
GROTHENDIECK SPECTRAL SEQUENCE

IN HIGHER ALGEBRA

ROK GREGORIC

“One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.”

— J.R.R. Tolkien, The Lord of the Rings

Spectral sequences are in many ways like the rings of power from J.R.R Tolkien’s mag-
num opus The Lord of the Rings. They are intricate tools of an immense yet subtle power,
enabling their users to achieve great feats, while they inspire fear in the hearts of most
other beings1. They appeared rather suddenly in the development of mathematics, in
many different facets with many different names, as gifts from the devil of abstract alge-
bra to many different fields: algebraic topology, algebraic geometry, complex geometry,
and representation theory, to just name a few. In each of those fields they allowed those
who would dare use them (perhaps most spectacularly Serre) to achieve astounding results
and great leaps forward.

And as did the dark lord Sauron forge in secret another ring to control and bring
together all the other rings of power, so did Grothendieck in his landmark Tohôku paper
construct a then-new spectral sequence, of which a vast majority of spectral sequences in
common use at the time were special cases. This was the Grothendieck spectral sequence.

The fall of Mordor marked the end of the Third Age, and likewise has mathematics come
a long way since the days of Grothendieck. The ideas that have been revolutionary then
have become standard and default today, and especially in the field of homotopy theory,
many ideas which were then barely coming into existence, mainly related to spectra and
∞-categories, now take center stage.

In this brave new world, the mantra that the Grothendieck spectral sequence may
be used to derive most of the spectral sequences we commonly encounter, is becoming
increasingly false. The spectral sequences of Atiyah-Hirzebruch, Adams, and Adams-
Novikov, all utilized on a daily basis by most workers in stable homotopy theory, are three
prominent examples of spectral sequences which fail to be special cases of Grothendieck’s.

But unlike Sauron’s power, which all but completely faded from Middle Earth following
his fall, the influence of Grothendieck lives on, as powerful today as ever. In this note we
strive to further stoke its fire, by exhibiting a generalization of the Grothendieck spectral
sequence, which will encompass as special cases some of the more prominent examples
of spectral sequences mentioned above that the classical Grothendieck spectral sequence
does not.

1. Setting up the spectral sequence

1.1. Indexing of spectral sequences. Let us quickly explain our conventions regarding
spectral sequences.

Suppose we are given a collection of objects {Ep,qr }p,q,r of an abelian category A and a
collection morphisms {dp,qr }p,q,r in A. We say that these form a spectral sequence, and call
Ep,qr the pages and dp,qr the differentials, if compostable pairs of differentials compose to

Date: February 20, 2020.
1Another distinguishing property of the rings of power is that they slowly work to corrupt their users.

We leave it to the reader to form their own conclusions as to whether or not spectral sequences are alike
in that respect as well.
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zero, ther homology of differentials on the r-th page is equivalent to the (r + 1)-th page,
and they are compatible in one of the following ways:

(a) We have dp,qr ∶ Ep,qr ↦ Ep−r,q+r−1
r , in which case we say that the spectral sequence

is homologically-indexed.
(b) We have dp,qr ∶ Ep,qr ↦ Ep+r,q−r+1

r , in which case we say that the spectral sequence
is cohomologically-indexed.

(c) We have dp,qr ∶ Ep,qr ↦ Ep+r,q+r−1
r , in which case we say that the spectral sequence

is Adams-indexed.

These indexing conventions are clearly equivalent, which is to say that a spectral sequence
{Ep,qr , dp,qr } indexed according to one of them may be converted into one indexed by another
one, simply by appropriately relabelling the indices p and q.

As tradition dictates, we will typically use s an t in place of p and q when dealing
with an Adams-indexed spectral sequence. Unlike common practice however, we will
follow HA in not switching the subscripts and superscripts in the notation for a page of a
homologically-indexed spectral sequence. That is to say, we will write Ep,qr for what might
be more commonly denoted Erp,q. To compensate, we will try to be thorough in always
clearly specifying which indexing convention we are employing for each specific spectral
sequence we shall enounter.

1.2. t-structures on stable ∞-categories. We review those basic notions relating to
t-structures on stable ∞-categories from §1.2 and §1.3 of HA which will be used extensively
throughout this note.

A t-structure on a stable ∞-category C consists of a pair of full subcategories C≥0,C≤0 ⊆ C

satisfying the following properties:

(i) For X ∈ C≥0 and Y ∈ C≤0, the space MapC(X,Y [−1]) ≃ 0.
(ii) We have inclusions C≥0[1] ⊆ C≥0 and C≤0[−1] ⊆ C≤0.

(iii) For any X ∈ C there exists a fiber sequence

X ′ →X →X ′′

with X ′ ∈ C≥0 and X ′′ ∈ C≤0[−1].
For any n ∈ Z we denote C≥n ≃ C≥0[n] and C≤n ≃ C≤0[n]. Inclusions C≥n ⊆ C and C≤n ⊆ C

admit a left and a right adjoint respectively, which we denote τ≥n ∶ C → C≥n and τ≤n ∶ C →
C≤n. Using the fact that C≥n ≃ C≥0[n] and C≤n ≃ C≤0[n], we may explicitly express these
functors as

(1) τ≤nX ≃ τ≤0(X[−n])[n], τ≥nX ≃ τ≥0(X[−n])[n].
For every object X ∈ C the unit and counit of respective adjunctions form a fiber sequence

(2) τ≥nX →X → τ≤n−1X.

The subcategory C≥0 ∩ C≤0 ⊆ C is denoted C♡ and called the heart of the t-structure.
It is equivalent to an abelian category. The functor τ≥0τ≤0 ∶ C♡ → C is denoted π0, and
more generally we define for every n ∈ Z the n-th homotopy group of an object X ∈ C to
be πnX = π0(X[−n]). Using (1), we find that

(3) τ≥nτ≤nX ≃ τ≥n(τ≤0(X[−n])[n]) ≃ (τ≥0τ≤0(X[−n]))[n] ≃ (πnX)[n],
relating the n-th homotopy group and the n-truncations.

We shall make use of several conditions one can impose on a t-structure. We say that
a t-structure on a stable ∞-category C is left complete if the canonical functor from C to
the tower

⋅ ⋅ ⋅ → C≤2
τ≤1ÐÐ→ C≤1

τ≤0ÐÐ→ C≤0
τ≤−1ÐÐ→ C≤−1

τ≤−2ÐÐ→ C≤−2 → . . .

exibits it as its limit. That implies that every object X ∈ C satisfies X ≃ lim←Ð τ≤nX, and

that every such limit of truncations determines an object in C. Left completeness of a t-
structure also implies that it is left separated, which means that the subcategory ⋂C≥n ⊆ C
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contains only the zero object. Dually a t-structure is right complete if the canonical functor
from the tower

⋅ ⋅ ⋅ → C≥2
τ≥1ÐÐ→ C≥1

τ≥0ÐÐ→ C≥0
τ≥−1ÐÐ→ C≥−1

τ≥−2ÐÐ→ C≥−2 → . . .

to C exhibits it as the colimit of the tower, and it implies right separatedness, i.e. that the
subcategory ⋃C≤n ⊆ C contains only the zero object.

An object X ∈ C is bounded above if it belongs to the subcategory ⋃C≤n ⊆ C and bounded
below2 if it belongs to the subcategory ⋂C≥n ⊆ C.

Let C and D be two stable ∞-categories equipped with t-structures. A functor F ∶ C→D

is left t-exact if it it exact and satisfies F (C≤0) ⊆ D≤0, and right t-exact if it is exact and
satisfies F (C≥0) ⊆ D≥0. Since exact functors commute with suspension, this implies that
F (C≤n) ⊆ D≤n and F (C≥n) ⊆ D≥n respectively for all n ∈ Z. A functor which is both left
and right t-exact is said to be t-exact.

We shall say that a t-structure on a stable ∞-category C is compatible with sequential
colimits if C admits limits of diagrams of the shape Z≥0, and the subcategory C≤0 ⊆ C is
closed under such colimits.

