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Overview. The contemporary theory of D-modules in derived algebraic geometry, as
studied for instance in [8], rests on the observation by Carlos Simpson in [16] that D-
modules may be understood as quasi-coherent sheaves on the de Rham space. The de
Rham space is also useful because it provides one approach to derived formal completion.

In this note we introduce the crystalline space, an analogue of the de Rham space, such
that the sheaves on it are crystals in the sense of Grothendieck. Its relationship with the
crystalline topos is intended to mirror the relationship of de Rham space with the infini-
tesimal topos. We use the crystalline space to study a derived form of pd-completion, and
discuss the relationship of our work with Drinfeld’s stacky approach to crystals in [5].

Setting. We work in the setting of derived algebraic geometry, with liberal use of ∞-
categories. Some of the most common notation we use is S for the ∞-category of spaces,
DSch for the ∞-category of derived schemes, Sch for the category of ordinary schemes,
CAlg♡ for the category of commutative rings, and sCAlg for the ∞-category of simplicial
commutative rings. We choose to use the latter as the setting1 for derived algebraic geom-
etry, and mostly pursue a functor of points philosophy (schemes and stacks are identified
with functors they represent, etc. ). We cite [8] as GR, [12] as HA, [14] as SAG, and [4]
as SP.

1. Crystalline space

Definition 1.1. The crystalline space of a functor X ∶ sCAlg → S is the functor Xcrys ∶

sCAlg → S defined by

Xcrys(R) = lim
Ð→
(I,γ)

X(π0(R)/I),

where the colimit ranges over the poset of nilpotent ideals I in π0(R) and pd-structures
γ on I.

Remark 1.2 (Crystalline vs de Rham space, I). The definition of the crystalline space is
analogous to defining the de Rham space of a functor X ∶ sCAlg → S as

XdR(R) = lim
Ð→
I

X(π0(R)/I),

where the colimit ranges over the poset of nilpotent ideals I in π0(R). One notable
difference compared to Xcrys is that the colimit in the definition of XdR is filtered. Thus

when X is locally of finite presentation, we recover the formula XdR(R) ≃ X(π0(R)
red

).
So far as we can tell, that in general has no analogue for Xcrys. That has some serious
drawbacks, as much of the theory of the de Rham space, as developed in [16], [9], and GR,
relies essentially on its connection to reduction. See Remark 7.7 for an example of this
difficulty in action.

Date: October 21, 2019.
1Though we have elected to phrase things in terms of simplicial commutative rings, the contents of the

note would be unchanged if we decided to work with connective E∞-rings instead. This is due to the fact
that the crystalline space depends only on the underlying classical scheme of a derived or spectral scheme.
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Remark 1.3 (Functoriality). The formation of the crystalline space X →Xcrys extends to
a functor, as becomes transparent if we rephrase its definition in terms of a Kan extension.
Indeed, denote by CAlg♡pd the category of pd-rings, whose objects are triples (R, I, γ) of
a commutative ring R, a nilpotent ideal I ⊆ R, and a divided power structure γ on I, and
whose morphisms are ring homomorphisms which preserve both the relevant ideals and
pd-structures. It possesses two functors p0, p1 ∶ CAlg♡pd → CAlg♡ given by p1(R, I, γ) = R

and p0(R, I, γ) = R/I. The construction X →Xcrys is given as the composition

Fun (sCAlg,S)
π0
Ð→ Fun (CAlg♡,S)

p∗0
Ð→ Fun (CAlg♡pd,S)

LKanp1
ÐÐÐÐ→ Fun (CAlg♡,S)↪ Fun (sCAlg,S)

exhibiting its functoriality. That is to say, any natural transformation f ∶ X → Y induces
canonically another natural transformation fcrys ∶Xcrys → Ycrys.

Definition 1.4. Given a map f ∶X → Y in Fun (sCAlg,S), let us define the pd-completion

of Y along X to be Y pd
X = Y ×Ycrys Xcrys. More explicitly, this functor associates to a

simplicial commutative ring R the space

Y pd
X (R) ≃ lim

Ð→
(I,γ)

X(π0(R)/I) ×Y (π0(R)/I) Y (R),

where the colimit ranges over the poset of nilpotent ideals I in π0(R) and pd-structures
γ on I.

Remark 1.5 (Underlying classical functors). Given a functor X ∶ sCAlg → S, the undering
classical functor of X is the functor π0(X) ∶ CAlg♡ → S is obtained by restriction along the
inclusion CAlg♡ → sCAlg of ordinary commutative rings into simplicial commutative rings
as discrete simplicial rings. If a natural transformation X → X ′ induces an equivalence
π0(X) ≃ π0(X

′
), then clearly the induced map of crystalline spaces Xcrys →X ′

crys, or more

generally any pd-completion Y pd
X → Y pd

X′ , is an equivalence.
Analogously to how ordinary schemes may be viewed as discrete derived schemes, left

Kan extension admits a fully faithful embedding Fun (CAlg♡,S) → Fun (sCAlg,S). Inter-
preting the underlying classical functor π0(X) with its image under this embedding gives
a canonical morphism π0(X) → X, in fact exhibiting a right adjoint to the embedding in
question. It follows from the above discussion that for any natural transformation X → Y ,

the map of pd-completions Y pd
π0(X)

→ Y pd
X is an equivalence. In particular π0(X)crys ≃Xcrys.

Warning 1.6. The previous remark implies that, for the purposes of studying the crys-
talline stack, we may as well work with ordinary schemes and stacks. In that sense,
crystals are agnostic to any derived structure. Nevertheless, the correctness of Definition
1.1 relies crucial on working in the setting of derived algebraic geometry. That is because
the colimit in said definition must be interpreted in the ∞-categorical sense. For instance,
even when X is a smooth classical scheme, the crystalline space may very well be a stack,
which amounts to the colimit having to be computed in the (2,1)-category of groupoids,
or equivalentnly, the ∞-category S≤1 ⊆ S of 1-truncated spaces.

Remark 1.7 (A universal property). Imitating the first part of the Subsection SAG.18.2.1,

it may be proved that the formation of pd-completion (X → Y ) ↦ Y pd
X exhibits the right

adjoint to the inclusion into the ∞-category Fun (sCAlg,S)X/ of the full subcategory
spanned by those maps X → Y which are pd-complete in the sense that the induced map
Xcrys → Ycrys is an equivalence.

Remark 1.8 (Relative crystalline space). Under the standard equivalence of ∞-categories
Fun (sCAlg,S)/SpecA ≃ Fun (sCAlgA,S), a natural transformation X → SpecA may be

identified with a functor X ∶ sCAlgA → S. In light of this the pd-completion (SpecA)
pd
X

has the effect of modifying Definition 1.1 by replacing sCAlg with sCAlgA. For this reason,
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we will denote2
(SpecA)

pd
X = (X/A)crys and refer to it as the relative crystalline space of

X over A.

Remark 1.9 (Crystalline vs de Rham space, II). Forgetting the pd-structure on the ideal
in the colimit definiting the crystalline space, which is to say sending (I, γ) → I, gives
rise to a map Xcrys → XdR, natural with respect to X. Analogously there is a natural

map Y pd
X → Y ∧

X from the pd-completion to the formal completion of any map X → Y in
Fun (sCAlg,S). Here the formal completion Y ∧

X of a map X → Y is to be understood as
the pullback Y ×YdR XdR.

Proposition 1.10. Let X → SpecQ be a map in Fun (sCAlg,S). Then the natural trans-
formations (X/Q)crys →Xcrys →XdR are all equivalences.

Proof. If X admits a map to SpecQ, then X(R) ≃ X(R ⊗Q) for any simplicial commu-
tative ring R. The claim now follows from the fact that any ideal in a Q-algebra admits
a unique divided power structure given by γn(x) =

xn

n! . �

In characteristic 0 the crystalline space thus coincides with the de Rham space. Since
study of the latter already boasts a large presence in the literature, we shall focus mostly
on the positive characteristic situation, where the two notions disagree.

2. Divided power envelopes

We wish to compare the notion of pd-completion, as defined in the previous section,
to the more traditional meaning of that term in algebraic geometry. Since the latter is
defined in terms of pd-envelopes, we need to extend those to our derived setting.

Definition 2.1. A pd-immersion of derived schemes consists of a closed immersion of
derived schemes f ∶ X → Y together with a pd-structure on the sheaf of ideals IX in
π0(OY ) defining the underlying closed immersion of classical schemes. If the sheaf of
ideals IX is also nilpotent, then f is a pd-thickening.

Let f ∶ X → Y be a closed immersion of derived schemes. We wish to construct an

∞-category DSchpd−im
X//Y

of factorizations f ∶ X → Y ′
→ X in which the first arrow is a pd-

immersions. Let us denote by DSchcl−im
X/ the full subcategory of DSchX/ spanned by closed

immersions. Viewing f as exhibiting Y as an object of this ∞-category, let DSchcl−im
X//Y to

denote the overcategory (DSchcl−im
X/ )/Y , which is to say the ∞-category of factorizations

f ∶ X → Y ′
→ Y in which the first arrow is a closed immersion. In light of Definition 2.1,

the extra data required to make a closed immersion into pd-immersion exists purely on
the level of underlying ordinary schemes. Thus the desired ∞-category of factorizations
of f through pd-immersions may be defined as the pullback

DSchpd−im
X//Y

≃ DSchcl−im
X//Y ×Schcl−im

X/

Schpd−im
X/

inside the ∞-category of ∞-categories. The projection onto the first factor gives the
functor of forgetting the pd-structure.

Lemma 2.2. The functor DSchpd−im
X//Y

→ DSchcl−im
X//Y commutes with all small colimits.

Proof. It suffices to show that the functor Schpd−im
X/

→ Schcl−im
X/ , given by discarding the pd-

structure, commutes with all small colimits. This boils down to the standard observation
that limits in the category of pd-rings are computes on the underlying rings, see for
instance Lemma SP.23.3.2. �

2There is a small potention for confusion, since we have co-opted the notation (X/A)crys, often used to
denote the small crystalline site of an A-scheme X in the literature. Nonetheless, as we shall see, this is
not entirely unappropriate either, since the relative crystalline space encodes essentially the same data as
the crystalline site.
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Definition 2.3. The pd-envelope of a closed immersion od derived schemes f ∶ X → Y
consists of the pd-immersion X → DX(Y ) and a factorization f ∶ X → DX(Y ) → Y ,

obtained by evaluating the right adjoint of the functor DSchpd−im
X//Y

→ DSchcl−im
X//Y , which

exists by Lemma 2.2 and the Adjoint Functor Theorem, with the evident forgetful functor,
of the initial object X → Y in DSchcl−im

X//Y .

