over a
basic open in X in question, we obtain

Proj(S♯) ×X D+(f) =D+(f ♯) ≅ Spec(S♯[(f ♯)−1]0).
On the other hand, the relative spectrum restricts over the basic affine to

SpecX (⊕
n≥0

OX(n)) ×X D+(f) ≅ Spec (⊕
n≥0
Γ(D+(f);OX(n)))

= Spec (⊕
n≥0
S[f−1]n)

= Spec(S[f−1]≥0).
To identify the two affine schemes, we must (compatibly in f ∈ Sd, in order to ensure
gluing to all of X) identify the two rings S♯[(f ♯)−1]0 and S[f−1]≥0. From the grading on
homogeneous localizations of graded rings, recalled in 2.2, we find that

S♯[(f ♯)−1]0 = ⊕
i,j≥0
i−dj=0

S♯i (f ♯)−j = ⊕
i,j≥0
i−dj=0

S≥if−j = ⊕
i,j≥0
i−dj≥0

Sif
−j = S[f−1]≥0

as desired. □

Remark 2.5. The scheme-theoretic proof of Theorem 2.3 is formal and simple, but it
obscures the geometric ideas involved in the original approach to Theorem 1.4. On the
other hand, it amounts to a straighforward algebraic manipulation, with no deep geometric
insight required - the same aspect is both a power and curse. That said, using Remark 2.2
and the “functor of points” approach to algebraic geometry (and specifically the universal
property of blowups), Theorem 2.3 could be proved almost precisely the same way as
Theorem 1.4. We leave that as a fun exercise to the reader.

A. Appendix

The goal we set ourselves out to do is concluded: we have investigated how to explode
a party hat, i.e. blow up a cone. In this appendix, we collect some after-thoughts that are
not a necessary part of the main narative, but that we touched upon in it, and that are
fun, self-contained, and short enough to merit inclusion.

A.1. Examples: singular plane cubic curves. To get a feeling for blowups, let us
work through the examples of blowing up plane cubic curves. Since blowing up a smooth
point will not change the curve, we will treat the two singular plane cubics: the nodal and
cuspidal cubic curves

Ynode ∶= {(x, y) ∈A2 ∣ y2 = x2(x + 1)}, Ycusp ∶= {(x, y) ∈A2 ∣ y2 = x3}.
The singular point of both is at the origin 0 ∈ Ynode ∩ Ycusp ⊆ A2, which is the point we
will blow up.
We already know that Bl0(A2) ⊆ P1×A2 is cut out in coordinates ([s ∶ t], (x, y)) by the
equation tx = sy. To simplify, let us restrict to the open locus {s ≠ 0} = P1−{[0 ∶ 1]} ≅A1.
Setting s = 1 (which we can do since homogeneous coordinates are only unique up to
rescaling), we obtain a unique point [t ∶ 1] for any t ∈ A1. The blowup equation then
simplifies to y = tx. The reason we lose nothing by restricting to the locus of Bl0(A2) over
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{s ≠ 0} ⊆ P1 is because the line L = {(x, y) ∈ A2 ∣ x = 0} ⊆ A2, which corresponds to the
point [0 ∶ 1] ∈ P1 (i.e. the locus s ≠ 0), intersects the curves Ynode, Ycusp ⊆ A2 only at the
origin, and even there transversally7. That implies, by the description of the blowup from
Section 1.8, that the subvarieties Bl0(Ynode),Bl0(Ycusp) ⊆ Bl0(A2) lie fully over the open
locus {s ≠ 0} ⊆ P1. Hence nothing is lost by setting s = 1, and we do so from here on.

A.2. Blowup of the nodal conic. The preimage π−1(Ynode) ⊆ Bl0(A2), is now cut out
from (t, x, y) ∈ A3 as the simultaneous vanishing locus of the polynomials y − tx and
y2 − x2(x + 1). The latter equation may be simplified in light of the former into

(tx)2 − x2(x + 1) = x2(t2 − x − 1).
Geometrically, this means that π−1(Ynode) ⊆ Bl0(A2) splits into two irreducible compo-
nents: one given by x2 = 0 - this is nothing but the exceptional divisor, i.e. the line π−1(0) =
P1 - and the other given by x = 1 + t2. By definition of the blowup Bl0(Ynode) ⊆ Bl0(P1),
this is the second component

Bl0(Ynode) = {(t, x, y) ∈A3 ∣ x = 1 + t2, y = tx}
= {(t,1 + t2, t + t3) ∈A3 ∣ t ∈A1}.