1.3. Filtered objects. Let C be an ∞-category. A filtered object in C is defined to be a
functor X ∶ Z → C, where Z is viewed as a poset and hence as a category. That is to say,
a filtered object in C is a string of composable morphisms

⋅ ⋅ ⋅ →X(−2) →X(−1) →X(0) →X(1) →X(2) → . . .

in C. We adopt suggestive notations X(−∞) ≃ lim←ÐX and X(∞) ≃ limÐ→X, provided of

course that these (co)limits exist in C.

Proposition 1. Let C be a stable ∞-category equipped with a t-structure, and let X ∶ Z→ C

be a filtered object. Assume that the t-structure on C is compatible with sequential colimits.
Then there exists a conditionally convergent homologically-indexed spectral sequence

Ep,q1 = πp+q cofib(X(p − 1) →X(p)) ⇒ πp+q cofib(X(−∞) →X(∞))
with values in the abelian category C♡. Under the assumption that X(n) ≃ 0 for all n≪ 0,
this spectral sequence converges unconditionally to πp+qX(∞).

Proof. A spectral sequence with the desired first page is constructed in Construction
HA.1.2.2.6 for any filtered object X (or more generally any gapped object). This spectral
sequence does not change if we replace the filtered object X with the filtered object X
defined by X(n) ≃ cofib(X(−∞) →X(n)) by [GP16, Proposition 2.18]. The latter filtered
object satisfies X(−∞) ≃ 0, the analogue of the Hausdorff condition, and completeness is
automatic in our setup, thus [Boa99, Theorem 9.2] ensures conditional convergence of the
spectral sequence to πp+qX(∞).

Under the additional assumption that X(n) ≃ 0 for all n ≪ 0, we have X ≃ X and
unconditional convergence follows from Proposition HA.1.2.2.14. �

1.4. Grothendieck spectral sequence. We come to our version of the Grothendieck
spectral sequence, or perhaps rather the hypercohomology spectral sequence.

Theorem 2. Let F ∶ C→D be a left t-exact functor between stable ∞-categories equipped
with t-structures Assume that the t-structure on D is right separated and compatible with
sequential colimits. Let X ∈ C be an object for which the limit lim←ÐF (τ≤nX) exists in D.

Then there exists a homologically-indexed conditionally convergent spectral sequence

Ep,q2 = πpF (πqX) ⇒ πp+q(lim←ÐF (τ≤nX))

2This is a rare point of departure from the terminology of HA, where the somewhat less intuitive terms
left bounded and right bounded are used for what we are referring to as bounded above and bounded
below respectively.
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with values in the abelian category D♡. If X is bounded above, the limit condition is
trivially satisfied, and the spectral sequence converges unconditionally to πp+qF (X).

Proof. Consider the filtered object Y ∶ Z→D given by Y (n) ≃ F (τ≥−nX). We have

cofib(Y (n − 1) → Y (n)) ≃ F (cofib(τ≥−n+1X → τ≥−nX)) ≃ F (τ≥−nτ≤−nX) ≃ F (π−nX)[−n],

where we have used that F , being exact, commutes with cofibers and suspension, and the
cofiber sequence (2) and equivalence (1) which hold for any t-structure. The canonical
maps τ≥−nX → X determine a map Y (∞) ≃ limÐ→F (τ≥−nX) → F (X). By the same sort of

computations as we had just made, its cofiber is

cofib(Y (∞) → F (X)) ≃ limÐ→ cofib(F (τ≥−nX) → F (X)) ≃ limÐ→F (τ≤−n−1X).

Since F is left t-exact, we have F (τ≤−n−1X) ∈ D≤−n−1, and so (since the t-structure on D

is compatible with sequential colimits) the cofiber of Y (∞) → F (X) belongs to ⋂D≤n,
which is the zero subcategory by virtue of D being right separated. The ∞-category D is
stable, thus its cofiber being trivial implies the map Y (∞) → F (X) to be an eqivalence.
Yet another computation of the same sort shows that

cofib(Y (−∞) → Y (∞)) ≃ lim←Ð cofib(F (τ≥−nX) → F (X)) ≃ lim←ÐF (τ≤−n−1X),

where the one thing to note is that the limit commutes with the cofiber because every
fiber in a stable ∞-category is equivalent to the fiber of the suspension of the same map.

Now we may envoke Proposition 1 to produce a conditionally convergent homologically-
indexed spectral sequence

Ep,q1 = π2p+qF (π−pX) ⇒ πp+q(lim←ÐF (τ≤nX))

with values in D♡. Let us introduce new variables p′ = 2p + q and q′ = −p. Since the
differential on the r-th page of the spectral sequence acts on the indices by (p, q) ↦
(p − r, q + r − 1), it acts on the new variables by

(p′, q′) ↦ (2(p − r) + (q + r − 1),−(p − r)) = (p′ − (r − 1), q′ + (r − 1) − 1).

It follows that setting E
p,q
r = E−q,p+2q

r−1 produces a new homologically-indexed spectral
sequence, existing from the second page onward. It has the desired second page by con-
struction, and the limiting term is also the one we were after, since p′ + q′ = p + q. �

Remark 3. From the explicit formula for the spectral sequence of a filtered object given
in Construction HA.1.2.2.6, the pages of the spectral sequence of Theorem 2 may be
expressed as

Ep,qr+2 = im(πp+qF (τ≥qτ≤q+rX) → πp+qF (τ≥q−rτ≤qX)).

At some cost of simplicity, it is possible to dispense with many of the assumptions in
the statement of Theorem 2.

Variant 4. Let F ∶ C → D be an exact functor between stable ∞-categories equipped with
t-structures. Assume that the t-structure on D is compatible with sequential colimits. Let
X ∈ C be an object for which the limit lim←ÐF (τ≥−nX) and the colimit limÐ→F (τ≥−nX) both

exists in D. Then there exists a homologically-indexed conditionally convergent spectral
sequence

Ep,q2 = πpF (πqX) ⇒ πp+q cofib(lim←ÐF (τ≥−nX) → limÐ→F (τ≥−nX))

with values in the abelian category D♡.

In the opposite direction, we may obtain a more elegant form of Theorem 2, provided
we are willing to accept even stricter assumptions.
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Variant 5. Let F ∶ C → D be a left t-exact functor between stable ∞-categories equipped
with t-structures. Assume that the t-structure on C is left complete, that the t-structure on
D is right separated and compatible with sequential colimits, and that F preserves sequential
limits. For every X ∈ C there exists a homologically-indexed conditionally convergent
spectral sequence

Ep,q2 = πpF (πqX) ⇒ πp+qF (X)
with values in the abelian category D♡. If X is bounded above, this spectral sequence
converges unconditionally.

Remark 6. The Grothendieck spectral sequence is about reconstructing the whole functor
F ∶ C→D, which we see on the E∞-page, with the restriction to the heart F ∣C♡ that we see
on the E2-page. This is especially clear in its incarnation as Variant 5. The existence of
the other variants attests to how different assumptions on F , C, and D effect the “best-case
hope” for how much of F we can concievably recover from F ∣C♡ .

2. Applications

2.1. Classical Grothendieck spectral sequence. Let A be an abelian category with
enough injective objects. Its left bounded derived ∞-category D+(A), as developed in
§1.3.2 of HA, is a stable ∞-category equipped with a right complete t-structure and an
equivalence of abelian categories D+(A)♡ ≃ A.

By Theorem HA.1.3.3.2, the left bounded derived ∞-category satisfies the following
universal property: for any stable ∞-category C equipped with a right complete t-structure,
there is an equivalence between the ∞-category of left t-exact functors D+(A) → C and the
category of left exact functors A → C♡, obtained by sending a left t-exact functor functor
F ∶D+(A) → C to the composition

A ≃D+(A)♡ ⊆D+(A) FÐ→ C
π0Ð→ C♡.

The inverse map of the stated equivalence sends a left exact functor of abelian categories
F ∶ A → C♡ to a left t-exact functor RF ∶ D+(A) → C which we call the right derived
functor of F . Its homotopy groups are given in terms of classical right derived functors
as π−iRF ≃ RiF , both viewed as functors A→ C♡, for all i ∈ Z.