Remark 2.4 (Universal property of pd-envelopes). Unwinding this, the pd-envelope of
a closed immersion f ∶ X → Y is a pd-immersion X → DX(Y ) together with a map
DX(Y ) → Y factoring f , and such that for any other factorization f ∶ X → Y ′

→ Y
in which X → Y ′ is a pd-immersion, there exists an essentially unique dotted map of
pd-immersions making the following diagram commute

X

f

��

{{
uu

Y ′

))

// DX(Y )

##

Y.

If fact, as familiar from the classical theory of pd-envelopes, the universal property can
be extended slightly as follows. Let X → X ′ be a morphism of derived schemes and let
X ′
→ Y ′ denote a pd-thickening. Suppose further that we have a map of derived schemes

Y ′
→ Y making the outer square in the diagram below commute. Then there eixsts a

unique map of derived schemes Y ′
→DX(Y ) making the entire diagram below commute,

such that the induced map of relevant ideal sheaves preserves the pd-structures

X ′ //

��

X

��

{{

DX(Y )

##

Y ′

;;

// Y.

Heuristically, the pd-envelope DX(Y ) is the biggest pd-neighborhood of a closed sub-
scheme X which still fits inside the ambient scheme Y . As such, the following observation
should come at no surprise.

Proposition 2.5. Let X → Y denote a closed immersion of derived schemes. Then the

morphism DX(Y )→ Y exhibits an equivalence DX(Y )
pd
X → Y pd

X .

Proof. This follows from the universal property of the pd-envelope. Indeed, for any co-
mutative simplicial ring R with a pd-structure on a nilpotent ideal I in π0(R), the space
X(π0(R)/I) ×Y (π0(R)/I) X(R) parametrizes the space of commuting outer squares in the
following diagram

Spec(π0(R)/I) //

��

X

��

{{

DX(Y )

##

SpecR

77

// Y.

The universal property of the pd-envelope implies the essentially unique existence of the
dotted arrow, making the entire diagram commute. Thus the commuting outer square is
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equivalent to the commuting (deformed) inner square. The space in question is therefore
equivalent to X(π0(R)/I) ×DX(Y )(π0(R)/I) DX(Y )(R), and passing to the colimit over
ideals I in π0(R) and pd-structures on them yields the result. �

Proposition 2.6. Let X → Y be a closed immersion of derived schemes for which the
pd-immersion into the pd-envelope X → DX(Y ) is a pd-thickening, i.e. such that the
corresponding sheaf of ideals on π0(DX(Y )) is nilpotent. Then there is an equivalence of

functors Y pd
X ≃Dπ0(X)(Y ).

Proof. The nilpotence assumption shows that the pd-envelope in question is universal
among pd-thickenings factoring through π0(X) → Y (as opposed to only among pd-
immersions, which it is without the assumption). Thus the functor Dπ0(X)(Y ) associates
to any simplicial commutative ring R the space of homotopy commutative diagrams

Spec(π0(R)/I) //

��

X

��

SpecR // Y

ranging over ideals I ⊆ π0(R) and pd-structures on the ideal I. But that is nothing other

than Y pd
X (R), and the claim is proved. �

Remark 2.7 (Importance of nilpotence hypothesis). Let us explain how the proof of
Proposition 2.6 fails without the nilpotnce assumption. In that case, the value of the
pd-envelope Dπ0(X)(Y ) on a simplicial commutative ring R is the space parametrizing all
homotopy commutative diagrams of the form

Spec(π0(R)/I) //

��

X

��

SpecR // Y

ranging over ideals I ⊆ π0(R) and divided power structures on such I. The pd-completion

Y pd
X (R), on the other hand, only parametrizes all such diagrams for which the ideal I is

nilpotent. The canonical map

Y pd
X (R)→ (Dπ0(X)(Y ))(R),

arising from the inclusion of nilpotent ideals in π0(R) into all ideals in π0(R), is therefore
not necessarily an equivalence.

Corollary 2.8. Let X → Y be a map of derived schemes over Z/pn. Then there is an

equivalence Y pd
X ≃DX(Y ) between its pd-completion and its pd-envelope.

Proof. Observe that any ideal I in a Z/pn-algebra that admits a pd-structure γ, must
satisfy xp

n
= (pn)!γpn(x) = 0 for any element x ∈ I. Thus Ip

n
= 0, showing that any ideal

supporting a pd-structure has to be nilpotent. The same holds for quasi-coherent ideal
sheaves, hence any pd-immersion in characteristic p is automatically a pd-thickening. The
conclusion now follows from Proposition 2.6. �

Variant 2.9 (Classical approach to pd-completion along closed immersion). Even when

the ideal I ⊆ π0(ODX(Y )) is not nilpotent, we can still say something. Let us assume that
f ∶X → Y is a closed immersion of ordinary schemes. Since any closed immersion is affine,
we have X = SpecY (f∗(OX)) and DX(Y ) = SpecY (DX(Y )) for a sheaf of OY -algebras

DX(Y ) with a pd-ideal I and the quotient DX(Y )/I ≃ f∗(OX). Let us define the n-th
order pd-neighborhood of X in Y to be

Dn
X/Y = SpecY (DX(Y )/I

[n+1]
),

5



where a divided power I[n] of a pd-ideal (I, γ) is defined as the smallest pd-subideal of I

containing In. More explicitly, I[n] is the ideal spanned by the products γi1(x1)⋯γik(xk)

for xi ∈ I and i1 + ⋅ ⋅ ⋅ + ik ≥ n. In particular, the ideal I/I[n] inherits a pd-structure from
I, showing that X →Dn

X/Y is a pd-thickening3. In fact, the universal property of the pd-

envelope shows X → Dn
X/Y to be universal among pd-thickenings that factor f ∶ X → Y ,

such that their defining ideal sheaves are nilpotent of order n + 1. Since the ideal of any
pd-thickening is nilpotent to some order, we conclude that passing to the colimit along the
tower of pd-neighborhoods X = D0

X/Y → D1
X/Y → D2

X/Y → ⋯ gives rise to pd-completion.

That is to say, the pd-completion of a closed immersion of ordinary schemes f ∶ X → Y
can always be computes by the following formula

Y pd
X ≃ lim

Ð→
n

Dn
X/Y ≃ lim

Ð→
n

SpecY (DX(Y )/I
[n+1]

).

Remark 2.10 (pd-completon of rings). On the level of affines the analogy with adic com-
pletion becomes even more transparent. As the formal completion of the closed immersion
Spec(R/I)→ SpecR is given by Spf(R∧

I ) for the I-adic completion4 R∧
I = lim
←Ðn

R/In, so is

its pd-completion given by Spf(Rpd
I ) for the pd-completion ring Rpd

I = lim
←Ðn

DR(I)/I
[n]

. In

both cases the formal spectrum Spf is to be interpreted in terms of pro-representatiblity.

Remark 2.11 (pd-completions are ind-schemes). For any pair of non-negative integers
n ≤ m, the canonical map fnm ∶ Dn

X/Y → Dm
X/Y corresponds to the map of quasi-coherent

commutative OY -algebras DX(Y )/I
[m]
→ DX(Y )/I

[n]
, induced by the inclusion of pd-

ideals I
[m]

⊆ I
[n]

. The algebra map is evidently surjective, thus fnm is a closed im-

mersion, and Variant 2.9 exhibits the pd-completion Y pd
X as a sequential (so in particular,

filtered) colimit along closed immersions of schemes. In the language of [10], we thus see
that the pd-completion of a closed immersion of ordinary schemes, while not quite neces-
sarily being a scheme, is always a classical ind-scheme. By Proposition 1.3.2 of loc cit5,

the functor Y pd
X satisfies flat descent.

Proposition 2.12. Let f ∶ X → Y be a closed immersion of schemes, and let us denote

by f̂ ∶ Y pd
X → DX(Y ) the canonical map. The direct image functor induces a fully faithful

embedding of ∞-categories f̂∗ ∶ QCoh(Y pd
X ) → ModDX(Y )(QCoh(Y )). Its essential image

consists of the DX(Y )-modules F satisfying I
[n]
πk(F ) for n ≫ 0 for all k ∈ Z, where

I
[n]

is the n-th devided power of the universal sheaf of pd-ideals I ⊆ DX(Y ).

Proof. The identification of pd-completion as Y pd
X ≃ lim

Ð→n
Dn
X/Y in Variant 2.9 induces an

equivalence of ∞-categories of quasi-coherent sheaves

QCoh(Y pd
X ) ≃ lim

←Ð
n

QCoh(Dn
X/Y ).

On the right-hand side we are computing the limit of the diagram of quasi-coherent sheaf

with pullbacks along the maps Dn
X/Y → Dm

X/Y induced by the inclusion I
[m]

⊆ I
[n]

for

all n ≤ m. This limit is occuring in the ∞-category PrL of presentable ∞-categories and
left ajdoint functors, so let us use the equivalence of ∞-categories PrL

≃ (PrR
)

op obtained

3Since we obviously have I
n
⊆ I

[n]
, the ideal I/I

[n]
in Dn−1

A (I) =DA(I)/I
[n]

is nilpotent of order n.
4Because all our limits are ∞-categorical, this is more precisely derived I-adic completion. The same

remark goes for the ring-level pd-completion discussed in the same sentence.
5The proof of which is entirely agnostic to whether we are doing derived algebraic geometry with

simplicial rings, commutative differential graded algebras, or even connective E∞-rings.
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by switching to right adjoints. Then we are taking the colimit

(1) QCoh(Y pd
X ) ≃ lim

Ð→
n

QCoh(Dn
X/Y )

of pushforwards along the same maps Dn
X/Y →Dm

X/Y .

Recall that both the pd-envelope map f ∶ DX(Y ) → Y and also the pd-neighborhoods
fn ∶ Dn

X/Y → Y are all affine, corresponding to the sheafes of OY -algebras DX(Y ) and

Dn
X/Y = DX(Y )/I

[n+1]
respectively. The functor f∗ exhibits an equivalence of ∞-categories

QCoh(DX(Y )) ≃ ModDX(Y )(QCoh(Y ))

by Proposition SAG.2.5.6.1, and the pushforward functors (fn)∗ similarly exhibit

QCoh(Dn
X/Y ) ≃ ModDn

X(Y )(QCoh(Y )).

