
MUSINGS ON En-CRYSTALS

ROK GREGORIC

This is a collection of thoughts on En-crystals, a certain type of higher analogue of
D-modules in derived algebraic geometry. They appear (under a pseudonym) in the work
of Beraldo, and will be featured prominently in upcoming work of Ben-Zvi and Safronov.

1. Ordinary crystals

In the immortal words of Grothendieck, crystals are characterized by two properties:
growth and rigidity. In particular, a crystal extends along arbitrary infinitesimal extensions
(growth), and remains invariant under this extension (rigidity).

One way of realizing this is to define the infinitesimal groupoid of, say, a derived scheme
X, as completion along the diagonal (X ×X)∧X → X ×X (extended to a Segal groupoid
in the standard way). Thinking of groupoids as generalized equivalence relations, this
encodes the equivalence relation of two points being infinitesimally close together. The
category of crystals1 on X may be defined as

Crys(X) ∶= IndCoh(X)(X×X)
∧
X ,

which is to say, sheaves equivariant for the infinitesimal groupoid.

Utilizing stacks, this may be phrased in terms of the quotient XdR ∶= X/(X × X)∧X
called the de Rham space of X. It may be defined directly via functor of points as
XdR(R) =X(π0(R)red). In terms of the de Rham space, crystals on X are

Crys(X) ≃ IndCoh(XdR).

When working in characteristic zero, there is a third approach. We may define the sheaf
of differential operators on X to be the enveloping sheaf of algebras DX = U(TX) of the
tangent Lie algebroid TX on X. Then we have

Crys(X) ≃ ModDX
(IndCoh(X)),

identifying crystals with D-modules.

2. Higher infinitesimals

One heuristic perspective on derived algebraic geometry is that the homotopy theory
built into algebraic geometry allows for additional “higher” directions in which deformation
is possible. As summarized succintly in [SAG, Section 0.1.3]:

Derived Algebraic Geometry = Algebraic Geometry +Deformation Theory.

For instance, while Speck[t]/(t2) is a classical square-zero thickening of Speck, we may
consider Speck[u] with ∣u∣ = −1 as an analogous derived square-zero thickening.
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From this perspective, the idea of En-crystals is quite reasonable: just as ordinary
crystals exhibit growth and rigidity along ordinary infinitesimal extensions, one might ask
for a notion of crystals that behaves similarly for these new derived infinitesimal extensions.

In order to make this precise, let us review a convenient setting for formal derived
algebraic geometry.

3. Formal moduli problems

Fix k to be a field of characteristic 0 throught the rest of this note. Let CAlgcn
k denote

the ∞-category of derived k-algebras, by which we mean either connective E∞-algebras over
k, or equivalently, coconnective commutative differential graded k-algebras. In regards to
definitions and conventions from derived algebraic geometry, we mostly follow [GR].

Let the functor X ∶ CAlgcn
k → S be locally almost of finite type and admit deformation

theory2. We think of X as being the functor of points of a scheme or algebraic stack.

Definition 1 ([GR, Section 5.1.3]). A formal moduli problem under X is a map X → Y
in Fun (CAlgcn

k ,S) such that

(i) The functor Y is locally almost of finite type and admits deformation theory.
(ii) The induced map XdR → YdR is an equivalence in Fun (CAlgcn

k ,S).
The formal moduli problems underX span the full subcategory FMPX/ ⊆ Fun (CAlgcn

k ,S)X/.

Remark 2. Informally, a fomal moduli problem Y under X is an algebro-geometric object,
which is in some way (e.g. by filtered colimits) built out of infinitesimal extensions of X.

The following examples will be important for us:

● The identity map X →X exhibits X as the initial object in FMPX/.
● The canonical map X →XdR exhibits XdR as the final object in FMPX/.
● Let X → Y be a map in Fun (CAlgcn

k ,S), where Y is locally almost of finite type
and admits deformation theory (e.g. a relative Artin stack). Then the formal
completion

Y ∧

X ∶= YdR ×XdR
X

induces a map X → Y ∧

X , which exhibits Y ∧

X as a formal moduli problem over X.

Remark 3. The last example gives rise to the adjunction

(1) oblv ∶ FMPX/ ⇄ Fun (CAlgcn
k ,S)laft−def

X/
∶ (−)∧X ,

showing that formal completions are “cofree” formal moduli problems.

4. En-Formal groupoids

The ∞-category of formal groupoids over X is defined [GR, Section 5.2.2] to be the full
subcategory

FGrpd(X) ⊆ Grpd(Fun (CAlgcn
k ,S)laft−def

X/
) ×Fun (CAlgcn

k ,S)laft−def
X/

{X}

of groupoid objects G●, together with equivalences on their 0-simplices G0 ≃ X, spanned
by those such groupoids for which all the composed face maps G● → X are inf-schemetic

2Recall from [GR, Definition 7.1.2] that admiting a deformation theory is equivalent to the functor
being convergent (nilcomplete, in the language of [SAG]), admitting a pro-cotangent complex, and being
infinitesimally cohesive. This is very close to satisfying the criteria of the Derived Artin Representability
Theorem [SAG, Theorem 18.3.0.1], essentially only missing the integrability hypothesis. This is sensible,
seeing how integrability, in the sense of [SAG, Definition 17.3.4.1], has to do precisely with passing from
the formal to the global.



and induce equivalences G●dR ≃XdR. That is to say, at every simplicial level, G● is a formal
moduli problem over X, in the sense of [GR, Subsection 5.1.1].

According to [GR, Theorem 5.2.3.2], there is a canonical equivalence of ∞-categories

(2) ΩX ∶ FMPX/ ≃ FGrpd(X) ∶ BX ,

where the formal loops functor is given by ΩXY ≃ X ×Y X, and the formal delooping
functor BXG ≃X/G gives the quotient of X by the formal groupoid G.