The construction of right derived functors is not functorial in general. That is to say,
given abelian categories A and B with enough injective objects each, a stable ∞-category

C equipped with a right complete t-structure, and composable functors A
FÐ→ B

GÐ→ C♡,
the left t-exact functors RG ○ RF and R(G ○ F ) need not coincide. That is the case
under mild assumptions however, for which it is useful to introduce the terminology that
F maps injective objects to G-acyclic objects if the functor (RG) ○ F ∶ A → C sends the
full subcategory spanned by injective objects Ainj ⊆ A to C♡.

Lemma 7. Let A and B be abelian categories with enough injective objects. Let C be a

stable ∞-category C equipped with a right complete t-structure, and let A
FÐ→ B

GÐ→ C♡ be
left exact composable functors. Suppose that F maps injective objects to G-acyclic objects.
Then there is a canonical equivalence R(G ○ F ) ≃ RG ○RF.

Proof. By combining Proposition HA.1.3.3.12 with the universal property of D+(A) re-
called above, we see that the map Fun(D+(A),C) → Fun(Ainj,C), given by restriction to
the subcategory Ainj ⊆ A ≃ D+(A)♡ ⊆ D+(A), induces an equivalence between left t-exact
functors D+(A) → C and those functors Ainj → C♡ which preserve finite products. By this
equivalence the functor R(G ○ F ) belongs to the restriction of G ○ F to injective objects.
Hence it suffices to show that the restriction of RG ○RF to Ainj agrees with G ○ F .

Fix an injective object A ∈ Ainj. It follows from the argument we just made above
that RF (A) belongs to D+(B)♡ ≃ B, and is as such RF (A) ≃ π0RF (A) ≃ F (A). But
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by the assumption that F maps injective objects to G-acyclic objects, we also have that
RG(F (A)) ∈ C♡ and as such

RG(RF (A)) ≃ RG(F (A)) ≃ π0RG(F (A)) ≃ G(F (A)).
This is what we needed to show. �

We will need another variation of the derived ∞-category. Given a Grothendieck abelian
category A, there exists by §1.3.5 of HA another stable ∞-category equipped with a t-
structure, denoted D(A) and called the unbounded derived ∞-category of A. Its t-structure
is both left and right complete, compatible with filtered colimits, and there is still an
equivalence D(A)♡ ≃ A. There is also a fully faithful embedding D+(A) →D(A).

Proposition 8 (Grothendieck spectral sequence). Let A
FÐ→ B

GÐ→ C be a composable pair
of left exact functors of abelian categories. Suppose that A and B have enough injective
objects, C is a Grothendieck abelian category, and F maps injective objects into G-acyclic
objects. For any A ∈ A there exists an unconditionally convergent cohomologically-indexed
spectral sequence

Ep,q2 ≃ RpG ○RqF (A) ⇒ Rp+q(G ○ F )(A)
with values in C.

Proof. We wish to apply Theorem 2 to the functor RG ∶ D+(B) → D(C) evaluated at
RF (A). The universal property of the left bounded derived ∞-category ensures that
RG is left t-exact, while the t-structure on D(C) is right complete and compatible with
filtered colimits. Thus the assumptions of Theorem 2 are satisfied and it gives rise to an
unconditionally convergent homologically-indexed spectral sequence

Ep,q2 ≃ πpRG(πqRF (A)) ⇒ πp+qRG(RF (A))
with values in D♡. Here we have used the fact that, since RF is left t-exact, we have
RF (A) ∈ D+(B)≤0, which is in particular bounded above. Reindexing the spectral se-
quence to the cohomological indexing convention by p↦ −p and q ↦ −q, and using Lemma
7 to identify the limiting term, we obtain the desired spectral sequence. �

Remark 9. The above is not the standard derivation of the Grothendieck spectral se-
quence. Though both may be traced back to an application of the spectral sequence of a
filtered object, the filtered objects in question are different. The classical proof chooses
a resolution for A and then procedes to use it to construct the spectral sequence. As
such, the first page may depend on the arbitrary choice of resolution, and only from the
second page onwards does the spectral sequence depend only on the functors F , G, and
the object A given. On the other hand, the approach we have taken produces a spec-
tral sequence which only exists from the second page onwards, but we only made use of
homotopy-invariant objects throughout.

2.2. Atiyah-Hirzebruch spectral sequence. The ∞-category of spectra Sp carries a
t-structure in which the subcategory Sp≥0 ≃ Spcn ⊆ Sp is taken to be the full subcategory
of connective spectra and Sp≤0 ⊆ Sp is taken to be the full subcategory coconnective
spectra. Homotopy groups and truncations with respect to this t-structure recover their
usual meanings in stable homotopy theory. The t-structure on spectra is compatible with
colimits by Remark HA.1.4.3.5, while Proposition HA.1.4.3.6 ensures that it is both left
and right complete, and that there is a canonical equvalence Sp♡ ≃ Ab.

Proposition 10 (Atiyah-Hirzebruch spectral sequence). Let X be a connective spectrum.
There eixsts for any E ∈ Sp a conditionally convergent Adams-indexed spectral sequence

Es,t2 = Hs(X;πtE) ⇒ Es−t(X)
with values in abelian groups. If E is eventiually coconnective, this spectral sequence
converges unconditionally.
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Proof. Consider the functor F ∶ Sp→ Sp given by E ↦Map
S
(X,E), the internal mapping

spectrum as discussed in §6.5.3 of SAG. It is defined to be the right adjoint to the functor
E ↦X ⊗E. Since smashing with connective spectra preserves (or increases) connectivity,
the latter functor is t-exact. As its right adjoint, F is hence left t-exact and commutes with
limits. The stage is set to apply Variant 5 and obtain a homologically-indexed spectral
sequence

Ep,q2 ≃ πpMap
S
(X,πqE) ⇒ πp+qMap

S
(X,E).

We switch to Adams-indexing by setting s = −p and t = q, and note that Es(X) ≃
π−sMap

S
(X,E) is the cohomology theory associated to the spectrum E essentially by

definition. Since eventually coconnective is precisely the same as bounded above with
respect to the t-structure on Sp, the convergence claim also follows from Variant 5. �

Remark 11. The dual version of the Atiyah-Hirzebruch spectral sequence, computing
generalized homology, is sometimes preferable to its cohomological cousin from Proposition
10 as it enjoys better convergence properties3. One might expect at first glance that we
could also deduce it in a similar way to Proposition 10 from a dual version of Theorem 2
or Variant 5. This is however not the case, as the dual version of Theorem 2 would impose
the requiremenet that the t-structure be compatible with filtered limits. The standard
t-structure on Sp fails to satisfy this condition, and the obstruction to it is measured by
the well-known Milnor lim←Ð

1 sequence.

2.3. Fixed-point and Tate spectral sequences. Let X be a space, which we may
equivalently view as an ∞-topos. The functor ∞-category Fun(X,Sp), which we may
view as the ∞-category of local systems of spectra on X (also called parametrized spectra
over X), is stable. The smash product and the t-structure on Sp induce one a symmetric
monoidal structure and a t-structure on Fun(X,Sp) respectively, each by point-wise ap-
plication of the one on spectra. Thus the fact that the t-structure on Sp is both left and
right complete implies the same holds for the one on Fun(X,Sp). Since colimits in functor
∞-categories are calculated object-wise, it also follows that the t-structure on Fun(X,Sp)
is compatible with colimits. There is an equivalence Fun(X,Sp)♡ ≃ Fun(X,Ab), which
is to say that the heart of the t-structure on local systems of spectra is equivalent to the
category of local systems of abelian groups4.

Denote by p ∶ X → {∗} the terminal map to a point. Composing with it induces a
functor p∗ ∶ Sp → Fun(X,Sp) which sends a spectrum to the constant local system on
X. It is t-exact, preserves limits and colimits, since all of those are computed point-
wise on Fun(X,Sp). Since the ∞-category Fun(X,Sp) is presentable, this implies that p∗

admits a left and a right adjoint p∗, p! ∶ Fun(X,Sp) → Sp, which are right and left t-exact
respectively. Note that these may be identified with the colimit and limit respectively, i.e.
we have p∗L ≃ limÐ→L and p!L ≃ lim←ÐL.