Furthermore, because all the maps fn factor compatibly through f , the pushforwards
allows us to compatibly identify the ∞-categories QCoh(Dn

X/Y ) as full subcategories of

ModDX(Y )(QCoh(Y )) spanned by the sheaves of modules F which have homotopy sheaves

annihilated by I
[n+1]

. The colimit in (1), which is taken over pushforwards and is as such
compatible with the identifications of this paragraph, now takes place entirely inside the
∞-category ModDX(Y )(QCoh(Y )). To compute it we must take take the union of the
previously-identified subcategories, which recovers the description of the essential image
in the statement of the Proposition. �

Remark 2.13 (Analogy with sheaves on formal completion). The result of Porposition
2.12 is an analogue of the classical identification between the quasi-coherent sheaves on the
formal completion Y ∧

X of a closed immersion X → Y with those quasi-coherent sheaves F
on Y for which Supp(F ) ⊆ X. It asserts that the difference in the pd-completion case is
two-fold. Firstly, sheaves on F on Y must be considered togehter with a DX(Y )-module

structure. Secondly, we do not require that a high-enough power of the ideal I annihilates

π∗(F ), but instead that a high enough divided power does. Since the inclusion I
n
⊆ I

[n]

holds for all n ≥ 0, this is a stronger condition. Indeed, said inclusion of ideals induces

the map DX(Y )
∧
X →DX(Y )

pd
X ≃ Y pd

X , which is the map of Remark 1.9 composed with the
equivalence of Proposition 2.5.

3. Groupoid of pd-neighborhoods of the diagonal

Let us recall a little bit of the theory of the de Rham space from [9]. We say that a
functor X ∶ sCAlg → S is classically fromally smooth if the map π0(X(R))→ π0(XdR(R))

is surjective for all simplicial commutative rings R. This condition is beneficial as its gives
rise to a simplicial presentation of the de Rham space as

XdR ≃ lim
Ð→

( ⋯ //
//

//

//

(X ×X ×X)
∧
X //

//
//
(X ×X)

∧
X //

//
X ) .

The right-hand side is the geometric realization of the so-called infinitesimal groupoid,
is an incarnation of Grothendieck’s stratifying site of X, while the left-hand side is an
incarnation of the infinitesimal site of X. We wish to find an analogue of this story for
Xcrys, which will similarly relate incarnations of the pd-stratifying and crystalline sites.

Definition 3.1. A functor X ∶ sCAlg → S is classically pd-formally smooth if the map
π0(X(R))→ π0(Xcrys(R)) is surjective for all simplicial commutative rings R.

Lemma 3.2. If a functor X ∶ sCAlg → S is classically formally smooth, then it is also
classically pd-formally smooth.
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Proof. In more words, X is classically (pd-)formally smooth if, for every simplicial com-
mutative ring R and every nilpotent ideal I ⊆ π0(R) (and a pd-structure on I), given solid
arrows in the following diagram

Spec(π0(R)/I) //

��

X

SpecR,

88

there exists some dotted arrow which makes it commute. Since commutativity of the
diagram itself has nothing to do with a divided power structure that may or may not be
present on the ideal I, the implication is obvious. �

Remark 3.3 (The role of π0). The proof of the above Lemma rests crucially on the fact
that upon passing to connected components. In general though, the colimits appearing in
the definition of the crystalline space and the de Rham space are quite different, owing to
the fact that the same ideal may admit several inequivalent pd-structures.

This is already observed in the classical approach to crystalline cohomology: the com-
parison maps c(U,T,γ) ∶ (FT )∣U→̃FU of a crystal in quasi-coherent sheaves F , correspond-
ing to a pd-thickening U → T , may very well give rise to different automorphisms of FU

for different choices of pd-structure γ on the defining ideal of U in OT , so they do not
depend only on the underlying infinitesimal thickening U → T . But as observed, this is
statement about inequivalent paths, i.e. about π1, and such distinctions are invisible on
the level of connected components, i.e. on π0.

Remark 3.4 (Classicaly pd-formally smooth over Fp). For a functor X ∶ sCAlgFp → S,
we could modify Definition 3.1 in the obvious way to obtain a notion of being classically
pd-formally smooth over Fp. Because an ideal I in an Fp-algebra may only support a pd-
structure if Ip = 0 (see the proof of Lemma 4.1), the condition of being relatively classically
pd-formally smooth over Fp is strictly weaker than its non-pd analogue.

Proposition 3.5. Let X ∶ sCAlg → S be a classically pd-formally smooth functor. Then
the map X →Xcrys induces an equivalence of functors

Xcrys ≃ lim
Ð→

( ⋯ //
//

//

//

(X ×X ×X)
pd
X //

//
//
(X ×X)

pd
X //

//
X ) .

Proof. The assumption on X implies that the canonical map ∣Č●(X → Xcrys)∣ → Xcrys,

from the geometric realization of the Čech nerve of X → XdR to the crystalline space of
X, is an equivalence of functors. It remains to identify the terms in the Čech nerve, which
are by definition pullbacks Č●(X → Xcrys) ≃ X ×Xcrys ⋅ ⋅ ⋅ ×Xcrys X, with pd-completions of
the diagonal maps ∆ ∶ X → X × ⋅ ⋅ ⋅ ×X. The latter are by definition of pd-completion
equivalent to (X × ⋅ ⋅ ⋅ ×X) ×(X×...X)crys Xcrys ≃ (X × ⋅ ⋅ ⋅ ×X) ×Xcrys×...Xcrys Xcrys, where we

have used that the construction of crystalline spaces commutes with finite products6. The
desired conclusion is now an instance of the standard categorical observation that, in any
∞-category which admits finite limits, the square

X ×Y ⋅ ⋅ ⋅ ×Y X

��

// Y

∆
��

X × ⋅ ⋅ ⋅ ×X // Y × ⋅ ⋅ ⋅ × Y

is Cartesian for any morphism X → Y . �

6This can for instance be seen as a consequence of the universality of colimits in any ∞-topos, one of
the Giraud axioms characterizing ∞-topoi, applied to the presheaf ∞-topos Fun (sCAlg,S).
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Remark 3.6 (pd-stratification). The formula for the crystalline space in the statement of
the previous Proposition is closely related to the theory of pd-stratifications, seeing how

the latter consist roughly of descent data for (X ×⋯ ×X)
pd
X →X.

This is also one possible venue to the connection with pd-differential operators. Indeed,
given two quasi-coherent sheaves F and G on X, the sheaf of pd-differential operators
(also called crystalline differential operators) from F to G is usually defined through the

two projection maps p1, p2 ∶ (X ×X)
pd
X →X as

D iff pd
X (F ,G ) = Map

OX
((p2)∗p

∗
1(F ),G )

≃ Map
OX

(i∗i∗(F ),G ),

≃ i∗Map
OXcrys

(i∗(F ), i∗(G )),

where i ∶ X → Xcrys is the canonical map. The filtration of differential operators by order

is obtained from the presentation (X ×X)
pd
X ≃ lim

Ð→n
Dn
X/X×X that we discussed in Variant

2.9: pd-differential operators of order ≤ n are obtained by restricting in the above formula
along Dn

X/X×X , the n-th order pd-neighborhood of the diagonal.

Everything in this section so far goes through just as well, and with unchanged proofs,
in the relative setting too.

Definition 3.7. A natural transformation X → Y in Fun (sCAlg,S) to be classically
pd-formally smooth (resp. classically formally smooth) if the induced map π0(X(R)) →

π0(Y
pd
X (R)) (resp. π0(X(R)) → π0(Y

∧
X(R))) is surjective for all simplicial commutative

rings R.

Lemma 3.8. Any map X → Y in Fun (sCAlg,S) which is classically formally smooth, is
also classically pd-formally smooth.

Proposition 3.9. Let X → Y be a classically pd-formally smooth map in Fun (sCAlg,S).

Then the map X → Y pd
X induces an equivalence of functors

Y pd
X ≃ lim

Ð→
( ⋯ //

//

//

//

(X ×Y X ×Y X)
pd
X //

//
//
(X ×Y X)

pd
X //

//
X ) .

Remark 3.10 (Explicit formula for pd-completion). When X → Y is a smooth and
separated morphism of classical schemes, we may combine the previous Proposition with
Variant 2.9 to obtain a rather explicit grip on the pd-completion of Y alongX. Any smooth
morphism is classically formally smooth, and as such classically pd-formally smooth by
Lemma 3.8. This shows that the formula of Proposition 3.9 is applicable. Furthermore
the separatedness assumption implies that the diagonal maps X → X ×Y ⋅ ⋅ ⋅ ×Y X are all
closed immersions, so their pd-completions may be computed by the procedure outlined
in Variant 2.9. More precisely, let Dn

X/Y (k) denote the n-th order pd-neighborhood of the

diagonal inside the (k + 1)-fold fibered product7 X ×Y ⋅ ⋅ ⋅ ×Y X. Then we may obtain the
pd-completion as

Y pd
X ≃ lim

Ð→
([k],n)∈∆op ×Z≥0

Dn
X/Y (k),

where the terms in the colimit are explicity given by

Dn
X/Y (k) = SpecX×Y (k+1) (DX(X×Y (k+1)

)/I (k)
[n+1]

)

7By analogy with the situation for formal completion, see [9], we expect that the conclusion of Propo-
sition 3.9 holds under much weaker assumptions than stated. However, even if the need for smoothness in
the case of a morphism of classical schemes was circumvented, the explicit construction of pd-completion
described in Remark 3.10 would only hold for morphisms which are separated and flat. The latter being
necessary to ensure the fibered products X ×Y ⋅ ⋅ ⋅ ×Y X, which are in our setting inherently derived, will in
fact be ordinary schemes, making Variant 2.9 applicable to it.
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in which I (k) is the sheaf of ideals defining the closed immersion X → DX(X×Y (k+1)
),

the pd-thickening of the relative diagonal.

Remark 3.11 (Čech-Alexander resolution, I). One useful approach to crystalline coho-
mology, similar to the one outlined in the preceding Remark, goes by the name of the
Čech-Alexander complex. It translates in our setting to a method for computing the rela-
tive crystalline space of a smooth S-scheme X in terms of of an closed embedding X → Y
into a smooth S-scheme Y . This allows us to view the Čech nerve Č●(Y → SpecR) as
a simplicial object in the category (SchR)X/, where the structure morphism of the term

Čn(Y → SpecR) = Y ×R ⋅ ⋅ ⋅×RY is the composite of the immersion X → Y and the relative
diagonal ∆Y /R ∶ Y → Y ×R × ⋅ ⋅ ⋅ ×R Y . It may be shown, using the smoothness hypothesis,

that applying pd-completion along X preserves the colimit ∣Č●(Y → SpecR)∣ ≃ SpecR.