Definition 4. Let FGrpdE1
(X) ∶= FGrpd(X). For all integers n ≥ 1, we inductively define

En+1-formal groupoids over X to be groupoid objects inside the ∞-category FGrpdEn
(X)

of En-formal groupoids over X, togehter with an identification of their 0-simplices with
the trivial En-formal groupoid X

Remark 5. The definition of En-formal groupoids is motivated by the Dunn Additivity
Theorem [HA, Theorem 5.1.2.2], which says roughly that En ≃ E1 ⊗ ⋯ ⊗ E1. That is to
say, an En-structure is equivalent to n compatible E1-structures.

Level-wise application of the equivalence (2) proves the following:

Proposition 6. There is a canonical equivalence of ∞-categories

Ωn
X ∶ FMPX/ ≃ FGrpdEn

(X) ∶ Bn
X .

Remark 7. Proposition 6 may be viewed as a kind of formal algebraic geometry analogue
of the Boardman-Vogt-May Recognition Principle, identifying n-connected spaces and En-
groups in homotopy theory.

Remark 8. There is a qualitative difference between ordinary, i.e. E1-formal groupoids,
and their En counterparts for n ≥ 2. This is because, through the projection onto the
first factor, there always exists a map ΩXY ≃ X ×Y X → X. Thus while for an E1-formal
groupoid G, the quotient projection X → BXG exhibits BXG as only a formal moduli
problem over X, the classifying stack BXG of any En-formal groupoid for n ≥ 2 is also a
formal moduli problem under X. Note that this procedure is not canonical, as it requires
choosing a factor of X to project onto. Alas, it will have profound effects for the special
behavior of n = 1 as opposed to n ≥ 2 situations. The special properties in the case n ≥ 2
in Propositions 30 and 44, and Section 13, may all be traced back to this fact.

5. Lower formal loops

Given any formal moduli problem Y over X, Proposition 6 says that we can extract
the En-formal groupoid Ωn

XY over X. This situation is familiar from homotopy theory:
En-structures appear through n-fold loop spaces. To gain a better grasp on them, let us
examine how these formal loops look.

Lemma 9. For any Y ∈ FMPX/, there is an equivalence of underlying formal moduli
problems over X

Ωn
XY ≃ (Y Sn)∧X ,

where Y Sn
denotes the cotensoring with the space Sn in the ∞-category Fun (CAlgcn

k ,S).

Proof. This follows from all the functors in sight preserving (finite) limits. The formal
completion functor (−)∧X ∶ Fun (CAlgcn

k ,S)laft−def
X/

→ FMPX/ is a right adjoint by (1),

and as such preserves limits. Thus Ωn
XY, which is by definition the cotensoring of Y

with Sn in FMPX/, may be obtained by formal completion from the cotensoring of Y

with Sn in Fun (CAlgcn
k ,S)laft−def

X/
. Since the forgetful functor Fun (CAlgcn

k ,S)laft−def
X/

→
Fun (CAlgcn

k ,S)laft−def clearly preseves all limits, it preserves cotensoring. It remains to
observe that, as noted in [GR, Remark 1.7.1.3], the subcategory Fun (CAlgcn

k ,S)laft−def ⊆



Fun (CAlgcn
k ,S) is closed under all finite limits, and so is closed under cotensoring with

spaces. �

We make the following definition in analogy with Lemma 9, and in line with the standard
definitions S0 ≃ pt∐pt and S−1 = ∅.

Definition 10. The 0-th formal loops on a formal moduli problem Y over X is

Ω0
XY ∶= (Y S0)∧X ≃ (Y × Y )∧X

and its (−1)-st formal loops is defined as

Ω−1
X Y = (Y ∅)∧X ≃ pt∧X ≃XdR.

With this extended definition of formal loops, we find the infinitesimal groupoid from
Section 1 in the guise of

(3) (X ×X)∧X ≃ Ω0
XX ≃ ΩXXdR.

The latter of these is especially meaningful - it exhibits the infinitesimal groupoid as an
object in FGrpdE1

(X) ≃ FGrpd(X), thus exhibiting its groupoid structure as coming from
formal loops.

6. Formal loops on XdR

Since XdR is final among formal moduli problems over X, the equivalence of ∞-
categories of Proposition 6 implies that Ωn

XXdR is the final En-formal groupoid over X.

Remark 11. In light of (3), the infinitesimal groupoid (X × X)∧X is the final formal
groupoid over X. That offers another justification for the first definition of crystals in
Section 1: they are Ind-coherent sheaves on X with the maximal amount of equivariance
that may be imposed by a formal groupoid.

Lemma 12. For every n ≥ 0, there are canonical equivalences

Ωn
XXdR ≃ Ωn−1

X X ≃ (XSn−1)∧X ,
in the ∞-category FMP/X .

Proof. The desired equivalences are obtained by applying the functor Ωn
X to the equiva-

lence (3). �

Remark 13. The preceding Lemma identifies (the underlying formal moduli problem of)
the final object in FGrpdEn

(X) with the formal completion of the “higher derived loop

space” XSn−1
. In [Töe], this is denoted BEnX and called the space of En-branes in X.

Example 14. The En-formal groupoids Ωn
XXdR are familiar objects for small values of

n.

● For n = 0 we get Ω0
XXdR ≃XdR, the de Rham space of X.

● For n = 1, we get Ω1
XXdR ≃ (X ×X)∧X , the infinitesimal groupoid over X.

● For n = 2, we get Ω2
XXdR ≃ L̂X, the completed derived free loop space on X.

As is usually the case with En-objects of any sort, the higher n versions are less familiar.

Proposition 15. Suppose that the functor XCAlg♡k
takes values in the subcategory S≤i ⊆ S

of i-truncated spaces for some integer i ≥ 0. Then there is a canonical equivalence

Ωn
XXdR ≃XSn−1

of functors over X for all n ≥ i + 2.



Proof. We must show that the map XSn → (XSn)∧X is an equivalence for all n ≥ i+1. The

truncatedness hypothesis implies that the diagonal map X →XSn
induces an equivalence

on de Rham spaces. Thus we get (XSn)∧X ≃XdR ×(XSn
)dR

XSn ≃XSn
by the definition of

formal completion in terms of de Rham spaces. �

Remark 16. That is to say, when n sufficiently transcends the “degree of derivedness”
of X, then the formal En-groupoid Ωn

XXdR loses all its formal character, and recovers the

higher derived loop space XSn−1
.