By [NS17, Theorem I.4.1] there exists a unique functor pT∗ ∶ Fun(X,Sp) → Sp, called
the Farrell-Tate construction, fitting into a cofiber sequence

p!(DX ⊗ −) → p∗ → pT∗ ,

where the functor DX ∶X → Sp is given informally for every point x ∈X by

(4) DX(x) ≃ lim←Ð
y∈X

Σ∞
+ MapX(x, y).

3Really the dual Atiyah-Hirzebruch spectral sequence converges dually to the spectral sequence in 5,
i.e. for all eventually connective spectra. It is just that we much more often encounter connective spectra
than coconnective ones, e.g. suspension spectra of all spaces are connective, while they are quite rarely
also coconnective.

4There are indeed local systems in the classical sense. Since Ab is a 1-category, we have Fun(X,Ab) ≃
Fun(τ≤1X,Ab), and the 1-truncation τ≤1X may be identified with the fundamental groupoid of X, recov-
ering the usual definition (or at least one variant of it) of a local system of abelian groups on X.
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Here the morphism space is understood by viewing X as an ∞-groupoid.

Example 12. Let G be a topological group and let the space in question be BG, its
classifying space. In that case everything discussed above acquires new familiar names.
The ∞-category Fun(BG,Sp) is variously called spectra with G-action and Borel (or naive)
G-equivariant spectra. For X ∈ Fun(BG,Sp) the spectrum p∗X is denoted XG and called
the coinvariants of X, while the spectrum p!X is denoted XG and called the fixed-points
of X. We have DBG ≃ p∗(S[G]G) and the spectrum pT∗X is denoted XtG and called
the Tate construction5 of X. The discrete spectra with a G-action are Fun(BG,Sp)♡ ≃
Fun(BG,Ab), the G-modules or representations of G over Z. In that case we recover on
the level of homotopy groups

πiXG ≃ Hi(G;X), π−iX
G ≃ Hi(G;X), π−iX

tG ≃ Ĥi(G;X),
the usual group homology, group cohomology, and Tate cohomology respectively.

In analogy with Example 12, we will use the notation Ĥi(X;L) ≃ π−i(pT∗L) for a local
system of abelian groups L on any space X.

Proposition 13 (Fixed-point spectral sequence). Let X be a space and L be a local system
of spectra on X There exists an Adams-indexed conditionally convergent spectral sequence

Es,t2 ≃ Hs(X;πtL) ⇒ πt−s(p∗L)
with values in abelian groups. If L is bounded below, it converges unconditionally.

Proof. Since we already know that all the required assumptions are satisfied, we can apply
Variant 5 to the functor p∗ ∶ Fun(X,Sp) → Sp evaluated at L. This gives rise to the spectral
sequence which is the one desired after reindexing to the Adams-indexing convention, and
observing that the homotopy group π−s(p∗L) for L ∈ Fun(X,Sp)♡ ≃ Fun(X,Ab) is the
usual cohomology with coefficients in the local system Hs(X;L). �

Remark 14. Applying Proposition 13 to the constant local system p∗E for any E ∈
Sp reproduces the Atiyah-Hirzebruch spectral sequence of Proposition 10 in which the
connective spectrum is taken to be the suspension Σ∞

+ X. It is possible to extract the
Serre spectral sequence of a fibration in a similar way.

Proposition 15 (Tate spectral sequence). Let X be a space and L be a local system of
spectra on X. There exists an Adams-indexed conditionally convergent spectral sequence

Es,t2 ≃ Ĥs(X;πtL) ⇒ πt−s(pT∗L)
with values in abelian groups. If L is bounded below, it converges unconditionally.

Proof. We wish to apply Variant 4 to the functor pT∗ ∶ Fun(X,Sp) → Sp, for which we
must verify that that the assumptions are satisfied. That is indeed the case because the
Farelli-Tate construction is given as the cofiber pT∗ ≃ cofib(p!(DX ⊗ −) → p∗) of two exact
functors, and is as such exact itself, and because the ∞-category Sp contains all small
limits and colimits, hence in particular also the sequential limit and colimit required in
the statement of Variant 4.

Applying said result produces (after reindexing) an Adams-indexed conditionally con-
vergent spectral sequence

(5) Es,t2 ≃ Ĥs(X;πtL) ⇒ πt−s cofib(lim←Ðp
T
∗ (τ≥−nL) → limÐ→p

T
∗ (τ≥−nL)).

To identify the limiting term with the one appearing in the statement of the Proposition,
let us compute the two factors of the cofiber separately.

First let us deal with the first factor in the cofiber in (5). Note that the cofiber of
a morphism in an ∞-category is equivalent to the fiber of the suspension of the same

5For a finite group G this agrees with the Tate construction of Definition HA.6.1.6.21.
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morphism. Since limits commute with fibers, it follows that they also commute with
cofibers, and we get

lim←Ðp
T
∗ (τ≥−nL) ≃ cofib(lim←Ðp!(DX ⊗ τ≥−nL) → lim←Ðp∗(τ≥−nL)).

Let us again determine the factors appearing in the cofiber individually. The second factor
vanishes because p∗, being a right adjoint, commutes with limits, and the limit of τ≥−nL
vanishes due to the t-structure on Fun(X,Sp) being left separated. For the first factor,
note that the explicit formula (4) shows DX to be connective, we have DX ⊗ τ≥−nL ∈
Fun(X,Sp)≥−n. Because the functor p! is right t-exact, this implies that p!(DX ⊗ τ≥−nL)
belongs to Sp≥−n. Left separatedness of the t-structure on spectra again implies that
limÐ→p!(DX ⊗ τ≥−nL) ≃ 0. Together this implies that the first factor in the cofiber in (5)

vanishes.
Now let us examine the second factor in the cofiber in (5). It is given by

limÐ→p
T
∗ (τ≥−nL) ≃ cofib(limÐ→p!(DX ⊗ τ≥−nL) → limÐ→p∗(τ≥−nL)),

the first factor of which is equivalent to p!L since p! and smashing withDX both commuting
with colimits and the t-structure on Sp is right complete. To determine the second factor,
note that the maps τ≥−nL → L determine a morphism limÐ→p∗(τ≥−nL) → p∗L the cofiber of

which is

cofib(limÐ→p∗(τ≥−nL) → p∗L) ≃ limÐ→p∗(cofib(τ≥−nL→ L)) ≃ limÐ→p∗(τ≤−n−1L),
where we have used that p∗, being an exact functor, commutes with cofibers. Since p∗ is
left t-exact, this colimit belongs to the subcategory ⋂Sp≤−n ⊆ Sp, which contains only the
zero object due to the t-structure on Sp being right separated. It follows that the cofiber
is zero and so the map limÐ→p∗(τ≥−nL) → p∗L is an equivalence.

Returning to (5), we find that the limiting term of the spectral sequence is given by
homotopy groups of cofib(p!(DX⊗L) → p∗L) ≃ pT∗L, which is what we wanted to show. �

Remark 16. In the proof of Proposition 15 we made use of Variant 5 instead of Theorem
2. This is because the Farrell-Tate construction, while being an exact functor, in general
fails to be either left or right t-exact. Indeed, recall that for Z equipped with a trivial S1-
action, we have Ĥ∗(S1;Z) ≃ Z[u±1] with u a generator in degree 2. The Tate construction

ZtS
1

is thus neither connective nor coconnective, despite the fact that Z ∈ Ab ≃ Sp♡.

Let us spell out the classical versions of the fixed-point and Tate spectral sequences
familiar from equivariant homotopy theory. They follow instantly from Proposition 13
and Proposition 15 by applying them to the classifying space BG of a topological group
G and using the dictionary of Example 12.

Corollary 17 (Fixed-point spectral sequence). Let G be a topological group and X a
spectrum with a G-action. There exists an Adams-indexed conditionally convergent spectral
sequence

Es,t2 ≃ Hs(G;πtX) ⇒ πt−s(XG)
with values in abelian groups. If X is bounded below, it converges unconditionally.

Corollary 18 (Tate spectral sequence). Let G be a topological group and X a spectrum
with a G-action. There exists an Adams-indexed conditionally convergent spectral sequence

Es,t2 ≃ Ĥs(G;πtX) ⇒ πt−s(XtG)
with values in abelian groups. If X is bounded below, it converges unconditionally.