This gives rise to an equivalence ∣(Y ×R ⋅ ⋅ ⋅ ×R Y )
pd
X ∣ ≃ (SpecR)

pd
X ≃ (X/R)crys, presented

more diagramatically as

(X/R)crys ≃ lim
Ð→

( ⋯ //
//

//

//

(Y ×R Y ×R Y )
pd
X //

//
//
(Y ×R Y )

pd
X //

//
Y pd
X ) ,

and this is the Čech-Alexander resolution of the crystalline space.

4. Crystalline space in positive characteristic

Let us restrict to the positive characteristic case. That is to say, we will discuss the
crystalline theory of functors X ∶ sCAlg → S admitting a natural transformation X →

SpecFp, or equivalentnly functors X ∶ sCAlgFp → S. The key result will be the following
innocuous Lemma, in which we denote by ϕR ∶ R → R for any commutative Fp-algebra R
the Frobenius homomorphism ϕR(x) = x

p.

Lemma 4.1. Let R be a commutative Fp-algebra and I and ideal in R which supports
a divided power structure. Then there exists a unique ring homomorphism ϕ̃ ∶ R/I → R
making the following diagram commute

R

��

ϕR
// R

��

R/I ϕR/I

//

ϕ̃
<<

R/I,

where the unmarked arrows are the quotient map R → R/I.

Proof. Since the ideal I admits a divided power structure γ, we have xp = p!γp(x) = 0
for every element x ∈ I. Consequently we have (a + x)p = ap for all a ∈ R and x ∈ I,
which implies that the Frobenius morphism ϕR factors uniquely through the quotient
map R → R/I. This gives rise to the unique homomorphism ϕ̃ ∶ R/I → R making the
upper triangle of the diagram in the statement of the Lemma commute. For the lower
triangle, note that ϕ̃ it is given explicitly by sending a coset a + I ∈ R/I to the element
ap ∈ R for any representative a. Hence it is clear that it produces the Frobenius of the
quotient ring upon composition with R → R/I. �

Let us define the absolute Frobenius morphism of a functor X ∶ sCAlgFp → S to be the

natural transformation F ∶ X → X given for any R ∈ sCAlgFp by X(ϕR) ∶ X(R) → X(R).

We will denote the limit of the tower ⋯
F
Ð→X

F
Ð→X

F
Ð→X by X1/p∞ (it is denoted by Xperf

in [5]) and called the perfection of X. It is given explicity as X1/p∞
(R) ≃ X(R♭

), where

R♭
= lim
←Ð

(. . .
ϕR
Ð→ R

ϕR
Ð→ R

ϕR
Ð→ R) is the tilting (sometimes also called Fontainization) of a

commutative Fp-algebra R.
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Proposition 4.2. For any functor X ∶ sCAlgFp → S there is an equivalence of functors

(X/Fp)crys ≃ π0(X)
pd
F between the relative crystalline space of X over Fp and the pd-

completion of the absolute Frobenius map F ∶ π0(X)→ π0(X).

Proof. The comparison map Xpd
F →Xcrys between the pd-completion along the Frobenius

map and the crystalline space of X is obtained by passing to the colimit from the projection
onto the first factor

(2) X(R/I) ×F,X(R/I)X(R)→X(R/I)

where R is an arbitrary commutative Fp-algebra with a pd-structure on an ideal I. We
may identify the left-hand side as the space of commuting diagrams

Spec(R/I)

Spec(ϕR/I)

��

// X

Spec(R/I) // SpecR.

OO

in which the left vertical and lower horizontal maps are prescribed. The map (2) is obtained
by restricting to the upper horizontal arrow in the diagram. But Lemma 4.1 guarantees
the existence of an anti-diagonal map making the lower triangle commute, exhibiting a
retraction of this diagram onto its upper horizontal morphism. Thus the map (2) is a
homotopy equivalence, and passing to the colimit over (I, γ), the result follows. �

Variant 4.3 (Other fields of positive characteristic, I). Proposition 4.2 generlizes easily
to any field κ of positive characteristic. The one change we need is to use the relative
Frobenius map FX/κ ∶ X → X(p), which is a morphism in Fun (sCAlgκ,S), as opposed
to the absolute Frobenius map, which is ony a morphism in Fun (sCAlgFp ,S). For any

functor X ∶ sCAlgκ → S we have a natural transformation (X/κ)crys ≃ π0(X
(p)

)
pd
π0(X)

,

identifying the crystalline space with the pd-completion of the relative Frobenius map.

The conclusion of Proposition 4.2 leads us to consider Xpd
F , the pd-completion of the

Frobenius map F ∶ X → X. Under the assumption that the absolute Frobenius map
is a closed immersion, usually called that X is semi-perfect, we already know that the
pd-completion will coincide with the pd-envelope.

Corollary 4.4. Let X be a semi-perfect derived Fp-scheme. Then (X/Fp)crys ≃DF (π0(X)),
i.e. the relative crystalline space of X is equivalent to the pd-envelope of the absolute Frobe-
nius map F ∶ π0(X)→ π0(X).

Proof. Combine Proposition 4.2 and Corollary 2.8. �

Still fixing a functor X ∶ sCAlgFp → S, we would like to obtain a description of the

relative crystalline space (X/(Z/pn))crys analogous to the one for (X/Fp)crys provided
by Proposition 4.2. We need an enchancement of Lemma 4.1, and following Drinfeld we
employ the following in that role.

Lemma 4.5 (Proposition 2.2.1 in [6]). Let A be a commutative Fp-algebra, and let f ∶

R → A be a homomorphism of commutative Z/pn algebras, whose kernel supports a divided

power structure. Then there exists a unique homorphism f̃ ∶ Wn(A
♭
) → R making the

diagram

Wn(A
♭
)

��

f̃
// R

f

��

A♭ // A,

commute.
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Proof. Recall that the ring of truncated Witt vectors Wn(R) is defined so that its un-
derlying additive group is Rn+1, while the multiplication is characterized by making the

map wn ∶ R
n+1

→ R, defined by wn(a0, a1, . . . , an) = a
pn

0 + pap
n−1

1 + ⋅ ⋅ ⋅ + pnan, into a ring
homomorphism.

Let I denote the kernel of R → A. For any x ∈ I we have xp = p!γp(x) ∈ pI, and hence

by induction and the binomial formula (x + a)p
i
− ap

i
∈ piI for all i ≥ 0 and all a ∈ R.

This computation reveals that the value wn(a0, . . . , an) ∈ R depends only on the coset
(a0, . . . , an) + I ∈ R/I ≃ A. It follows that the homomorphism wn ∶ Wn(R) → R factors

as Wn(R)

Wn(f)
ÐÐÐ→ Wn(A)

w̃n
Ð→ R. In fact, the same type of argument as in the proof of

Lemma 4.1 shows that the entire diagram

Wn(R)

Wn(f)
��

wn // R

f

��

Wn(A)

w̃n

<<

wn
// A

commutes.
With the lift w̃n ∶Wn(A)→ R in hand, we may construct the sought homomorphism f̃

as the compositum

Wn(A
♭
)

Wn(ϕ−n
A♭

)

ÐÐÐÐÐ→Wn(A
♭
)

Wn(♯)
ÐÐÐ→Wn(A)

w̃n
Ð→ R,

where we have used the fact that the Frobenius of A♭ is invertible, and where ♯ ∶ A♭
→ A

is the canonical map from the tilt. To see the homomorphism f̃ ∶ Wn(A
♭
) → R thus

constructed makes the desired diagram commute, we must identify the composition f ○ f̃
with Wn(A

♭
) → A♭

→ A, in which the left arrow is what we call w0, and right arrow
is ♯. The commutative diagram from the previous paragraph shows (because Wn(f) is
surjective) that f ○ w̃n = wn, so it remains to study the composition

Wn(A
♭
)

Wn(ϕ−n
A♭

)

ÐÐÐÐÐ→Wn(A
♭
)

Wn(♯)
ÐÐÐ→Wn(A)

wn
Ð→ A.

By commutativity of the diagram

Wn(A
♭
)

wn
��

Wn(ϕ−n
A♭

)
// Wn(A

♭
)

Wn(♯)
//

wn
��

Wn(A)

wn

��

A♭
ϕ−n
A♭ // A♭ ♯ // A,

it remains only to note that wn(a) = w0(a)
pn

= ϕn
A♭

(w0(a)) for all a ∈ Wn(A
♭
), because

A and hence A♭ are Fp-algebras, and all the remaining terms of the Witt polynomial wn
include powers of p. Thus f̃ satisfies the required property.

Conversly, suppose f̃ ∶Wn(A
♭
) → R is any ring homomorphism making the diagram in

the statement of the Lemma commute. We must show it is unique.
By the observations of the second paragraph of the proof, the element f̃(a)p

n
∈ R for

any a ∈ Wn(A
♭
) depends only on the coset of f̃(a) in R/I ≃ A, i.e. on f(f̃(a)) = w0(a)

♯.
That is to say, for any element x ∈ R such that x+ I = f(x) = w0(a)

♯ holds in R/I ≃ A, we

will have xp
n
= f̃(a)p

n
in R.

The key is now to show that the values f̃(a)p
n
, which have seen in the previous para-

graph to be unique, will in fact entirely determine the map f̃ . This is a consequence of the
ring Wn(A

♭
) being generated by the image of the Teichmuller lift map ω ∶ A♭

→Wn(A
♭
),

since we have f̃(ω(a)) = f̃(ω(ϕ−n
A♭

(a))p
n

for any a ∈ A♭. �
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Let us define the tilting of a functor X ∶ sCAlgFp → S by left Kan extension from affines.

That is to say, the tilting of X is functor X♭
∶ sCAlgFp → S such that (SpecA)

♭
≃ Spec(A♭

),

and we requiring that the constrction X ↦ X♭ commutes with all small colimits. The
truncated Witt vectors Wn are extended to functors in the same way.