Remark 17. From the sequence of equatorial inclusions of spheres

∅ = S−1 → S0 → S1 → S2 → ⋯→ Sn → ⋯→ S∞ ≃ pt,

we obtain by cotensoring with X in FMPX/ the tower

Ω∞

XX → ⋯→ Ωn
XX → ⋯→ Ω2

XX → Ω1
XX → Ω0

XX → Ω−1
X X.

This may be rewritten using Lemma 9 as

X → ⋯→ Ωn+1
X XdR → ⋯→ Ω3

XXdR → L̂X → (X ×X)∧X →XdR.

One interpretation of the formal loop spaces Ωn
XXdR is thus that they start off with n = 0

at the terminal object XdR of the ∞-category FMPX/ and, as n →∞, they approach its
initial object X.

7. En-crystals

Recall from Section 1 that usual crystals on X may be defined as Ind-coherent sheaves
on X, equivariant for the infinitesimal groupoid (X × X)∧X . In (3) we recognized the
infinitesimal groupoid as ΩXXdR, the final object in FGrpd(X) ≃ FGrpdE1

(X). To obtain
an En-analogue of crystals, it thus seems reasonable to consider equivariance with repsect
to the final En-formal groupoid Ωn

XXdR.

Definition 18. The ∞-category of En-crystals on X is

CrysEn
(X) ∶= IndCoh(X)Ωn

XXdR .

That is to say, an En-crystal on X is an Ind-coherent sheaf on X, which is equivariant
with respect to the En-formal groupoid Ωn

XXdR.

Remark 19. The En-structure on Ωn
XXdR equips CrysEn

(X) with the structure of an
En−1-monoidal ∞-category.

Definition 18 is an En-analogue of defining crystals through the infinitesimal groupoid.
As discussed in Section 1, the de Rham space description is obtained by passing to the
quotient of X by the infinitesimal groupoid. The following Proposition is the En-analogue:

Proposition 20. For every integer n ≥ 1, there is a canonical equivalence of ∞-categories

CrysEn
(X) ≃ IndCoh(Ωn−1

X XdR) ≃ IndCoh ((XSn−2)∧X).

Proof. Since the inf-schematic hypothesis is automatic in our setting, see [GR, Subsection
5.1.3.1], it follows from [GR, Proposition 5.2.2.6] that

IndCoh(X)Ωn
XXdR ≃ IndCoh(BXΩn

XXdR),
and the conclusion follows since BXΩn

XXdR ≃ Ωn−1
X XdR ≃ (XSn−2)∧X by Lemma 12. �

Example 21. For small values of n, and with the help of Example 14, Proposition 20
reduces to fairly familiar statements:

● For n = 1, we recover Crys(X) ≃ IndCoh(XdR), the usual de Rham description of
crystals.



● For n = 2, we obtain CrysE2
(X) ≃ IndCoh ((X ×X)∧X). That may be rewritten as

IndCoh(X)L̂X ≃ IndCohX(X ×X)

and identifies the completed-loop-space-equivariant sheaves on X with the sheaves
on X ×X supported along the diagonal.

● For n = 3, we obtain CrysE3
(X) ≃ IndCoh(L̂X). Thus E3-differential operators

are sheaves on the (completed) derived free loop space - another reasonably well-
studied object.

Remark 22. From the above description of E2-crystals, we may recognize CrysE2
(X)

as Beraldo’s category H(X) (at least ignoring the distinction between the usual IndCoh
and Berlado’s modified IndCoh0) of what he calls categorified D-modules in [Ber20]. In
[Ber19], Beraldo also considers En-crystals for arbitrary n, using the notation Sph(X,n)
for what we call CrysEn+2(X) (again, up to the distinction between IndCoh and IndCoh0).

Example 23. Repeating two of Beraldo’s selling points in this and the next exercise, we
first compute the E2-crystals on the classifying stack BG of a group scheme G. We obtain

CrysE2
(BG) ≃ IndCoh (BG ×BGdR

BG)
≃ IndCoh(G /GdR/G)
≃ IndCoh(GdR/G)G

≃ IndCoh(BĜ)G

≃ ModGg ,

the ∞-category of Harish-Chandra bimodules for G. In the above computation we used
the short exact sequence of groups schemes Ĝ→ G→ GdR for the fourth equivalence, and
the identification between the representations of the formal group Ĝ and representations
of the Lie algebra g.

Example 24. A similar computation for E4-crystals on BG gives

CrysE4
(BG) ≃ IndCoh (BG ×Ω2

BGBGdR
BG)

≃ IndCoh (BG ×ΩBGBG BG)
≃ IndCoh (BG ×Ĝ/G BG)
≃ IndCoh(BG ×g/G BG),

the Statake category (the renorormalized spherical category of [AG]). This is another
∞-category that shows up in geometric representation theory, appearing on one side of
the Derived Geometeric Satake Theorem [BF, Theorem 5]. Following more precisely the
equivalent statement of this Theorem from [AG, Theorem 12.3.3.], it may be stated as
assering the equivalence of ∞-categories

Crysren
E1

(G(O)/G(K)/G(O)) ≃ CrysE4
(BĞ).

Here the supercript ren indicates that these are renormalized D-modules, i.e. the full
subcategory compactly generated by those E1-crystals whose pullback to the affine Grass-
manian along the quotient map G(K)/G(O)→ G(O)/G(K)/G(O) is compact.

8. Descent along neighborhoods of the diagonal

One way of getting hold of ordinary crystals, is to require the existence of compatible
lifts of sheaves along i-th infinitesimal neighborhoods of the diagonal for all i ≥ 2. From
the perspective of the infinitesimal groupoid, discussed in Section 1, this comes from



considering the descent data along the projection X → XdR ≃ X/(X × X)∧X onto the

groupoid quotient. Indeed, the Čech nerve of this map is given by

Č●(X →XdR) ≃ (X ×⋯ ×X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

●+1

)∧X .

and we get by descent the identification of crystals as

Crys(X) ≃ Tot(IndCohX(X ×⋯ ×X)).