Example 19. One application of the Tate spectral sequence, in its classical form of Corol-
lary 18, is to the topological Hochschild homology spectrum THH(C) of a smooth proper
k-linear stable ∞-category C over a field k, equipped with its usual S1-action. Recalling
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that the periodic cyclic homology is defined as TP(C) ≃ THH(C)tS1
, the homologically-

indexed Tate spectral sequence reads

(6) E∗,q
2 ≃ THHq(C)[u±1] ⇒ TP∗+q(C),

where we have used the computation of the Tate cohomology of Z from Remark 16 to
identify the second page. This is called the non-commutative Hodge-to-de-Rham spectral
sequence in [Mat17]. When C is taken to be the bounded derived ∞-category of coherent
sheaves on a smooth proper scheme X over a field k of characteristic zero, the Hochschild-
Kostant-Rosenberg Theorem shows that (appropriate base-changes of) THH∗(C) and
TP∗(C) are equivalent to H∗(X; Ω∗

X) and the 2-periodic version of H∗
dR(X) respectively;

see [Mat17] for details. As pointed out there, the spectral sequence (6) is in that case pre-
cisely the 2-periodic version of the famous (cohomologically-indexed) Hodge-to-de-Rham
spectral sequence

Ep,q2 ≃ Hp(X; Ωq
X) ⇒ Hp+q

dR (X).
That said, the latter spectral sequence is traditionally obtained as the hypercohomology
spectral sequence associated to the algebraic de Rham complex Ω∗

X . Of course the hyper-
cohomology spectral sequence is itself a special case of Theorem 2, applied to the derived
∞-category.

2.4. Descent spectral sequence. Let X be an ∞-topos. A spectral sheaf on X is defined
to be a functor F ∶ Xop → Sp which preserves limits. These form a stable ∞-category
ShvSp(X) which is complete and cocomplete. By Proposition SAG.1.3.2.7, it carries a
t-structure in which F ∈ ShvSp(F )≤n if and only if F (U) ∈ Sp≤n for every U ∈ X. This
t-structure is right complete and compatible with colimits, but it is in general not left
complete nor even left separated.

Example 20. Supposing the ∞-topos X is not hypercomplete, it might contain ∞-
connective objects U ∈ X. That is to say, U might not be contractible despite satisfying
πiU ≃ 0 for all i ≥ 0. Its suspension spectrum F ≃ Σ∞

+ U , viewed as a spectral sheaf on X,
is thus n-truncated for every n ∈ Z by definition, exhibiting the failure of the t-structure
on ShvSp(X) to be left separated.

Given an ∞-topos X and a spectral sheaf F on X, there exists by Remark SAG.1.3.3.5
an essentially unique fiber sequence

F̃ →F → F̂

in ShvSp(X), in which F̃ is ∞-connective and F̂ is hypercomplete. According to Definition

SAG.1.3.3.2 and Proposition SAG.1.3.3.3, that is equivalent to saying that πiF̃ ≃ 0 for all
i ∈ Z, and that Ω∞F̂ is a hypercomplete object of X. The essential uniqueness mentioned
justifies calling F̃ the ∞-connective cover of F and F̃ the hypercompletion of F .

Lemma 21. Let X be an ∞-topos and let F be a spectral sheaf on X. Then the canonical
morphism F → lim←Ð τ≤nF exhibits the hypercompletion of F as F̂ ≃ lim←Ð τ≤nF .

Proof. The fiber of the canonical map F → lim←Ð τ≤nF is equivalent to lim←Ð τ≥nF , and we

must show that this spectral sheaf is ∞-connective. To determine its homotopy groups,
let us make use of the Milnor lim←Ð

1 sequence, which is in this incarnation a short exact
sequence

0→ lim←Ð
1 πk(τ≥nF ) → πk(lim←Ð τ≥nF ) → lim←Ðπk(τ≥nF ) → 0,

of sheaves of abelian groups on X♡. Since πk(τ≥nF ) ≃ 0 whenever k < n, it follows that for
any fixed k ∈ Z the sequence {πk(τ≥nF )}n>0 stabilizes at zero as n→∞ after finitely many
steps. Consequently both the first and the last term in the above short exact sequence
vanish, forcing the middle term to vanish as well. This shows that πk(lim←Ð τ≥nF ) ≃ 0 for

all k ∈ Z, hence that lim←Ð τ≥nF is the ∞-connective cover of F . �
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There is a canonical equivalence ShvSp(X)♡ ≃ ShvAb(X♡) of the heart with the category
of sheaves of abelian groups on the underlying ordinary topos X♡ of X. This induces a
fully faithful t-exact embedding of the derived ∞-category D(ShvAb(X♡)) → ShvSp(X).
Lemma 22. Let X be an ordinary topos. The inclusion D(ShvAb(X)) → ShvSp(X) is an
equivalence of ∞-categories.

Proof. This follows from Theorem SAG.2.1.2.2, since any ordinary topos is clearly hyper-
complete. �

Any geometric morphism of ∞-topoi f∗ ∶ X → Y induces by Remark SAG.1.3.2.8 an
adjunction f∗ ∶ ShvSp(Y) ⇆ ShvSp(X) ∶ f∗, in which the pushforward functor is given
by point-wise composition with f∗ ∶ Y → X. The pullback functor f∗ is t-exact and
so f∗ is left t-exact. When p∗ ∶ X → S is the terminal geometric morphism, we use
the suggestive notation Γ(X;−) ≃ p∗ and terminology global sections functor. Given a
geometric morphism of ∞-topoi f∗ ∶ X → Y, let us denote by f♡∗ ∶ X♡ → Y♡ the underlying
morphism of ordinary topoi. Lemma 22 suggests a relationship between f∗ and the derived
functor of f♡∗ , fleshed out by the following Lemma.

Lemma 23. Let f∗ ∶ X→ Y be a geometric morphism of ∞-topoi, and let F ∈ ShvSp(X)♡ ≃
ShvAb(X♡). Then the homotopy groups of the pushforward along f are given in terms of
right derived functors by π−i(f∗F ) ≃ Rif♡∗ (F ) for all i ∈ Z.

Proof. This is a special case of Theorem SAG.2.1.2.8, which shows more generally that an
appropriate restriction of f∗F is equivalent to the right derived functor Rf♡∗ . �

Lemma 24. Let X be an ∞-topos and let F ∈ ShvSp(X)♡ ≃ ShvAb(X). The homotopy

groups of global sections are given in terms of sheaf cohomology as π−iΓ(X;F ) ≃ Hi(X♡;F )
for all i ∈ Z.

Proof. Apply the previous Lemma to the global sections functor p∗ ≃ Γ(X;−), and observe
that p♡∗ ≃ Γ♡(X♡;−) is precisely the usual global sections functor on sheaves of abelian
groups. Note that Hi(X♡;−) ≃ RiΓ♡(X♡;−) is just the usual definition of sheaf cohomology
as a right derived functor. �

All the pieces are in place to apply Theorem 2 and obtain another spectral sequence.

Proposition 25 (Descent spectral sequence). Let X be an ∞-topos and F a spectral sheaf
on X. There exists an Adams-indexed conditionally convergent spectral sequence

Es,t2 ≃ Hs(X♡;πtF ) ⇒ πt−sΓ(X; F̂ )
with values in abelian groups. When F is bounded above, then this spectral sequence
converges unconditionally to πt−sΓ(X;F ).

Proof. We know that all assumptuons are satisfied, so we may apply Theorem 2 to the
functor Γ(X;−) ∶ ShvSp(X) → Sp to obtain a homologically-indexed conditionally conver-
gent spectral sequence

Ep,q2 ≃ πpΓ(X;πqF ) ⇒ πp+q(lim←ÐΓ(X; τ≤nF )).
Reindexing to the Adams-indexing convention, using Lemma 24 to identify the second
page, and the fact that the global sections functor, being a right adjoint, preserves limits,
together with Lemma 21, we end up with the desired spectral sequence. The convergence
claim follows from Theorem 2. �

Remark 26. By applying Proposition 25 to the presheaf ∞-topos X ≃ P(X) for any space
X, viewed as an ∞-groupoid, we recover Proposition 13.