Proposition 4.6. For any functor X ∶ sCAlgFp → S there is an equivalence of func-

tors (X/(Z/pn))crys ≃ Wn(π0(X)
♭
)

pd
π0(X)

between the relative crystalline space and the

pd-completion of the map π0(X)→Wn(π0(X)
♭
).

Proof. Since formation of the crystalline space commutes with colimits, it suffices to prove
the calim for X ≃ Spec(A) for some simplicial commutative Z/pn-algebra A. Furthermore
since the crystalline space can not tell A and π0(A) apart, we may also assume that A is
an ordinary commutative Z /pn-algebra.

Now given any commutative Z/pn-algebra R and a pd-structure γ on an ideal I ⊆ R,
Lemma 4.5 may be used to show that

HomCAlg♡Z/pn
(A,R/I)

��

// HomCAlg♡Z/pn
(Wn(A

♭
),R)

��

HomCAlg♡Z/pn
(A,R/I) // HomCAlg♡Z/pn

(Wn(A
♭
),R/I)

is a pushout square. Passing to the colimit in (I, γ) produces the series of homotopy
equivalences

(Spec(A)/(Z/pn))crys(R) ≃ lim
Ð→
(I,γ)

(SpecA)(R/I)

≃ lim
Ð→
(I,γ)

Spec(Wn(A
♭
))(R) ×Spec(Wn(A♭))(R/I) (SpecA)(R/I)

≃ Spec(Wn(A
♭
))

pd
Spec(A)

(R),

in which the second equivalence follows from the above observation. �

Corollary 4.7. Let X be a semi-perfect derived Fp-scheme. Then there is an equiva-

lence (X/(Z/pn))crys ≃ Dπ0(X)(Wn(π0(X)
♭
)), i.e. the relative crystalline space of X is

equivalent to the pd-envelope of the closed immersion π0(X)→Wn(π0(X)
♭
).

Proof. We may assume with no loss that X is a semi-perfect ordinary Fp-scheme. The

semi-perfectness assumption guarantees the tilting map X →X♭ to be a closed immersion.
Since X♭

→ Wn(X
♭
) is also a closed immersion, it follows that we may apply Corollary

2.8 to Proposition 4.6 and deduce the desired conclusion. �

Remark 4.8 (Yoga). The yoga of the above two results, in comparison to Proposition
4.2 and Corollary 4.4 is roughly as follows. While it suffices, when working over Fp, to
only think about the Frobenius F ∶X →X, when working over Z/pn we must also think of
higher iterates of the Frobenius, manifesting itself in X♭. On the other hand, deformations
of Fp-algebras to Z/pn-algebras are as usual controlled by the truncated Witt vectors Wn,
accounting for their appearence as well. This also motivates the following section, where
we will see that working over Zp requires the use of the full ring of (p-typical) Witt vectors.

5. Crystalline space over the p-adics

In the usual treatments of crystalline cohomology, e.g. [2] and Chapter SP.55, attention
is restricted only to such pd-thickenings in which pn = 0 for n ≫ 0. This amounts in our
language to working over the p-adic integers Zp. More precisely however, we must work
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over the formal scheme Spf Zp, instead of the affine scheme SpecZp. The former is to be
interpreted in the pro-representability sense, which is to say that

(Spf Zp)(R) ≃ lim
Ð→
n

Spec(Z /pn)(R) ≃ lim
Ð→
n

MapsCAlg(Z/pn,R),

sending a discrete ring R to the set of its p-torsion elements. This leads to the following
definition.

Definition 5.1. The p-adic crystalline space of a functor X ∶ sCAlgFp → S is a functor

(X/Spf Zp)crys ∶ sCAlg → S defined as the colimit of the tower

(X/Fp)crys → (X/(Z/p2
))crys → (X/(Z/p3

))crys → ⋯,

obtained from the corresponding ring homomorphisms Z/pn → Z/pn−1. Equivalently, for
any simplicial commutative ring R for which p is nilpotent in π0(R), the p-adic crystalline
space is defined as

(X/Spf Zp)crys(R) ≃ lim
Ð→
(I,γ)

X(π0(R)/I),

where the colimit ranges over the poset of nilpotent ideals I in π0(R) and pd-structures
γ on I. For a general simplicial commutative ring R the space (X/Spf Zp)crys(R) is
determined by Kan extension.

Remark 5.2 (p-adic completion). Given any functor X ∶ sCAlg → S, we define its p-
adic completion X∧

p to be the left Kan extension back to sCAlg of the restriction of X

to the full subcategory8 sCAlgcont
Zp ⊆ sCAlg, spanned by all simplicial commutative rings

R for which p is nilpotent in π0(R). Since sCAlgcont
Zp coincides with the colimit of the

tower of subcategories9 sCAlgFp ⊆ sCAlgZ/p2 ⊆ sCAlgZ/p2 ⊆ ⋯ ⊆ sCAlg, and the left Kan

extension along the inclusion sCAlgZ/pn ⊆ sCAlg of the restriction X ∣sCAlgZ/pn
may readily

be identified with the product X × Spec(Z/pn), it follows that

X∧
p ≃ lim

Ð→
n

(X × Spec(Z/pn))

≃ X × ( lim
Ð→
n

Spec(Z/pn))

≃ X × Spf Zp.

Working over Spf Zp is therefore equivalent to restricting ourselves to the p-complete
setting. Since the p-adic crystalline space is by construction an object over Spf Zp, this

hopefully clarifies why its value is only determined by the expected formula on CAlgcont
Zp .

The Witt vectors of a functor X ∶ sCAlgFp → S is defined to be the functor X ∶ sCAlg → S

obtained by left Kan extension from affines, for which we set W (SpecA) ≃ Spf(W (A)).
Recall that truncated Witt vectors were extended to functors in Section 4 in the same
way, showing that the usual formula W (A) ≃ lim

←Ð
Wn(A) relating truncated and p-typical

Witt vectors, extends to give W (X) ≃ lim
Ð→

Wn(X) for all X ∈ Fun (sCAlgFp ,S).

8There is reason for our choice of notation for the subcategory in question. Recall that the ∞-category
of simplicial commutative rings is equivalent to the the ∞-category of topological commutative rings
CAlgcont. One construction of the ring Zp proceeds by completing the p-adic topology of the integers, so
it can in particular be viewed as a topological commutative ring. The ∞-category that we have chosen
to call CAlgcont

Zp
in this section coincides under the equivalence sCAlg ≃ CAlgcont with CAlgcont

Zp/
, i.e. the

∞-category of topological Zp-algebras.
9We are implicitly using that being a Z/pn-algebra is a propery of a simplicial commutative ring, and

not extra structure. This seems trivial, but is one point of profund difference to the theory of E∞-rings,
where that is no longer the case. Roughly speaking, we are using the fact that simplicial commutative
rings have no power operations.
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Proposition 5.3. For any functor X ∶ sCAlgFp → S there is an equivalence of functors

(X/Spf Zp)crys ≃ (W (π0(X)
♭
)

pd
π0(X)

)
∧

p
between the relative crystalline space and the p-

adically completed pd-completion of the map π0(X)→W (π0(X)
♭
).

Proof. Pass to the colimit as n→∞ from Proposition 4.6, observing that the appearence
of the p-adic completion is clear from the discussion in Remark 5.2. �

Variant 5.4 (Other fields of positive characteristic, II). Continuing with Variant 4.3, the
analogue of Proposition 4.6 for a perfect field κ of characteristic p requires us to re-define

the tilting of an Fp-algebra A to A♭
≃ lim
←Ð

(⋯

FA/κ
ÐÐ→ A(p2)

FA/κ
ÐÐ→ A(p)

FA/κ
ÐÐ→ A). That is to

say, just as mentioned in Variant 4.3, the absolute Frobenius maps must be replaed with
the relative Frobenius maps. The analoues of Proposition 4.6 and 5.3 identify relative

crystalline spaes of a functor X ∶ sCAlgκ → S as (X/Wn(κ))crys ≃ Wn(π0(X
♭
))

pd
π0(X)

for

any non-negative integer n, and (X/SpfW (κ))crys ≃W (π0(X
♭
))

pd
π0(X)

respectively.

At this point it is convenient, as well as well-motivated by Proposition 5.3 to intro-
duce Fontaine’s crystalline period ring Acrys(A) for any semi-perfect Fp-algebra A. The

ring Acrys(A) is defined to be the p-adically completed pd-envelope of W (A♭
) along the

kernel of the canonical surjection W (A♭
) → A♭

→ A (note that is for this map to be a
surjection that we need the semi-perfectness assumption). We extend the functor Acrys to
Fun (sCAlgFp ,S) by setting Acrys(SpecA) ≃ Spf(Acrys(A)), and requiring the construc-

tion X → Acrys(X) to commute with all small colimits. The following observation, at
least in the affine setting, goes back to [7].

Proposition 5.5 (Fontaine). Let X be a semi-perfect derived Fp-scheme. Then there
is an equivalence (X/Spf Zp)crys ≃ Acrys(π0(X)), i.e. the relative crystalline space of X
is equivalent to the p-adically complete pd-envelope of the closed immersion π0(X) →

W (π0(X)
♭
).

Proof. As usual, it suffices to prove the resut for X ≃ SpecA where A is an ordinary
commutative Fp-algebra. Then we may pass to the colimit as n→∞ in Corollary 4.7. �

Remark 5.6 (Drinfeld’s crystalline stack). Motivated by ideas of Bhatt-Morrow-Scholze,
Drinfeld proposed a stacky approach to crystals in [5]. For this purpose, he introduces
the notion of Frobenius-smoothness for an Fp-scheme X, one way of phrasing which is
to require that the absolute Frobenius map F ∶ X → X is syntomic. The assump-
tion of Frobenius smoothness suffices for the map X1/p∞

→ X to induce a surjection

π0(X
1/p∞

crys (R)) → π0((X/Spf Zp)crys(R)) for any simplicial commutative ring R. This al-

lows us to use descent, in the form of the canonical map from the realization of the Čech
nerve ∣Č●(X

1/p∞
→ X)∣ → X inducing an equivalence on crystalline spaces. The terms of

the Čech nerve Č●(X
1/p∞

→ X) ≃ X1/p∞
×X ⋯×X X1/p∞ are all semi-perfect Fp-schemes,

allowing us to apply Proposition 5.5. This gives rise to the groupoid presentation of the
p-adic crystalline space of X as

(X/Spf Zp)crys ≃ lim
Ð→

( ⋯ //
//
//
Acrys (X

1/p∞
×X X

1/p∞
) //

//
Acrys (X

1/p∞
) ) .