This is a parametrized curve inside A3, with the map t ↦ (t,1 + t2, t + t3) defining the
isomorphism A1 ≅ Bl0(Ynode). In particular, this is a smooth curve, and so in particular
the blow-down map Bl0(Ynode) → Ynode is a resolution of singularieties.

A.3. Blowup of the cuspidal conic. By the analogous reasoning as in the nodal case,
the preimage π−1(Ycusp) ⊆ Bl0(A2) is cut out by the equation

(tx)2 − x3 = x2(t2 − x).
The irreducible component Bl0(Ycusp) ⊆ π−1(Ycusp) is therefore given by x = t2, and as
such may be expressed in the parametrized form

Bl0(Ycusp) = {(t, t2, t3) ∈A3 ∣ t ∈A1}.
Not only is this a non-singular curve, making Bl0(Ycusp) → Ycusp into a resolution of
singularities of the cuspidal cubic, but it is a particularly famous algebraic space curve: it
is the ever-friendly twisted cubic!

A.4. Blowup of a “higher order cusp”. In the previous two cases, blowing up a curve
singularity resolved it. That need not be always the case (though a finite sequence of
blowups will always do the job).
Indeed, consider a higher-degree analogue of the cuspidal cubic

Ym,n ∶= {(x, y) ∈A2 ∣ ym = xn}
for arbitrary integers m,n ≥ 1. To organize ourselves, suppose that n > m (though
by change of coordinates x, y on A2, this could be switched around). The preimage
π−1(Ym,n) ⊆ Bl0(A2) under the blowup projection π ∶ Bl0(A2) → A2 is cut out as be-
fore by

(tx)m − xn = xm(tm − xn−m).
The irreducible component Bl0(Ym,n) ⊆ π−1(Ym,n) is therefore given by xn−m = tm. But
unless n − m = 1, this does not give us a parametrization of x (and consequently also
y = tx) in terms of t, which exhibited the smoothness of the blowup in the cubic case
above. Instead, we find that

Bl0(Ym,n) = {(t, x, y) ∈A3 ∶ xn−m = tm, y = tx}. (6)

7The reader familiar with Bezout’s Theorem will conclude that the “remaining two points of intersec-
tion” must occur at infinity. Indeed, the line in question is precisely the tangent line to the projective
closures of Ynode and Ycusp inside P2 at infinity P2 −A2.
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To test whether this algebraic variety is non-singular or not, we must consider the deriva-
tives of its defining equations. If f(t, x, y) = xn−m − tm and g(t, x, y) = y − tx, so that the
blow-up in question is the locus {f = g = 0} ⊆A3, then its singulareness are controlled by
the Jacobian matrix

Jf,g(t, x, y) =
∂(f, g)
∂(t, x, y) =

⎛
⎝

∂f
∂t

∂f
∂x

∂f
∂y

∂g
∂t

∂g
∂x

∂g
∂y

⎞
⎠
.

Indeed, the Jacobian criterion for smothness asserts that a point (t, x, y) ∈ {f = g = 0}
is singular if and only if all the minors of this matrix vanish8. The Jacobian matrix in
question is

Jf,g(t, x, y) = (
−mtm−1 (n −m)xn−m−1 0
−x −t 1

) ,

and its three minors are

Jf,g(t, x, y)1 = (n −m)xn−m−1,
Jf,g(t, x, y)2 = mtm−1,
Jf,g(t, x, y)3 = mtm + (n −m)xn−m.

The point 0 ∈ Bl0(Yn,m) ⊆A3 will be a common zero of all these three minors, and as such
a singular point of Bl0(Yn,m), unless either
(a) n −m = 1 - such as was the case for the cuspidal conic, or
(b) m = 1 - in which case, the curve Ym,n ⊆A2 is already smooth.

Thus for n >> m, blow-up at the singular point does not desingularize the curve Yn,m.
But some imporvement has been made - in the equations (6), the highest exponent that
appears is n −m, which is a definite improvement on n. By blowing up sufficiently many
times, it thus might not be too outrageous to hope that the singularity might be improved
to the point of being no longer singular. Indeed, this turns out to be the case, but the
proof requires more technology than we are willing to expand here.

Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

8A more common phrasing of the Jacobian criterion is the opposite: a point (t, x, y) is smooth i.e.
nonsingular if and only if the matrix Jf,g(t, x, y) has maximal rank, which is equivalent to saying that it
has a non-vanishing minor.
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