With the same proof, only using Lemma 23 instead of its special case Lemma 24, we
may obtain a relative version of Proposition 25.
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Proposition 27 (Relative descent spectral sequence). Let f∗ ∶ X → Y be a geometric
morphism of ∞-topoi and let F be a spectral sehaf on X. There exists an Adams-indexed
conditionally convergent spectral sequence

Es,t2 ≃ Rsf♡∗ (πtF ) ⇒ πt−s(f∗F̂ )
with values in the abelian category ShvAb(Y). When F is bounded above, then this spectral
sequence converges unconditionally to πt−s(f∗F ).

Remark 28. One might expect a different relative version of Proposition 25 than Propo-
sition 27, along the lines of the Leray spectral sequence. This should be obtained by
applying Proposition 25 to the spectral sheaf f∗F on an ∞-topos Y for a geometric mor-
phism f∗ ∶ X → Y and a spectral sheaf F on X. However, this results in the spectral
sequence

Es,t2 ≃ Hs(Y;πt(f∗F )) ⇒ πt−sΓ(Y; f̂∗F ),
which does not necessarily converge to the homotopy groups of Γ(X;F ) as expected from
the Leray spectral sequence. That is the case if F is bounded above, but not in general,
since the neither of the functors Γ(Y;−) and f∗ needs to commute with hypercompletion.

2.5. Čech-to-derived spectral sequence. Let X be an ∞-topos. In line with Definition
SAG.1.2.4.1, we will say that an object U ∈ X covers X if the map to the terminal object
U → 1 is an effective epimorphism in X. Given such a U , we can form its Čech nerve
U●, a simplicial object in X with geometric realization ∣U●∣ ≃ 1. For any spectral presheaf
F ∈ Fun(Xop,Sp), we define the Čech sections of F over U to be

Γ̌(U ;F ) ≃ Tot(F (U●)),
the totalization of the cosimplicial spectrum obtained by composing the contravariant
functor F with the simplicial object U●. As the name suggests, Čech sections are closely
related to Čech cohomology.

Lemma 29. Let X be an ∞-topos, let U ∈ X be an object which covers X, and let F ∈
Fun(Xop,Sp)♡ ≃ Fun((X♡)op,Ab) be a discrete spectral sheaf. Then we have

π−iΓ̌(U ;F ) ≃ Ȟi(τ≤0U ;F )
for all i ∈ Z.

Proof. Recall that the underlying ordinary topos X♡ of the ∞-topos may be identified
with the subcategory of discrete objects in X. The inclusion X♡ ⊆ X admits a left adjoint
given by the truncation6 functor τ≤0 ∶ X → X♡. Using j to denote the Yoneda embedding,
we find that

Ω∞−nF (Uk) ≃ MapP(X)(j(Uk),Ω∞−nF )
≃ MapP(X♡)(j(τ≤0Uk),Ω∞−nF )
≃ Ω∞−nF ((τ≤0U)k),

where we have used the Yoneda lemma, the fact that F is discrete, and the fact that τ≤0
commutes with finite products. Since n ∈ Z was arbitrary above, we obtain an equivalence
of spectra F (Uk) ≃ F ((τ≤0U)k). Taking the limit over k, we find an equivalence of Čech
sections

Γ̌(U ;F ) ≃ Γ̌(τ≤0U ;F ),
the left taken with respect to the ∞-topos X, and the right with respect to the ordinary
topos X♡. Here note that, since U → 1 is an effective epimorphism in X, so is the morphism

6Note that this is not truncation with respect to a t-structure, but the internal truncation inside the
∞-topos X. Of course when considering spectral sheaves on an ∞-topos, the t-structure is defined to
interpolate between the standard t-structure on Sp and the internal homotopy theory of the ∞-topos, so
the two notions of truncation are not unrelated.
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τ≤0U → τ≤01 an effective epimorphism in X♡, and the left adjoint functor τ≤0 preserves
terminal objects (the limit of the empty diagram), showing that τ≤0U covers X♡. With
this, it suffices to assume that X ≃ X♡ is an ordinary topos.

It remains to actually identify homotopy groups of the Čech sections with Čech co-
homology. The former are computed as homotopy groups of the spectrum Γ̌(U ;F ),
which is obtain as totalization inside the ∞-category Sp of the cosimplicial diagram
F (U●) ∶ ∆ → Ab ≃ Sp♡ ⊆ Sp . Though the totalization itself is taken in the ∞-category of
spectra, F (U●) is cosimplicial abelian group. Thus we may use the Dold-Kan correspon-
dence, in version dual to7 Lemma HA.1.2.3.13, to identify Fun(∆,Ab) ≃ Ch(Ab)≥0 the
categories of cosimplicial abelian groups and cochain complexes in non-negative degrees.
The equivalence is given by sending a cosimplicial abelian group A● to the normalized
cochain complex N∗(A), given explicitly by the dual of Definition HA.1.2.3.9. Using the
dual of Remark HA.1.2.3.14, we find that the cohomology group of a chain complex as-
sociated to a cosimplicial abelian group is isomorphic to the negative homotopy group of
the totalization of the cosimplicial diagram of abelian groups, when viewed as a diagram
of discrete spectra. In the case we are interested in, this reduces to

π−iΓ̌(U ;F ) ≃ π−iTot(F (U●)) ≃ Hi(N∗(F (U●))).
We may use the dual of (or just application to Abop of) Proposition HA.1.2.3.17 to find that
the cohomology groups of normalized cochains N∗(F (U●)) are equivalent to cohomology
groups of unnormalized cochains C∗(F (U●)). The latter is, accoding to Definition 1.2.3.8,
the cochain complex given explicitly as

0→F (U) d(1)ÐÐ→F (U2) d(2)ÐÐ→F (U3) d(3)ÐÐ→ . . . ,

in which the codifferential d(n) ∶ F (Un) → F (Un+1) is given as an alternating sum
d(n) = ∑0≤i≤n(−1)idi of the coface maps di of the cosimplicial abelian group F (U●).
These coface maps are induced by the face maps of the Čech nerve U●, which are defined
in the standard way in terms on projections onto factors in the product. From this, it is
clear that the cochain complex described above recovers precisely the classical complex of
Čech cochains of F over U , i.e. C∗(F (U●)) ≃ Č∗(U ;F ), the cohomology groups of which
are the Čech cohomology groups Ȟi(U ;F ) by definition. �

Let X again be an arbitrary ∞-topos. There is a geometric morphism j∗ ∶ X → P(X)
from X to the presheaf ∞-topos P(X) ≃ Fun(Xop,S), given as an adjunction by the Yoneda
emedding and sheafification. As we already discussed in 2.4, this geometric morphism
induces an adjunction j∗ ∶ Fun(Xop,Sp) ≃ ShvSp(P(X)) ⇆ ShvSp(X) ∶ j∗ on spectral
sheaves, with the functor j∗ is t-exact and j∗ left t-exact. Analogously to the case in 2.3,
the t-structure on Fun(Xop,Sp) is inherited from the one on spectra. As such, it is both
left and right t-complete, unlike the t-strucutre on ShvSp(X) which is in general only right
t-complete. For a spectral sheaf F on X, let us denote by πpre

i F the homotopy groups
πi(j∗F ) for all i ∈ Z. The spectral presheaf πpre

i F is explicitly given as U ↦ πi(F (U)).

Remark 30. The inclusion ShvSp(X) ⊆ Fun(Xop,Sp), which may be identified with the
functor j∗, is reflexive, admiting a left adjoint in the sheafification functor j∗. This implies
that the counit of the adjunction, the natural tranformation j∗j∗ → id, induces an equiva-
lence of spectral sheaves. That is just the standard fact that sheafification is idempotent.
In particular, we get using the t-exactness of the pullback functor j∗ that the composition

j∗πpre
i F ≃ j∗πi(j∗F ) ≃ πi(j∗j∗F ) → πiF

is an equivalence in ShvSp(X)♡ ≃ ShvAb(X♡), showing that homotopy sheaves πiF are ob-
tained by sheafifying the homotopy presheaves πpre

i F , generalizing Example SAG.1.3.2.4.