An entirely analogous proceedure works for En-crystals as well. According to Propositon

20, the quotient map in question is X → BXΩn
XXdR ≃ (XSn−2)∧X . We compute its Čech

nerve to be

Č●(X → (XSn−2)∧X) ≃ Č●(X →XSn−2)∧
X

≃ (X ×
XSn−2 ⋯×

XSn−2 X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

●+1

)∧
X

≃ (XSn−1
∨⋯∨Sn−1)∧

X
.

Thus (X(Sn−1
)
∨i)∧

X
is the analogue in the theory of En-crystals of the i-th infinitesimal

neighborhood of the diagonal. In particular, it gives rise to the description of En-crystals
as

CrysEn
(X) ≃ Tot ( IndCohX (XSn−1

∨⋯∨Sn−1)),
which follows from how the ∞-category of Ind-coherent sheaves equivariant for a formal
groupoid is defined in [GR, Subsection 5.2.2.5]. When n = 1, we get S0 ≃ pt∐pt, and so
recover the usual story of infinitesimal neighborhoods of the diagonal.

9. Lie Algebroids

The theory of Lie algebroids in derived algebraic geometry is laid out in [GR, Chapter
8]. There Lie algebroids over X are technically defined to be formal groupoids over X,
taking the fundamental equivalence of ∞-categories

(4) LieX ∶ FGrpd(X) ≃ LieAlgd(X) ∶ expX

as a definition, and mearly tweaking the meaning of the free and forgetful functors.

Remark 25. It is also shown in [GR, Section 8.8] that Lie algebroids are equivalent to
modules for a monad on the ∞-category LieAlg(IndCoh(X)) given roughly by

g↦ TX[−1] ⋉ g

for a canonically defined action of the Lie algebra TX[−1] (the Lie algebra of the E1-group
stack ΩX) on g. While not precisely the same, this feels close enough to the usual definition
of ordinary Lie algebroids to make this derived version seem “morally” acceptable.

Recall from [GR, Section 8.2.1] that the forgetful functor LieAlgd(X)→ IndCoh(X)X/,
discarding the Lie algebroid structure, is given in terms of the equivalence of ∞-categories
(2) as the functor FMP/X sending Y ↦ TX/Y . Thus in terms of the Lie algebroids, it sends
G ↦ TX/BXG ≃ TG/X ∣X . Thus the underlying functor into IndCoh(X) of the functor LieX
from (4) is LieX(G) ≃ TG/X ∣X .

Example 26. Consider the case X = pt. Then formal groupoids are merely formal groups.
For any formal group G, we get Liept(G) ≃ TG,1 = g, which is certainly what we expect
the Lie algebra of G to be.



Lemma 27. The equivalence (4) induces an equivalence of ∞-categories

LieX ∶ FGrpdEn
(X) ≃ MonEn−1(LieAlgd(X))

for all integers n ≥ 1.

Proof. We may view (4) as an n = 0 variant of the statement, since the ∞-category of Lie
algebroids is pointed at the zero object 0, and thus agrees with its E0-objects.

In light of Definition 4 of En-formal groupoids, it suffices to proceed inductively on n.
Thus assume the conclusion of the Proposition is true for some n.

It is then clear that (4) induces an equivalence between FGrpdEn+1(X) and the ∞-
category of those groupoid objects in MonEn−1(LieAlgd(X)), whose 0-simplices are given
by LieX(X). Of course, LieX(X) ≃ TX/X ≃ 0, and so such groupoid objects are precisely
the group objects. It follows that LieX induces the equivalence of ∞-categories.

FGrpdEn+1(X) ≃ Grp(MonEn−1(LieAlgd(X))).

We claim that the inclusion GrpE1
(LieAlgd(X)) → MonE1(LieAlgd(X)) is an equiva-

lence of ∞-categories. Passing from Lie algebroids to formal groupoids via (4), this follows
from the observation [GR, Subsection 5.2.2.1] that any Segal object on X is automatically
a groupoid object. Consequently we get

FGrpdEn+1(X) ≃ MonE1(MonEn−1(LieAlgd(X))),

and an application of the Dunn Additivity Theorem [HA, Theorem 5.1.2.2] concludes the
proof. �

10. Shifted tangent bundles

Let us apply Lemma 27 to the En-formal groupoid Ωn
XXdR that we have been studying

so far. We compute its Lie algebroid to be

LieX(Ωn
XXdR) ≃ TX/BXΩn

XXdR

≃ TX/Ωn−1
X XdR

≃ TX/XdR
[1 − n]

≃ TX[1 − n],

where we have used for the third equivalence that the functor TX/ commutes with limits
(which it, in its capactity as a forgetful functor, certainly does), and for the last one the
well-known that TXdR

≃ 0. We find that

Proposition 28. The shifted tangent complex TX[1 − n] admits a canonical structure of
an En−1-monoid in the ∞-category of Lie algebroids over X, exhibiting it as a final object
of MonEn−1(LieAlgd(X)).

This may be turned around, to leverage a somewhat more concrete understanding of
the En-formal groupod Ωn

XXdR. In what follows, we may take the n-shifted tangent bundle
on X to be the mapping stack T [n]X ∶= Map(Speck[ε]/(ε2),X), where the generator ε

is in degree n. The augmentation of derived rings k → k[ε]/(ε2)→ k exhibits T [n]X as a
stack both over and under X, giving the zero section and the bundle projection. Define
the formal n-shifted tangent bundle on X to be the completion T̂ [n]X ∶= (T [n]X)∧X along
the zero section. The following is a “higher” variant of the Hochschild-Kostant-Rosenberg
Theorem, and is quite well-known in a variety of forms, e.g. [Pre, Proposition 2.3.2] and
[Töe, Corollary 5.4].



Remark 29. Recall from Remark 8 that for n ≥ 2, the underlying formal moduli problems
of the En-groupoids Ωn

XXdR are pointed over X. Since the equivalence of ∞-categories
FMPX/ ≃ LieAlgd(X), obtained by combining (2) and (4), restricts by [GR, Theorem
7.3.1.4] to an equivalence FMPX//X ≃ LieAlg(IndCoh(X)), it follows that LieX(Ωn

XXdR) ≃
TX[1 − n] is not only a Lie algebroid over X, but furthermore a Lie algebra. That it so
say, its anchor map TX[1 − n] → TX is the zero map. This difference to the n = 1 case,
where the Lie algebroid is id ∶ TX → TX , is at the heart of what follows.