Since Drinfeld takes the right-hand side as the definition, this shows that our p-adic
crystalline space and his stack coincide whenever the latter is defined.

Remark 5.7 (Čech-Alexander resolution, II). In Remark 3.11 we discussed a version of
the Čech-Alexander presentation for the relative crystalline space. Though (X/Spf Zp)crys

is not technically an example of the latter, it is very close to being so, allowing us to extend
the Čech-Alexander method in the following setup. Let X be a smooth Fp-scheme and Y
a smooth p-adic formal scheme over Spf Zp, together with a closed immersion f ∶ X → Y ,
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such that f exhibits an isomorphism X ≃ Y ×Spf Zp SpecFp. We say that Y is a smooth lift
of X over Zp, and X is its mod p-reduction or special fiber. Using Lemma 2.8 to simplify

the Čech-Alexander resolution for the relative crystalline space over Z /pn, passing to
the colimit n → ∞, and using that the ideal defining the closed immersion X → Y n is
pn-torsion, produces the formula

(X/Spf Zp)crys ≃ lim
Ð→

( ⋯ //
//

//

//

DX(Y × Y × Y )
∧
p //

//
//
DX(Y × Y )

∧
p //

//
DX(Y )

∧
p ) .

In fact, the comparison between the sheaves on (X/Spf Fp)crys with crystals in quasi-

coherent sheaves on X given in [5] is proved by expressing the former via a Čech-Alexander
resolution of this form.

6. Crystals and the crystalline site

In this section we define crystals on a functor, and discuss the connection with the
original crystalline site approach to crystals of Grothendieck. To make the analogy cleaner,
we first make a digression about the value of pd-completion on derived schemes.

Given a functor X ∶ sCAlg → S, we may evaluate X(S) for any derived scheme S in
the usual way, by Kan extension along Spec ∶ sCAlg → DSchop. Explicitly this is given
by X(S) ≃ lim

Ð→U⊆X
X(O(U)) with the colimit ranging over the poset of affine opens in X.

The next Lemma will express pd-completion in terms of evaluating on derived schemes.

Lemma 6.1. The value of pd-completion of a map X → Y in Fun (sCAlg,S) on a derived
scheme T is given by

Y pd
X (T ) ≃ lim

Ð→
S→π0(T )

X(S) ×Y (S) Y (T ),

with the colimit taken over pd-thickenings (in the category of ordinary schemes) S → π0(T ).

Proof. Since the formula on the right hand side commutes with colimits, it is determined
as a functor DSchop

→ S by its restriction to affine schemes. As such, it suffices to show the
equivalence when T ≃ SpecR is an affine derived scheme. Since S is a closed subscheme of
the affine scheme Specπ0(R), it must be affine itself. The right-hand side in the statement
of the Lemma thus reproduces the formula for pd-completion in Definition 1.4. �

Definition 6.2. Given a functor X ∶ sCAlg → S, the ∞-category of crystals (in quasi-
coherent sheaves) on X is defined as Crys(X) = QCoh(Xcrys). The functor Crys(X) →

QCoh(X), induced by the canonical map X →Xcrys, is viewed as sending a crystal to its
underlying quasi-coherent sheaf.

Remark 6.3 (Informal intepretation of crystals). In view of the definition of quasi-
coherent sheaves on a functor, see e.g. Definition SAG.6.2.2.1, and the above Lemma,
we find that we may write the ∞-category of crystals on X as

(3) Crys(X) ≃ lim
←Ð

S∈DSch
/X

lim
←Ð

T ∈Schpd−th
S/

QCoh(T ),

in which the first limit ranges over maps of derived schemes S → X and the second limit
ranges over all pd-thickenings S → T by ordinary schemes T , or hence equivalently, all
pd-thickenings by ordinary schemes of π0(S). A crystal F ∈ Crys(X) therefore informally
consists of associating to every map of a scheme S into X, and every pd-thickening S → T
by an ordinary scheme T , a quasi-coherent sheaf10 F(S,T ) ∈ QCoh(T ). Furthermore, for

any map of pd-thickenings f ∶ T → T ′, there is an equivalence f∗(F(S,T ′)) ≃ F(S,T ) of
quasi-coherent sheaves on T .

10Note that we are speaking about quasi-coherent sheaves in the sense of derived algebraic geometry.
Therefore even though T is an ordinary scheme, we are denoting by QCoh(T ) the derived ∞-category of
QCoh(T )♡, the ordinary category of classical quasi-coherent sheaves on T . That is to say, F(S,T ) may be

viewed as a chain complex of classical quasi-coherent sheaves on T , defined only up to quasi-isomorphism.
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Remark 6.4 (Importance of ∞-categories). Since the inclusion of the underlying classical
functor π0(X) → X does not effect the crystalline space, it induces an equivalence of ∞-
categories Crys(X) ≃ Crys(π0(X)). But even though the crystals do not see derived
structure, their definition must still be given in the world of derived algebraic geometry.
As explained in Warning 1.6, this is because in order to obtain the correct notion, the
limit in (3) in the definition must be interpreted ∞-categorically.

The definition of crystals extends to the relative setting in the expected way.

Variant 6.5. Let R be a simplicial commutative ring and X ∶ sCAlgR → S a functor. The
∞-category of relative crystals on X over R is defined as Crys(X/R) = QCoh((X/R)crys).
Similarly, the ∞-category of p-adic crystals on a functor X ∶ sCAlgFp → S is defined as

Crys(X/Spf Zp) ≃ QCoh((X/Spf Zp)crys).

Remark 6.6 (Recovering the crystalline site). Let R be a commutative ring and X
an scheme. The presentation of crystals by a formula analogous to (3) still holds for
Crys(X), so long as we replace schemes with schemes. Let us examine the category on
which the total limit in the (analogue of) formula (3) is indexed. Its objects consist of
pairs (S →X,S → T ), or (S,T ) for short, of any map from a derived R-scheme S into X,
and a pd-thickening by an ordinary scheme T of S. The morphisms (S,T ) → (S′, T ′) in
this category consist of commutative diagrams

S

��

//

~~

T

��

X S′oo // T ′

in DSch, in which the map T → T ′ commutes with the pd-structure on the defining ideals
of S and S′ respectively. Note that, since X is assumed to be classical, any map S → X
from a derived R-scheme S into X will factor uniquely through the map π0(S)→X. This
means that the full subcategory of the category in question, spanned by those (S,T ) for
which S is an ordinary scheme, is cofinal, allowing us to index the colimit on it instead.
We may therefore restrict to this subcategory with no loss of generality. The category we
have thus obtained is precisely the big crystalline site of X, as defined in [2] and Definition
SP.55.8.1. Let us denote it CRIS(X).

Remark 6.7 (Grothendieck topology on the crystalline site). As the name suggests, the
crystalline site is not merely a category, but also inherits Grothendieck topologies from
X. To see how this arises in our setup, let us consider replacing an arbitrary functor
X ∶ sCAlg → S by its sheafification with respect to one of the standard Grothendieck
topologies on (affine) schemes: Zariski, étale, smooth, flat; pick your poison. Let L ∶

Fun (sCAlg,S) → Shv(sCAlgop
) denote sheafification with respect to the chosen topol-

ogy. By Proposition SAG.6.2.3.1 the map Xcrys → L(Xcrys) induces an equivalence of
∞-categories on quasi-coherent sheaves. Recall that the sheafification of X may be ob-
tained by applying (transfinitely many times) the construction X+

(S) = lim
Ð→U→S

X(U)

with the colimit ranging over coverings U → S. Thus we see that the topology only effects
the scheme S in an object (S,T ) ∈ CRIS(X), suggesting the topology on the crystalline
space to be defined entirely on the level of S. That is to say, {(Si, Ti) → (S,T )}i consti-
tutes a covering in CRIS(X) if and only if {Si → S}i is a covering of schemes in the chosen
topology. Thus we have recovered the traditional way to topologize the crystalline site.

Remark 6.8 (The infinitesimal site). Applying to XdR similar analysis as we undertook
for Xcrys in the previous two Remarks, reproduces the big infinitesimal site. The only
difference with the crystalline site is the absence of pd-structures, instead considering
all infinitesimal (that is to say, nilpotent) immersions in place of pd-immersions in the
discussion above. As follows from Proposition 1.10, the two sites coincide in characteristic
zero.
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Remark 6.9 (Crystals in other categories). In the famous letter to Tate, Grothendieck
emphasizes the ubiquity of crystals in various substances, not exclusively in quasi-coherent
sheaves. Crystals in categories manifest as quasi-coherent sheaves with values in categories,
as discussed in Chapter SAG.10, on the crystalline stack.

7. Right crystals and crystalline D-modules

Following the yoga of Gaitsgory-Rozenblyum, the version of the ∞-category of crystals
on X discussed in the previous section should be considered as left crystals, while right
crystals on X should be defined as CrysR

(X) = IndCoh(Xcrys). For our purposes we may
define ind-coherent sheaves on a functor naively11 by taking IndCoh(X) ≃ Ind(Coh(X))

for a derived scheme X, and left Kan extending along the inclusion DSch→ Fun (sCAlg,S).

Remark 7.1 (Utility of right crystals in characteristic 0). In the characteristic 0 story
exposited in [9], one major utility of right crystals in the sense of IndCoh(XdR), observed
already in the highly influential preprint of [1], is that the functoriality of ind-coherent
sheaves makes for a simple identification of crystals with D-modules. That is to say, when
X is a smooth scheme, the !-pullback along the canonical map X →XdR induces an equiv-
alence of ∞-categories IndCoh(XdR) ≃ ModDX (QCoh(X)), where DX = D iff(OX ,OX) is
the sheaf of differential operators on X.

In this section, we will develop the analogue of the preceding Remark in our set-

ting. Recall from Remark 3.6 the sheaf of pd-differential operators D iff pd
X (F ,G ) between

F ,G ∈ QCoh(X). We call Dpd
X = D iff pd

X (OX ,OX) the sheaf of crystalline differential
operators on X.

Remark 7.2 (Comparison with ordinary differential operators). Let us denote by p1, p2 ∶

(X ×X)
pd
X ⇉ X and q1, q2 ∶ (X ×X)

∧
X ⇉ X two projections from the pd-completion and

formal completion respectively of the diagonal inside X×X. The sheaves of crystalline and
ordinary differential operators, the latter in the sense of [11], are given by inner mapping
objects in QCoh(X)

Dpd
X ≃ Map

OX
((p1)∗p

∗
2(OX),OX), DX ≃ Map

OX
((q1)∗q

∗
2(OX),OX).