7Alternatively, we could use Theorem HA.1.2.3.7 applied to the abelian category Abop.
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Remark 31. Let F be a discrete spectral sheaf on X, which is to say that F ∈ ShvSp(X)♡ ≃
ShvAb(X♡). Then the homotopy presheaves πpre

i F may be identified with the classical co-

homology presheaves, traditionally denoted H i(F ) and given by U ↦ Hi(U ;F ). Together
with the previous remark, we recover the classical fact that homotopy sheaves H i(F )
vanish upon sheafification for all i ≥ 1.

Proposition 32 (Čech-to-derived spectral sequence). Let X be an ∞-topos and F a
spectral sheaf on X. Let U ∈ X be an object which covers X. There exists an Adams-
indexed conditionally convergent spectral sequence

Es,t2 ≃ Ȟs(τ≤0U ;πpre
t F ) ⇒ πt−sΓ(X;F )

with values in abelian groups. When F is bounded above, then this spectral sequence
converges unconditionally.

Proof. Writting the functor G ↦ Γ̌(U ;G ) as the composition

Fun(Xop,Sp) U∗●Ð→ Fun(∆,Sp) TotÐÐ→ Sp

of two functors, both of which are evidently left t-exact and commute with limits, it follows
that the same holds for the functor of Čech sections over U . Since the t-structure on
Fun(Xop,Sp) is both left as well as right t-complete, we may use Variant 5 to obtain (after
reindexing and using Lemma 29 to identify the second page) a conditionally convergent
Adams-indexed spectral seuqence

Es,t2 ≃ Ȟs(τ≤0U ;πtG ) ⇒ πt−sΓ̌(U ;G )
for any spectral presheaf G on X. Now we set G ≃ j∗F . To identify the limiting term of
this spectral sequence with the desired one, note that fact that F satisfies descent, which
is to say that it commutes with limits as a functor F ∶ Xop → Sp, implies that

Γ̌(U ; j∗F ) ≃ Tot(F (U●)) ≃ F (∣U●∣) ≃ F (1) ≃ Γ(X;F ),
where we have also used the assumption that U covers X. �

Corollary 33. Let X be a topos and F a sheaf of abelian groups on X. Let U ∈ X be an
object which covers X. There exists an cohomologically-indexed unconditionally convergent
spectral sequence

Ep,q2 ≃ Ȟp(U ;H q(F )) ⇒ Hp+q(X;F )
with values in abelian groups.

Remark 34. When X is the ∞-topos of sheaves on the Cartesian site of smooth manifolds,
the spectral sheaves on X are usually called smooth spectra. Restricting to the overtopos
X/M for a compact smooth manifold M , the spectral sequence of Proposition 32 and taking
the colimit over covers U → M ≃ 1X/M recovers the Atiyah-Hirzebruch spectral sequence

for smooth spectra of [GS17, Theorem 11].

2.6. Adams spectral sequence. We obtain the Adams and Adams-Novikov spectral
sequences as a special case of a descent spectral sequence for quasi-coherent sheaves on a
(nice-enough) spectral stack.

2.6.1. Quasi-coherent sheaves on a functor. We give an account on how to define the
∞-category of quasi-coherent sheaves on any functor X ∶ CAlgcn → S. When X is rep-
resentable by a nonconnective spectral Deligne-Mumford stack, this recovers its usual
meaning from §2.2 of SAG. What we describe is analogous to, but simpler than, the §6.2.2
of SAG, due to the fact that we are ignoring set-theoretical difficulties related to the
difference between small and large spaces.

Recall for two ∞-categories C and D, the latter of which possesses all small colimits,
any functor F0 ∶ C→D extends by Theorem HTT.5.1.5.6 essentially uniquely to a colimit
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preserving functor F ∶ P(C) → D such that F ○ j ≃ F0, where j ∶ C → P(C) denotes the
Yoneda embedding.

Consider the functor Mod ∶ CAlgcn → PrSt, sending a connective E∞-ring A to the stable
presentable ∞-category ModA, and which sends an E∞-ring map A → B to the functor
M ↦ B ⊗A M . Via the recalled universal category of the presheaf ∞-category, there
exists a unique colimit-preserving functor QCoh ∶ Fun(CAlgcn,S) → (PrSt)op, such that
QCoh(SpecA) ≃ ModA for any A ∈ CAlgcn. Here we are employing the standard notation
SpecA for the Yoneda embedding of A (which is sensible, since it is represented by the
eponymous spectral scheme). To any nautral tranformation f ∶X → Y in Fun(CAlgcn,S),
the functor QCoh associates an exact functor f∗ ∶ QCoh(Y ) → QCoh(X). By Proposi-
tion SAG.6.2.3.4 the functor f∗ prerves colimits, so it admits a right adjoint, which we
expectedly denote f∗ ∶ QCoh(X) → QCoh(Y ).

Remark 35. Note that the above discussion is little more than an elaboration of the
usual formula

QCoh(X) ≃ QCoh ( limÐ→
SpecA→X

SpecA) ≃ lim←Ð
SpecA→X

ModA,

where the colimit and limit are both taken with respect to all natural transformations
from representable presheaves into X.

2.6.2. The flat topology. Let f ∶ A → B be a map of E∞-rings. Recall from Definitions
HA.7.2.2.10 and SAG.B.6.11 that f is said to be (faithfully) flat if

(a) The underlying map of commutative rings π0A→ π0B is (faithfully) flat.
(b) The evident map

π∗A⊗π0A π0B → π∗B

is an isomorphism of gradec π0B-algebras.

The fpqc topology on the ∞-category CAlgop is defined by setting a collection of E∞-ring
maps {A→ Ai}i∈I to constitute a covering if there exists a finite subset I ′ ⊆ I for which the
induced map A → ∏i∈I′ Ai is faithfully flat. According to Proposition SAG.B.6.13, this
generates a Grothendieck topology, which in particular distinguishes a full subcategory
Shvfpqc ⊆ Fun(CAlgcn,S) spanned by fpqc sheaves.

The subcategory inclusion Shvfpqc ⊆ Fun(CAlgcn,S) admits a left adjoint in the sheafi-
fication functor L ∶ Fun(CAlgcn,S) → Shvfpqc, and by Proposition SAG.6.2.3.1 the unit
of the adjunction X → LX induces an equivalence upon applying QCoh. That is to say,
quasi-coherent sheaves are formed on the level of fpqc sheaves. By Proposition SAG.6.2.3.4
the functor QCoh ∶ Shvop

fpqc → PrSt preserves limits.

2.6.3. Descent for quasi-coherent sheaves. Remark SAG.6.2.5.8 shows that QCoh(X) car-
ries a t-structure with QCoh(X)≥0 ≃ QCoh(X)cn. Note however that, according to Warn-
ing SAG.6.2.5.9, this t-structure is in general quite ill-behaved, for instance failing to be
compatible with fitered colimits.

Let us say thatX ∈ Shvfpqc is an admissible spectral stack8 if the t-structure on QCoh(X)
is both left and right complete, and compatible with sequential colimits. This includes
both nonconnective spectral Deligne-Mumford stacks of Definition SAG.1.4.4.2, as well as
quasi-geometric stacks of Definition SAG.9.1.0.1.

8This is a compromise notion, weaker than a nonconnective spectral Deligne-Mumford stack or quasi-
geometric stack (or even Artin spectral stack, which should include smoothness conditions), yet stronger
than just a fpqc sheaf. We have chosen to use it because the mentioned notions, in the form made available
by SAG, include various other details not relevant to our discussion that we would rather not get into. Not
to say that this extra structure is irrelevant - on the contrary, it is what enables most algebraic geometry.
Alas, the theory of descent for quasi-coherent sheaves which we wish to study in this section, works in the
more general setting just as well.
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Given an admissible spectral stack X, or any functor CAlgcn → S more generally, we may
define its underlying stack to be the functorX♡ ∶ CAlg♡ → Set given byR ↦ π0X(R). Then
there is an equivalence QCoh(X)♡ ≃ QCoh♡(X♡) between the heart of the t-structure on
quasi-coherent sheaves on X, and the abelian category of classical quasi-coherent sheaves
on X♡.