Proposition 30 (Formal HKR). For every n ≥ 1 there is an equivalence

exp ∶ T̂ [1 − n]X ≃ Ωn
XXdR

of the underlying formal moduli problems over and under X.

Proof. Let us recall [GR, Corollary 7.3.2.2], which says that for any group object G in
formal moduli problems over X, there is an equivalence of underlying formal moduli
probelms

(5) G ≃ VectX(LieX(G)).
Here the vector prestack is defined in [GR, Section 7.1.4]. Applying this to G = Ωn

XXdR, in
light of the computation of LieX(Ωn

XXdR) at the start of this section, we get an equivalence

Ωn
XXdR ≃ VectX(TX[1 − n]).

The shifted tangent bundle T [1−n]X being affine imples that the formal shifted tangent

bundle T̂ [1 − n]X is also inf-affine in the sense of [GR, Section 7.2], and so equals the
right-hand side in the equivalence above. �

Example 31. For low values of n, Formal HKR recover the familiar statements:

● For n = 1, we obtain T̂X ≃ (X ×X)∧X .

● For n = 2, we obtain T̂ [−1]X ≃ L̂X, the (formal version of) the usual Hochschild-
Kostant-Rosenberg Theorem.

Remark 32. The proof of Formal HKR was an application of the equivalence (5) from
[GR], which is an incarnation of the exponential map. Indeed, let X = pt, and G a group
scheme. Then the equivalence (5) equates the formal completion at the unit in G, and

the geometric vector space corresponding to its Lie algebra g. Of course, the map g → Ĝ
in question is nothing but the exponential map. This justifies using the name exp for the
map exhibiting Formal HKR.

Remark 33. An analogous non-formal version of HKR is proved in [Töe, Corollary 5.4]
for derived Artin stacks. For X a derived Artin stack, they Töen shows that a choice of a
formality equivalence of operads En ≃ H∗(En) = Pn for any n ≥ 2 induces an equivalence
between higher Hochschild cohomology HHEn(X) ∶= Γ(X;L nX) and shifted polyvector
fields O(T ∗[n]X). In fact, the equivalence is shown to be compatible with the natural
(n-shifted) Lie algebra structures on both sides.

Remark 34. The proof of Formal HKR depends on viewing Ωn
XXdR as an object of

FMPX//X . While it has a canonical structure of a formal moduli problem under X,
its moduli structure over X must be chosen. There are such choices, corresponding to
choosing a base-point for the n-sphere Sn. In this sense, the formal HKR Theorem is not
canonical. The dependence on a choice of base-point for Ωn

XXdR is related to the choice
of a formality isomorphism En ≃ Pn in the approach from [Töe] discussed in Remark 33

Remark 35. From the perspective of differential topology, Formal HKR Theorem may
be viewed as an analogue of the Tubular Neighborhood Theorem. Indeed, consider the



diagonal map X → L nX. Its derived normal bundle is3 TX/L nX[1] ≃ TX/X×X[1 − n],
and since TX/X×X ≃ TX[−1], it is actually TX[−n]. In light of Lemma 12, Formal HKR

now asserts the equivalence L̂ nX ≃ T̂X/X×X[−1] between the formal neighborhood of the
image of the diagonal map X → L nX, and the formal neighborhood of the zero section
in its normal bundle.

Remark 36. Let G be an algebraic group. For X = BG we find the shifted tangent
complex to be TBG[n] ≃ g[−n]/G, the quotient of the Lie algebra by the (shifted) adjoint
action. Applying this to E4-crystals, we find in light of Proposition 20 that

CrysE4
(BG) ≃ IndCoh(Ω2

BGBG) ≃ IndCoh(ĝ[−2]/G).

In fact, Proposition 15 and Remark 16 may be leveraged to remove the formal completion
from g in the formula. Recall from Example 24 that E4-crystals on BG may be identified
with the Satake category. Thus the Formal HKR recovers the “Koszul dual description”
of the Satake category from [AG, Proposition 12.4.2].

11. En-differential operators

An easy modification of the argument leading to Proposition 28 gives:

Lemma 37. For any Lie algebroid L on X, there exists a canonical En-monoid structure
on the shift L[−n].

This procedure is clearly functorial. We may combine it with the enveloping algebra
functor (which is appropriately oplax monoidal to induce maps on En-modules) and form
the composite

LieAlgd(X) [1−n]ÐÐÐ→MonEn−1(LieAlgd(X)) UÐ→MonEn−1(Alg(IndCoh(X)).

By once more envoking Dunn Additivity, we may identify this with a functor

UEn ∶ LieAlgd(X)→ AlgEn
(IndCoh(X))

which we call the (universal) enveloping En-algera over X.

Remark 38. Specializing to the case X = pt, this agrees with the universal enveloping
En-algebra functors discussed elswhere in the literature, e.g. [GR, Remark 6.1.4] and
[AF]. In particular, it is the left adjoint to “forgetful functor” AlgEn

→ LieAlg, given by
A ↦ A[n − 1], which discards the En−1-structure, and converts the remaining E1-algebra
structure into a Lie algebra one (forgetting the mutiplication, and remembering only the
commutators).

Definition 39. The sheaf of En-differential operators on X is the Ind-coherent sheaf of
En-algebras on X given by DEn

X ∶= UEn(TX).

Example 40. When n = 1, we get DE1
X ≃ DX , and so recover the ordinary sheaf of

differential operators on X.

Remark 41. Ordinary differential operators on X may be informally described as gener-
ated inside k-linear endomorphisms on OX by two types of generators:

● functions f on X, acting on OX by multiplication g ↦ fg,
● vector fields ξ on X, acting on OX by derivations g ↦ ξ(g).

3Indeed, for any map X → Y the fiber sequence TX/Y → TX → TY ∣X shows that the normal bundle,

which should be defined as the cofiber of the second map, is just TX/Y [1].