Recall from Remark 3.10 (and its formal analogue) that the completions in question admit
exhaustive filtrations

(X ×X)
pd
X ≃ lim

Ð→
(X ≃D0

X(1)→D1
X(1)→D2

X(1)→ ⋯),

(X ×X)
∧
X ≃ lim

Ð→
(X ≃ P 0

X(1)→ P 1
X(1)→ P 2

X(1)→ ⋯)

by increasing-order pd-neighborhoods Dn
X(1) resp. infinitesimal neighborhoods PnX(1) of

the diagonal. These correspond to the order filtration on differential operators. Given the
explicit definitions of infinitesimal neighborhoods and pd-neighborhoods of the diagonal
in terms of the defining ideals I ⊆ OX×X and I ⊆ DX×X(X) of the respective diagonally
immersed copies of X, we obtain

Dpd
X ≃ lim

Ð→
n≥0

Map
OX

(DX(X ×X)/I
[n+1]

,OX),

DX ≃ lim
Ð→
n≥0

Map
OX

(OX×X/I n+1,OX).

More concretely, DX coincides with differential operators on X defined inductively in

terms of commutators with functions, while Dpd
X is the enveloping sheaf of algebras of the

standard tangent bundle Lie algebroid on X.

11Following GR, we might wish to impose some finite presentation assumptions throughout.
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Proposition 7.3. Let X be a proper separated smooth scheme. The !-pullback along the
canonical map i ∶X →Xcrys is monadic and exhibits an equivalence of ∞-categories

CrysR
(X) ≃ Mod

Dpd
X

(QCoh(X))

between right crystals and crystalline D-modules on X.

Proof. First we must establish that the “forgetful functor” i! ∶ IndCoh(Xcrys)→ IndCoh(X)

is monadic. Because X is a smooth separated scheme, we may use the presentation for
Xcrys of Proposition 3.5 and pass to ind-coherent sheaves to obtain an equivalence of
∞-categories

IndCoh(Xcrys) ≃ Tot ( IndCoh ((X × ⋅ ⋅ ⋅ ×X)
pd
X )).

Using Theorem HA.4.7.5.2, the desired monadicity will follow if we prove that the cosimpli-
cial ∞-category on the right-hand side of the above equivalence satisfies the Beck-Chevalley
condition. That is to say, we must show that for every map [k]→ [l] in ∆, the diagram

IndCoh ((Xk+1
)

pd
X ) //

��

IndCoh ((Xk+2
)

pd
X )

��

IndCoh ((X l+1
)

pd
X ) // IndCoh ((X l+2

)
pd
X ),

obtained by taking !-pullbacks of the relevant projections, is left adjointable.
Using the n-th pd-neighborhoods of the diagonal Dn

X(k) as in Remark 3.10, we have

(Xk+1
)

pd
X ≃ lim

Ð→n
Dn
X(k), thus it suffices to show left adjointability of the !-pullback diagram

IndCoh(Dn
X(k)) //

��

IndCoh(Dn
X(k + 1))

��

IndCoh(Dn
X(l)) // IndCoh(Dn

X(l + 1))

for all n ≥ 0. We need to show that the !-pullback of the map Dn
X(k+1)→Dn

X(k), coming

from the projection Xk+1
→ Xk, admits a left adjoint, and that said left adjoint satisfies

the relevant projection formula. Since X is a proper scheme, the projection Xk+1
→ X

is also proper, thus everthing follows from the standard pushforward-functoriality of ind-
coherent sheaves (as developed e.g. in GR). This concludes the proof of monadicity for
i!.

Now we know that i! exhibits an equivalence between the ∞-category of right crystals
on X and the ∞-category of modules in IndCoh(X) over the monad i!i∗, induced by the
adjunction between i∗ and i!. Using base-change for the pullback square12

(X ×X)
pd
X

p1
//

p2

��

X

i

��

X
i // Xcrys

gives an identification of the monad i!i∗ ≃ (p2)∗p
!
1. Because X is a smooth scheme, we may

employ the canonical equivalence IndCoh(X) ≃ QCoh(X). Using the compatibility of the
!-pullback with the QCoh(X)-action on IndCoh(X), and the usual projection formula for
quasi-coherent sheaves, we find that

(p2)∗p
!
1(F ) ≃ (p2)∗(p

!
1(OX)⊗ p∗1(F )) ≃ (p2)∗p

!
1(OX)⊗OX F

12That we are allowed to do this is another consequence of having verified the Beck-Chevalley require-
ment for descent of Theorem HA.4.7.5.2.
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for any quasi-coherent sheaf F on X. Thus it suffices to identify (p2)∗p
!
1(OX) with the

crystalline differential operators DX . That follows from the natural homotopy equivalences

MapQCoh(X)(F , (p2)∗p
!
1(OX)) ≃ MapQCoh(X)((p1)∗p

∗
2(F ),OX)

≃ MapQCoh(X)((p1)∗p
∗
2(OX)⊗OX F ,OX)

≃ MapQCoh(X)(F ,Map
OX

((p1)∗p
∗
2(OX),OX))

≃ MapQCoh(X)(F ,Dpd
X )

for any quasi-coherent sheaf F on X. �

Remark 7.4. The first part of the above proof, in which we established monadicity, is
essentially a spelled-out proof of Proposition 3.3.3, Chapter III.3 in GR. In light of Remark
2.11 and an ind-properness observation, we could have also invoked that result directly.
We have chosen to spell it out instead in hopes of clarifying the relationship with the proof
of Proposition 7.5.

Using the explicit description of quasi-coherent sheaves on pd-completions of Proposi-
tion 2.12, together with Lurie’s quasi-coherent Grothendieck duality from Section SAG.6.4,
we can find an analogous description of left crystals as crystalline D-modules.

Proposition 7.5. Let X be a proper separated smooth scheme. The pushforward along
the canonical map i ∶X →Xcrys exhibits an equivalence of ∞-categories

Crys(X) ≃ Mod
Dpd
X

(QCoh(X))

between left crystals and crystalline D-modules on X.

Proof. We argue similarly to the proof of Proposition 7.3. First we invoke Proposition 3.5
to obtain an equivalence of ∞-categories

QCoh(Xcrys) ≃ Tot (QCoh ((X × ⋅ ⋅ ⋅ ×X)
pd
X )),

with the simplicial structure on the right-hand side coming from pullbacks along the
relevant maps. Using the anti-equivalence PrL

≃ (PrR
)

op of exchanging left and right
adjoints, which in our case amounts to passing from pullbacks to pushforwards along the
same maps, we get an ∞-categorical geometric realization

QCoh(Xcrys) ≃ ∣QCoh ((X × ⋅ ⋅ ⋅ ×X)
pd
X )∣ ,

formula for left crystals. As in the proof of Proposition 7.3, we now strive to apply
Theorem HA.4.7.5.2 (more precisely, its opposite-variance analogue) to obtain the desired
monadicity conclusion. The relevant Beck-Chevalley property to check now is that the
diagram

(4) QCoh ((Xk+1
)

pd
X )

(ppdX )∗
//

(q′)pdX )∗
��

QCoh ((Xk
)

pd
X )

(qpdX )∗
��

QCoh ((X l+1
)

pd
X )

((p′)pdX )∗
// QCoh ((X l

)
pd
X ),

obtained by pushforwards along appropriate projection maps p, p′ and q, q′, is right ad-
jointable. Let us study the horizontal morphism more carefully.

Any of the coordinate projections p ∶Xk+1
→Xk induces by compatibility with diagonals

and functoriality of pd-completion a pushforward functor

(5) (ppd
X )∗ ∶ QCoh ((Xk+1

)
pd
X )→ QCoh ((Xk

)
pd
X ).

To obtain a better understanding of this functor, we will use the explicit description of
quasi-coherent sheaves on pd-completions garnered by Proposition 2.12.
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Indeed, the quasi-coherent pushforward along p is a lax symmetric-monoidal functor
p∗ ∶ QCoh(Xk+1

) → QCoh(Xk
). There is a canonical map ϕ ∶ DX(Xk

) → p∗(DX(Xk+1
))

of sheaves of OXk -algebras, arising from the undersal property of pd-completion. The
pushforward p∗ thus extends to a functor between module ∞-categories

pMod
∗ ∶ ModDX(Xk+1)(QCoh(Xk+1

))→ModDX(Xk)(QCoh(Xk
)),

still given by the same underlying functor p∗, with the added superscript introduced only
for the sake of clarity. The map ϕ of sheaves of algebras is furthermore compatible with
pd-structures, implying that ϕ (I (k)[n]) ⊆ p∗ (I (k + 1)[n]) holds for every n ≥ 0. This

shows that pMod
∗ carries the full subcategories, corresponding to quasi-coherent sheaves

on the respective pd-completions according to Proposition 2.12, to each other, inducing
a functor of the same form as (5). Since the identification of Poroposition 2.12 is also

given by pushforwards, we find that the obtained functor is the pushforward (ppd
X )∗, as

promised. The preceding discussion may be summarized in the commutative diagram

(6) QCoh ((Xk+1
)

pd
X )

(ppdX )∗
//

��

QCoh ((Xk
)

pd
X )

��

ModDX(Xk+1)(QCoh(Xk+1
))

pMod
∗ // ModDX(Xk)(QCoh(Xk

)),

in which the unlabled vertical arrows are fully faithful embeddings.
In order to show that the diagram (4) is right adjointable, we must first show that the

functor (ppd
X )∗ admits a right adjoint. Since X is a proper smooth scheme, the projection

p ∶ Xk+1
→ Xk is also proper and smooth. By Definition SAG.6.4.0.1, the pushforward

functor p∗ thus admits a right adjoint p!. Since X, being smooth, is in particular also flat,
it has Tor-aplitude 0 in the language of Section SAG.6.1. Therefore Corollary SAG.6.4.2.7
implies that p! is compatible with the monoidal structure on quasi-coherent sheaves, in the
sense that there is an equivalence p!