Proposition 36 (Descent spectral sequence). Let X be an admissible spectral stack. Let
F be a quasi-coherent sheaf on X. There exists an Adams-indexed conditionally convergent
spectral sequence

Es,t2 ≃ Hs(X♡;πtF ) ⇒ πt−sΓ(X;F )
with values in the abelian category of π0O(X♡)-modules. When F is bounded above, then
this spectral sequence converges unconditionally to πt−sΓ(X;F ).

Proof. The admissability assumption on X implies that the ∞-category QCoh(X) with
its usual t-structure and the global sections functor Γ(X;−) ∶ QCoh(X) → ModΓ(X;OX)

satisfy the assumptions of Variant 5. �

2.6.4. Adams spectral sequence. Let A be an E∞-ring. The unit map S → A determines
a map of nonconnective spectral sehemes SpecA → SpecS, which we may view via their
functors of points also as a map of fpqc sheaves. Let N● denote the Čech nerve of this
map, which is to say the simplicial object in Shvfpqc given by

[n] ↦ (SpecA)n+1 ≃ SpecA⊗(n+1)

with face and degeneracy maps defined by inclusions and projections of factors in prod-
ucts respectively. Define the stack associated to A to be XA ≃ ∣N●∣, with the geometric
realization computed in the ∞-category Shvfpqc. The terminal morphism of fpqc sheaves
p ∶XA → SpecS factors for every n ≥ 0 as

SpecA⊗(n+1) in+1 //

pn+1
&&

XA

p
{{

SpecS,

where in+1 ∶ SpecA⊗(n+1) → XA are the maps exhibiting XA as the colimit of the functor
N● ∶ ∆op → Shvfpqc. Due to the continuity properties of the functor QCoh reviewed in the
last subsection, pullbacks along in+1 exhibit the equivalence of ∞-categories

(7) QCoh(XA) ≃ Tot(QCoh(SpecA⊗(n+1))).
According to this equivalence, any quasi-coherent sheaf F on XA is equivalent to the limit
F ≃ lim←Ð in∗i

∗
nF . On the level of global sections, and in view of the above commutative

diagram, this gives

Γ(XA;F ) ≃ p∗F ≃ lim←Ðp∗in∗i
∗
nF ≃ lim←Ðpn∗i

∗
nF ≃ lim←ÐΓ(SpecA⊗n, i∗nF ),

since the right adjoint functor p∗ commutes with limits.
Given a spectrum M ∈ Sp ≃ QCoh(Sp), we may choose F to be the constant quasi-

coherent sheaf p∗M on the geometric stack XA. Using once again commutativity of the
above diagram, we find that i∗np

∗M ≃ p∗nM . Under the identification QCoh(SpecA⊗n) ≃
ModA⊗n given by global sections, i.e. by the pushforward functor pn∗, its left adjoint
p∗n ∶ ModA⊗n → Sp is the left adjoint to the forgetful functor from A⊗n-modules to spectra.
Such a left adjoint is given by smashing with A⊗n, so we find that

Γ(XA;p∗M) ≃ limÐ→ pn∗i
∗
np

∗M ≃ limÐ→pn∗p
∗
nM ≃ lim←ÐA

⊗n ⊗M.

Let us denote the right hand side by M∧
A. It is the nilpotent completion of Boursfield and

Adams (also merely called “derived completion” in [?]). A classical result of Bousfield
identifies with the Bousfield localization LAM in many relevant cases:
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Lemma 37 (Bousfield). Let A be connective ring spectrum such that the core of π0(A) is
either Z[J−1] for some set of primes J , or Z/n for some n ≥ 2. Then the map LAM →M∧

A
is an equivalence of spectra for any spectrum M .

Furthermore we may in that case identify QCoh(XA) ≃ LASp, through (7) with the
∞-category of Bousfield A-local spectra, by a descent argument in [?]. In particular, it
follows that this ∞-category with its usual t-structure satisfies all the requirements for XA

to be an admissible spectral stack.

Proposition 38 (A-based Adams spectral sequence). Let A be a connective E∞-ring,
satisfying the conditions o Lemma 37, and such that π∗(A ⊗ A) is a flat graded π∗A-
module. There exists for every spectrum M an Adams-graded conditionally convergent
spectral sequence

Es,t2 ≃ Exts,t
π∗(A⊗A)(π∗A,π∗(A⊗M)) ⇒ πt−sLAM.

When M is bounded above, this spectral sequence converges unconditionally to πt−sLAM .

Proof. We apply Proposition 36 to XA and the constant sheaf F = p∗M . By the discussion
preceeding the Proposition, the limiting term is the desired one. It remains to identify the
E2-term.

Since the t-structure on QCoh(XA) is compatible with the equivalence (7), homotopy
groups with respect to it are given by

πkF ≃ lim←Ð in∗πk(i
∗
nF )

for all k ∈ Z. By the discussion preceeding the Proposition we have

πk(p∗M) ≃ lim←Ð in∗πk(p
∗
nM) ≃ lim←Ð in∗πk(A

⊗n ⊗M).
To determine the homotopy groups of the smash product A⊗n ⊗M , note first the evident
equivalence

A⊗(n+1) ⊗M ≃ (A⊗A)⊗An ⊗A (A⊗M).
The Kunneth spectral sequence of Proposition HA.7.2.1.19

Ep,q2 = Torπ∗Ap (π∗(A⊗A), π∗(A⊗M))q ⇒ πp+q(A⊗A⊗M)
has vanishing terms on the second page whenever p ≠ 0 by the flatness assumption. Thus
this spectral sequence degenerates, and we may induction on n to obtain an isomorphism

πk(A⊗(n+1) ⊗M) ≃ (π∗(A⊗A)⊗n ⊗π∗A π∗(A⊗M))
k
,

where the tensor product on the right hand side stands for the tensor product of graded
modules over the graded ring π∗(A), and the subscript k denotes the k-th graded part.

Γ(XA;πk(p∗M)) ≃ p∗ lim←Ð in∗(π∗(A⊗A)⊗n ⊗π∗A π∗(A⊗M))
k

≃ lim←Ðpn∗(π∗(A⊗A)⊗n ⊗π∗A π∗(A⊗M))
k

≃ lim←Ð(π∗(A⊗A)⊗n ⊗π∗A π∗(A⊗M))
k

The right-hand side may be recognized as (the k-th graded term of) the usual cobar
construction for the comodule π∗(A ⊗M) over the Hopf algebroid (π∗A,π∗(A ⊗ A)).
Standard Hopf coalgebroid technology (for instance, Corrolary A1.2.12 from [Rav]) shows
that this cobar construction computes Hopf algebroid Ext from the unit, we get9

Hs(XA;πt(p∗M)) ≃ π−sΓ(XA;πt(p∗M)) ≃ Exts,t
π∗(A⊗A)(π∗A,π∗(A⊗M))

9We are playing a little fast-and-loose here: the usual Hopf algebroid nonsense identifies Ext with the
homology of the cobar complex, whereas we have homotopy groups of the inverse limit of its sequen-
tial form. To translate between the two, one should use Lurie’s ∞-categorical Dold-Kan to pass from
sequential objects to cosimplicial ones, and a version of the ordinary Dold-Kan to further pass to chain
complexes. Keeping track, these equivalences take the limit of the sequential object to the totalization of
the cosimplicial object, and homotopy groups of the latter to homology groups of the chain complex.
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in the usual notation for bigraded Ext groups of comodules over a Hopf algebroid. �

Thus the A-based Adams spectral sequence is indeed always a descent spectral sequence
for the spectral stack XA associated to A. Applying the Proposition 38 to A = Fp and
A = MU, which both satisfy the required conditions, for M = S the sphere spectrum, we
recover the Adams spectral sequence

Es,t2 ≃ Exts,tA ∨
p
(Fp,Fp) ⇒ πt−sSp.

and the Adams-Novikov spectral sequence

Es,t2 ≃ Exts,t
π∗(MU⊗MU)

(π∗MU, π∗MU) ⇒ πt−sS.

respectively.
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