The compatibility between them is encoded in the commutation condition [ξ, f] = ξ(f).
The En-differential operators admit an analogous informal description: they are spanned
inside the derived k-linear endomorphisms on OX (thus allowing also operations of the
form OX → OX[r] for any r ∈ Z) by

● functions f on X, acting on OX by multiplication,
● (1 − n)-shifted vector fields ξ on X, acting on OX by degree 1 − n derivations.

Thus the function generators f are in degree 0, but now unlike ordinary differential oper-
ators, the vector field generators ξ are placed into degree 1 − n.

Remark 42. Recall that DX may be viewed as a quantization of the cotangent bun-
dle T ∗X. The symplectic space on the latter makes it the archetypcal example of a
configuration space of classical mechanics. The shifted cotangent bundle T ∗[n − 1]X is
(n − 1)-shifted symplectic in the sense of [PTVV]. As explained there4, that means that
its deformation quantization should come equipped with an En-algebra structure. As they
satisfy DEn

X ≃ U(TX[1 − n]) by the definition of the enveloping En-algebra, this suggests
that En-differential operators may be viewed as a quantization of the shifted cotangent
bundle T ∗[n − 1]X.

Finally we can give the En-analogue of the last of the three alternative descriptions of
crytals from Section 1: we show that En-crystals correspond to En-D-modules.

Proposition 43. For every integer n ≥ 1, there is a canonical equivalence of ∞-categories

CrysEn
(X) ≃ Mod

D
En
X

(IndCoh(X)).

Proof. We know from [GR, Section 8.4.2] that, in line with the (definitional) equiva-
lence (4), there is an equivalence of ∞-categories between the Ind-coherent sheaves on
X which are equivariant for a formal algebroid G, and the Ind-coherent sheaves on X
which are modules for the corresponding Lie algebroid LieX(G). In symbols, this amounts
to the assertion that the forgetful functor IndCoh(X)G → IndCoh(X) factors through
U(LieX(G))-modules, and induces an equivalence of ∞-categories

IndCoh(X)G ≃ ModU(LieX(G))(IndCoh(X)).
Let us apply this to the En-formal groupoid G = Ωn

XXdR. We know that the corresponding
Lie algebroid is LieX(Ωn

XXdR) ≃ TX[1 − n] from Section 10. By the definition of the
enveloping En-algebra, we get U(TX[1 − n]) ≃ UEn(TX), which is by definition the sheaf

DEn
X of En-differential operators on X. �

The informal description of En-differential operators from Remark 41 may be combined
with the Poincare-Birkhoff-Witt Theorem, to show the following rather surprising result.

Proposition 44. For every integer n ≥ 2, there is a canonical equivalence

DEn
X ≃ Sym∗(TX[1 − n])

in the ∞-category Alg(IndCoh(X)).

Proof. By Definition 39, En-differential operators are the universal enveloping En-algebra

DEn
X ≃ UEn(TX) ≃ U(TX[1 − n]).

Note that here the shift [1−n] plays the role of the loops operator ΩLie in the ∞-category
of Lie algebroids on X, e.g. [GR, Remark 6.6.1.4]. In fact, since n ≥ 2, this is taking

4The phrasing in [CPTVV] is in terms of shifted Poisson structures. Alas, as observed in [CPTVV,
Remark 3.4.2], as consequence of well-known formality results in characteristic zero, there exist equivalences
of operads Pn ≃ En for all n ≥ 2.



place in the ∞-category of Lie algebras LieAlg(IndCoh(X)). Indeed, by [GR, Proposition
6.1.7.3], the Lie algebra loop operator satisfies ΩLie(g) ≃ (g[−1])triv, showing that TX[1−n]
is equipped with the trivial Lie algebra structure5. Now we may apply the PBW Theorem
in the form of [GR, Theorem 6.5.2.4], which says that U(gtriv) ≃ Sym∗(g), and obtain the
desired equivalence. �

Remark 45. Proposition 44 may be interpreted as saying that it is not the underlying
associative, i.e. E1-algebra on En-differential operators DEn

X , but rather its full En-algebra
structure, that holds the interesting data. Similarly, the truly interesting part of the ∞-
category of En-crystals is not the ∞-category itself, but rather its En−1-monoidal structure.

12. The center of categorified rings of differential operators

In this section we summarize a result of Beraldo. This requires a slightly modified
version of the ∞-category of En-crystals.

Definition 46. The ∞-category of derived En-crystals on X is

Crysder
En

(X) ∶= CrysEn
(X) ×IndCoh(X) QCoh(X).

This ∞-category appears in Beraldo’s work, under the name Sph(X,n − 2) in [Ber19],
and as Dder(X) for n = 1 in [Ber20]. In particular, using Beraldo’s technology, the right-
hand-side in the above definition may be expressed as IndCoh0.

Remark 47. We follow [Ber20] in nomenclature, since we find it quite evocative: the

key difference between CrysEn
(X) and Crysder

En
(X) is that the former only depends on

the underlying classical stack of X (and even further only its reduction), while the latter
genuinely depends on the derived structure of X. This is because QCoh(X) is susceptible
to the derived structure, while XdR, and hence its ∞-categories of sheaves, are not.

For the purpose of stating Beraldo’s result, recall e.g. from [BZNF, Section 5.3] or [HA,
Section 5.3.1], that for any n ≥ i ≥ 1, the Ei-center of an En-category C is defined to be
ZEi

(C) = End
Mod

Ei
C

(C), the endomorphism ∞-category of C among Ei-modules over itself.

The Ei-center also goes by the name Ei-Hochschild cochains, e.g. in [Ber19].

Theorem 48 (Beraldo, [Ber19]). Let X be a perfect6 stack. For any integers n ≥ 1 and
1 ≤ i ≤ n − 1, there is a canonical equivalence of ∞-categories

ZEi
(Crysder

En
(X)) ≃ Crysder

En−i (X
Si).