(F ) ≃ p∗(F ) ⊗ p!
(OXk) for any F ∈ QCoh(Xk

). It
follows that the right adjoint p! is compatible with module structures, and as such extends
to a right adjoint to the functor pMod

∗ . The monoidal compatibility furthermore implies
that this adjoints preserves the full subcategories annihilated by high-enough powers of
defining pd-ideals I , so we may read off from (6) that it gives rise to a right adjoint to

(ppd
X )∗. The desired base-change formula, exhibiting right adjointability of the diagram

(4), will similarly follow from the base-change formula (p′)!q∗ ≃ (q′)∗p
! guaranteed by

Proposition SAG.6.4.2.1.
In light of Theorem HA.4.7.5.2, we have now verified that the adjunction

i∗ ∶ QCoh(Xcrys)⇄ QCoh(X) ∶ i!

(with the existence of the exceptional pullback i! is part of the Theorem) is monadic.
The same calculation as in the second half of the proof of Proposition 7.3 identifies the

monad of this adjunction with the monad of tensoring with the sheaf Dpd
X of crystalline

differential operators on X. �

Corollary 7.6. Let X be a proper separated smooth scheme. The canonical functor
QCoh(Xcrys) → IndCoh(Xcrys) is an equivalence of ∞-categories, exhibiting an equiva-

lence Crys(X) ≃ CrysR
(X) between left and right crystals on X.

Remark 7.7 (Properness assumption). We believe the properness assumption in the
statement of all the above results could be dropped, but do not know how to prove it. Our
proofs of Propositions 7.3 and 7.5 both use properness in an essential way to verify the
Beck-Chevalley propery. The approach taken in Subsection 4.2 of Chapter III.4 in GR (in
the characteristic 0 setting) avoids this by showing that the !-pullback along the canonical
map i ∶ X → XdR admits a left adjoint directly. The key result there is Proposition
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3.1.2 of loc cit, asserting that i is inf-schematic. The proof of that uses essentially that
the formation of the de Rham space X ↦ XdR is right adjoint to the reduction functor
X ↦Xred. Since we are not aware of an analogue in the crystalline setting, we are unable
to follow the same approach.

8. Crystalline space over a pd-scheme

In the entirety of the above discussion, we have been slightly lax regarding the type of
pd-structures we were allowing. Namely, it is convenient to introduce a slightly more gen-
eral version of the crystalline space, where we restrict the pd-structures we are considering
to only those compatible with a pre-chosen pd-scheme.

Definition 8.1. A derived pd-scheme is a triple (S,I , γ) of a derived scheme S, a sheaf
of ideals I ⊆ π0(OS), and a divided power structure γ on I . When no confusion is likely
to arise, we will abuse notation and refer to the derived pd-scheme (S,I , γ) as S.

Remark 8.2 (Affine derived pd-schemes). Let sCAlgpd denot the ∞-category of derived
pd-rings, which means triples (R, I, γ) of a simplicial commutative ring R ∈ sCAlg, an
ideal I ⊆ π0(R), and a pd-structure γ on I. Morphisms are required to preserve both the
ideals and the pd-structures thereon. Derived pd-schemes analogously form an ∞-category
DSchpd. Consider the functor Spd ∶ sCAlgop

pd → DSchpd given by (A, I, γ)↦ (SpecA, Ĩ, γ̃).

Here Ĩ is the quasi-coherent sheaf on SpecA corresponding to the A-module I under the
equivalence ModA ≃ QCoh(SpecA), and γ̃ is the essentially unique pd-structure on Ĩ
corresponding to γ on I. The functor Spd gives a fully faithful contravariant embedding
of derived pd-rings into derived pd-schemes as affine derived pd-schemes. It is furthermore
clear that any derived pd-scheme is locally isomorphic to an affine one.

Remark 8.3 (pd-schemes and pd-rings). Note that a derived pd-scheme (S,I , γ) is
specified by a pd-immersion Z → S of an ordinary scheme Z = SpecS(π0(OS)/I ) into

S. If we denote by DSchpd the evidently defined ∞-category of pd-schemes, then we
obtain a pair of “forgetful” functors p0, p1 ∶ DSchpd

⇉ DSch given by p1(S,I , γ) = S and
p0(S,I , γ) = Z respectively. This is compatible through the functor Spd with (a slight
upgrade to non-discrete pd-rings) of the functors p0, p1 discussed in Remark 1.3. More
precisely, there is a commutative diagram of ∞-categories

sCAlgop
pd

Spd
//

pi

��

DSchpd

pi

��

sCAlgop Spec
// DSch

where p0, p1 ∶ sCAlgpd → sCAlg are given by p1(R, I, γ) = R and p0(R, I, γ) = π0(R)/I.

The functor of points of a derived pd-scheme S is naturally a functor of the form
sCAlgpd → S, giving a fully faithfyl embedding DSchpd

→ Fun (sCAlgpd,S). Though we
are ultimately interested in the relative crystalline space over a derived pd-scheme, we can
phrase everything with no more effort in the context of a functor sCAlgpd → S.

Definition 8.4. The crystalline space of a functor S ∶ sCAlgpd → S is the functor Scrys ∶

sCAlg → S given by
Scrys(R) ≃ lim

Ð→
(I,γ)

S(R, I, γ),

where the colimit ranges of the poset of all nilpotent ideals I ⊆ π0(R) and pd-structures
γ on I.

Remark 8.5 (Functoriality). The functoriality of the crystalline space, as discussed in
Remark 1.3, extends to the context of Definition 8.4. Recall from said Remark that we
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use CAlg♡pd to denote13 the category of pd-rings with nilpotent ideals. There is a clear

fully faithful embedding ι ∶ CAlg♡pd → sCAlgpd, compatible with the projection functors

p0, p1 ∶ CAlg♡pd → CAlg♡ discussed in Remark 1.3 and Remark 8.3. The construction
S → Scrys may be identified with

Fun (sCAlgpd,S)
ι∗
Ð→ Fun (CAlg♡pd,S)

LKanp1
ÐÐÐÐ→ Fun (CAlg♡,S)↪ Fun (sCAlg,S).

This functioriality asserts more explicitly that any natural transformation f ∶ S → S′ in
Fun (sCAlgpd,S) induces canonically a natural transformation fcrys ∶ Scrys → S′crys, which
is to say a morphism in the ∞-category Fun (sCAlg,S).

Remark 8.6 (pd-completion as crystalline space). The crystalline space of a functor
X ∶ sCAlgpd → S of Definition 1.1 is recovered by pre-composing X with the functor
p0 ∶ sCAlg → CAlg. Similarly, given a natural transformation X → Y in Fun (sCAlg,S), we

can define a functor S ∶ sCAlgpd → S by S = (X ○ p0) ×(Y ○p0) (Y ○ p1). Then Scrys ≃ Y
pd
X ,

recovering Definition 1.4 of pd-completion.

The functor of points of a derived pd-scheme S is a functor S ∶ sCAlgpd → S, while
its “underlying” functor sCAlg → S is the functor of points of the underlying scheme
p1(S). Explicitly, we have (p1(S))(R) ≃ S(R,0,0) for any simplicial commutative ring R,
where (R,0,0) denotes the derived pd-ring of the trivial pd-structure on the zero ideal (an
inclusion sCAlg ⊆ sCAlgpd splitting both p0 and p1). This makes just as much sense for

an arbitrary functor S ∶ sCAlgpd
→ S, as it does for the functor of points of a pd-scheme,

and we use the same notation p1(S).

Definition 8.7. Consider functors X ∶ sCAlg → S and X ∶ sCAlgpd → S, and a natu-
ral transformation X → p1(S). The relative crystalline space of X over S is given by
(X/S)crys ≃ Xcrys ×p1(S)crys Scrys. More concretely, for any simplicial commutative ring R
we have

(X/S)crys(R) ≃ lim
Ð→
(I,γ)

X(π0(R)/I) ×S(π0(R)/I,0,0) S(R, I, γ),

where the colimit ranges of the poset of all nilpotent ideals I ⊆ π0(R) and pd-structures
γ on I.

Remark 8.8 (As crystalline space). The relative crystalline space is a special case of
Definition 8.4. More precisely, (X/S)crys is equivalent to the crystalline space of the
functor (X ○ p0) ×p1(S)○p0 S, which might or might not seem needlessly complicated.

Remark 8.9 (Informal interpretation). The relative crystalline space over a pd-scheme
S has the effect of restricting the pd-ideals considered in the colimit to only those which
are appropriately compatible with the pd-scheme S. Informally, the points of (X/S)crys

correspond to commutative diagrams in derived schemes

Spec(π0(R)/I) //

��

X

��

SpecR // S,

in which the lower horizontal arrow is a projection under p1 of a morphism of derived pd-
schemes SpdR → S. With this in mind, reasoning like in Section 6 shows that the quasi-
coherent sheaves over (X/S)crys for an ordinary scheme X and a pd-scheme S recovers
the theory of crystals as discussed in [3] and [15].

13The notation we have chosen is slightly unfortunate, as we are calling sCAlgpd the ∞-category of

derived pd-rings, be their pd-ideals nilpotent or not, while CAlg♡pd consits only of the pd-rings with
nilpotent pd-ideals. Since we never require the non-nilpotent discrete analogue of the category of pd-rings,
we have chosen to stick with this notation, as we find CAlg♡pd−nil rather crowded and cumbersome.
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For the most part, the base pd-scheme is taken to be affine, which is to say S = SpdA
for a pd-ring (A, I, γ). The discussion of Section 2 works in the relative case just as well
as in the absolute one, if we use pd-envelopes compatible with γ, i.e. envelopes of the
form DB,γ(J) as discussed at length in the literature, e.g. Chapter 3 of [2], or Section
SP.55.2. With this in mind, Sections 4 and 5 may be taken over Spf Zp (or SpdW (κ),
in the setting of Variants 4.3 and 5.4) with respect to its usual divided power structure
on the principal ideal (p). This rules out some exotic and “non-geometric” pd-structures,
such as the non-standard ones on the p-adic integers.

Caveat 8.10. It is only in the setting outlined in the previous paragraph that comparisons
with classical constructions, such as Proposition 5.5 actually recover the usual classical
structures. But as remarked above, this is merely the matter of what kind of pd-envelopes
are being used, so technically speaking, results such as Proposition 5.5 are true as stated,
if the alleged classical objects (the crystalline period ring Acrys in the case of Proposition
5.5) are not entirely the same as their usual counterparts. None of the proofs change,
since literally the only things that changes are that the colimit in the definition of the
crystalline space is only taken over such pd-ideals which are compatible with the standard
pd-structure on (p) ⊆ Zp, and the version of pd-envelopes that must be used is the one
compatible with it. Thus we have chosen to eschew these technicalities for the sake of
clearer exposition in the previous Sections.
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