Remark 49. The above Theorem of Beraldo may be viewed as an anlogue of [BZNF,
Corollary 5.12], which identifies the Ei-center of quasi-coherent sheaves on a perfect stack
X as

ZEi
(QCoh(X)) ≃ QCoh (XSi)

for all i ≥ 1. This is possible because QCoh(X) is a symmetric monoidal ∞-category. On
the other hand, En-crystals are only an En-monoidal ∞-category, and as such admit only
Ei-centers for i ≤ n.

Remark 50. The appearence of derived En-crystals in the statements of the above The-
orem, instead of the non-derived version (which is to say, Beraldo’s IndCoh0 instead of
the usual IndCoh) is due to IndCoh, unlike QCoh, not behaving as nicely with respect to
integral kernels, see [BZNP]. Derived En-crystals mix En-crystals with QCoh, allowing to
utilize the results of [BZNF].

5This might seem contradictory, but what is going on is that the original Lie algebra structure on TX

is informing the way in which TX[1 − n] is a En-algebra in LieAlg(IndCoh(X)).
6As explained in [Ber19, Remark 2.2.1], this is taken here to mean algebraic quasi-compact derived

stacks with an affine diagonal and perfect cotangent complex.



Other than accomodating the above computation of their center, derived En-crystals
are also useful for making precise the relationship between En-crystals and (n− 1)-shifted
cotangent bundles.

Proposition 51. For every n ≥ 2 there is a canonical equivalence of ∞-categories

Crysder
En

(X) ≃ QCoh(T ∗[n − 1]X).

Proof. Using Proposition 43, we may identify En-crystals with En-D-modules. Then
Proposition 44 gives rise to the sequence of equivalences of ∞-categories

Crysder
En

(X) ≃ Mod
D

En
X

(IndCoh(X)) ×QCoh(X) IndCoh(X)
≃ ModSym∗

(TX[1−n])(IndCoh(X)) ×QCoh(X) IndCoh(X)
≃ ModSym∗

OX
(TX[1−n])(QCoh(X))

≃ QCoh(T ∗[n − 1]X),
the last of which made use of the fact that the bundle projection T ∗[n−1]X →X is an affine
morphism, corresponding to the quasi-coherent sheaf of algebras Sym∗

OX
(TX[1 − n]). �

Remark 52. The preceding Proposition may be viewed as partial justification for the
quantization claim of Remark 42. On the other hand, as consequence of Formal HKR and
Proposition 12, the ∞-category of En-crystals for n ≥ 2 may also be described as

CrysEn
(X) ≃ IndCoh(Ωn−1

X XdR) ≃ IndCoh(T̂ [2 − n]X).
The reason for this off-by-one difference is that the shifted tangent and cotangent spaces
T̂ [2 − n]X and T ∗[n − 1]X are related by Koszul duality.

13. The En-Hodge filtration is split for n ≥ 2

One incarnation of the quantization statement in Remark 42, in the classical n = 1
case, is Simpson’s stacky interpretation of the Hodge filtration on de Rham cohomology
from [Sim]. In light of the well-known correspondence between filtrations and A1-actions,
Simpson constructs an A1-family of stacks XHodge, such that

● its generic fiber is the de Rham space, i.e. (XHodge)λ ≃XdR for all λ ∈ A1 − {0},

● its special fiber is the 1-shifted tangent space7, i.e. (XHodge)0 ≃ T̂ [1]X.

This maye be summarized through the diagram

T̂ [1]X XHodge XdR ×Gm

{0} A1 Gm,

both of the squares of which are pullbacks, and which exhibits XHodge as a deformation

of T̂ [1]X into XdR. To be able to give an analogous description for higher n, we discuss
the canonical source of such deformations.

Construction 53 (Deformation to the normal cone). Given Y ∈ FMPX/, its deformation
to the normal cone, as constructed in [GR, Section 9.2.4], is a canonically defined formal
moduli problem Yscale ∈ FMPX//Y ×A1 . We view it as an A1-family of formal moduli
problems under X, and it satisfies

Yscale ×A1 Gm ≃ Y ×Gm, Yscale ×A1 {0} ≃ T̂ [1](X/Y ).

7In analogy with the classical Hodge filtration, this is called the Dolbeault space of X in [Sim].



That is to say, Yscale has Y as its generic fiber, while its special fiber is the completed
relative 1-shifted tangent space T̂ [1](X/Y ) ≃ VectX(TX/Y [1]), which may be viewed as a
the derived normal bundle of X in Y .

Remark 54. We given an informal sketch of how Yscale is constructed, that we learned
from [EY]. We use the equivalence FMPX/ ≃ LieAlgd(X) of (2), and describe Lie alge-
broids in terms of the forgetful functor LieAlgd(X) → IndCoh(X)/TX . Thus the formal

moduli problem Y over X corresponds to the Lie algebroid TX/Y
fÐ→ TX . By scaling, which

is to say, by considering TX/Y
λfÐ→ TX for λ ∈ A1, we obtain an A1-family of Lie algebroids

on X. Passing back through the equivalences of ∞-categories, this gives rise to the desired
A1-family Yscale in FMPX/. Its fiber (Yscale)λ corresponds to the Lie algebroid

● TX/Y
λfÐ→ TX , when λ ≠ 0. Multiplication by λ−1 induces an equivalence of Lie

algebroid with TX/Y
fÐ→ TX . Thus the generic fiber of the A1-family is (Yscale)λ ≃ Y.

● TX/Y
0Ð→ TX , when λ = 0. Under the equivalence of ∞-categories (2), this cor-

responds to the formal moduli problem VectX(TX/Y [1]) ≃ T̂ [1](X/Y ) under X.

Thus the special fiber of the A1-family in question is (Yscale)0 ≃ T̂ [1](X/Y ).

As observed in [GR, Example 9.2.4.3], applying the deformation to the normal cone
construction to the de Rham space (XdR)scale ≃XHodge, recovering (a version of) Simpson’s

Hodge stack. Since the En-analogue of XdR is BXΩn
XXdR ≃ Ωn−1

X XdR, we obtain the

appropriate analogue of the Hodge stack as XEn

Hodge ∶= (Ωn−1
X XdR)scale. The computation

at the beginning of section 10 shows its special fiber to be

(XEn

Hodge)0 ≃ T̂ [1](X/Ωn−1
X XdR) ≃ T̂ [2 − n]X

by the computation at the beginning of section 10. When n = 1, this recovers the Dolbeault
space T̂ [1]X. But when n ≥ 2, the Formal HKR Theorem identifies the right-hand side

with Ωn−1
X XdR - the generic fiber of the A1-family in question. This exhibits XEn

Hodge as

the trivial A1-family with fiber Ωn−1
X XdR for all n ≥ 2.

Remark 55. Though we exhibited a trivialization for the A1-family XEn

Hodge, it depended

on the choice of a Formal HKR isomorphism, or equivalently, a formality isomorphism of
operads En ≃ Pn. Thus while XEn

Hodge is a trivializable family, it is not canonically trivial.

Remark 56. The En-variant of the Hodge stack XEn

Hodge admits an interpretation from

the perspective of the familiar identifications between A1/Gm and filtrations, and BGm

and gradings. The complex Γ(X; Ωn−1
X XdR), which is by Lemma 12 for all n ≥ 2 a version

of the (n− 2)-th higher Hochschild homology of X, with a filtration. This is to be viewed
as the analogue of the Hodge filtration, in accordance with which Its associated graded is
Γ(X; T̂ [1−n]X) ≃ O(T̂ ∗X[n−1]). But unlike the n = 1 case, the relevant Hodge-to-de Rham
spectral sequence always splits for n ≥ 2, and thus the filtration exhibits an equivalence
between the En-de Rham cohomology of X and the shifted cotangent complex T̂ ∗X[n− 1].
Remark 57. The Hodge filtration on de Rham cohomology corresponds to the canonical
degree filtration on differential operators. Viewing the latter as a universal enveloping
algebra, this is just the PBW filtration. From this perspective, the splitting of the relevant
En-filtration is not at all surprising, and in fact encoded in Proposition 44.

14. Loop spaces and connections

Finally we discuss a relationship between En-crystals for different n. We will do this as
an application of Preygel’s Localization Theorem from [Pre]. Upcoming work of Ben-Zvi



et. al. will give a simpler perspective on this result, deriving it from equivariance properties
of the En-operads.

In what follows, we require a version of the Tate construction for Ind-coherent sheaves,
called the t-Tate construction in [Pre].

Construction 58. The setting is: Y is a derived scheme (or derived algebraic space) with
an action of a g-dimensional Lie group G. That equips the k-linear ∞-category Coh(Y )
with a G-action, and its categorical G-invariants Coh(Y )G are naturally a kG-linear ∞-
category. Here kG ≃ C∗(BG;k) are the (derived) G-invariants of the trivial G-module
k. Recall the Tate construction: there is a certain norm map Nm ∶ ΣgkG → kG, whose
cofiber ktG is a derived k-algebra. The t-Tate construction for IndCoh(Y ) is defined as
the base-change

IndCoh(Y )τG ∶= Ind(Coh(Y )G ⊗kG ktG).
For general Y (derived stacks, or nice-enough functors) with a G-action, we extend the
definition of the t-Tate construction by descent.

Example 59. When G = SU(2) is the circle group, a classical computation, see e.g. [NS,

Section 1.4], shows that kSU(2) ≃ k[[β]] for some generator β in degree 2, and ktSU(2) ≃
k((β)). Thus the t-Tate construction has the effect of inverting the action of the Bott
element β. In particular, for Y equipped with a trivial SU(2)-action, we find that

IndCoh(Y )τSU(2) ≃ IndCoh(Y )⊗k k((β)).
This works analogously for torus groups G = SU(2)r for any integer r ≥ 1.

Proposition 60. Fix an equivalence of derived rings C∗(BSO(2)r;k) ≃ k[[β1, . . . , βr]]
with generators βi in degree −2. The map Ωn+2r−1

X XdR → Ωn−1
X XdR is SO(2)r-equivariant

and induces an equivalence of ∞-categories

CrysEn+2r(X)τSO(2)r ≃ CrysEn
(X)⊗k k((β1, . . . , βr)).

Proof. Due to both sides satisfying descent (by our definition of the t-Tate construction),
it suffices to assume that X is a derived algebraic space. Recalling Lemma 12, we are

considering the adjunction induced on Ind-coherent sheaves from the map (XSn+2r−2)∧X →
(XSn−2)∧X . This map of formal moduli problems is SO(2)r-equivariant, with the equiv-
ariance coming from the SO(2)r-equivariant space map Sn−2 → Sn+2r−2. This is the
equatorial inclusion, and coincides with the inclusion of the SO(2)r-fixed pointes into the
(n + 2r − 2)-sphere. We are thus in the setting to which Preygel’s Localization Theorem
[Pre, Theorem 5.3] applies, and it concludes the proof. �

Remark 61. Informally, after Tate-periodization, we may freely convert any number
of E2-degrees in higher crystals into the same number of Bott element actions. As the
upcoming work of Ben-Zvi and Safronov will explain, this process may be understood in
terms of rotational action of SU(2) on the little disc operad.

Let us write out what Proposition 60 says in the edge cases:

(a) For r = 1, we obtain the equivalence of ∞-categories

CrysEn+2(X)τSO(2) ≃ CrysEn
(X)⊗k k((β)).

(b) For n = 1, we obtain the equivalence of ∞-categories

CrysE2r+1(X)τSO(2)r ≃ Crys(X)⊗k k((β1, . . . , βr)).
(c) For n = 2, we obtain the equivalence of ∞-categories

CrysE2r+2(X)τSO(2)r ≃ IndCohX(X ×X)⊗k k((β1, . . . , βr)).



Comparing to (b) and (c), we see a qualitative difference between Er-crystals for even and
for odd values of r. Applying (a) for n = 1, we recover the equivalence

IndCoh(L̂X)τSO(2) ≃ Crys(X)⊗k k((β)),
the main result of [BZN]. When X is a derived algebraic space, so that X ∣CAlg♡k

takes

values in discrete spaces, Proposition 15 shows that we may drop the completion on the
left-hand side, obtaining (modulo Tate-periodization) an equivalence between sheaves on
the derived free loop space LX, equivariant under the rotation of loops, and D-modules
on X.
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